Addendum to the paper
“Decomposition into special cubes and its application to quasi-subanalytic geometry”

by KRZYSZTOF JAN NOWAK (Kraków)

In [7], we demonstrate how to achieve the model completeness and o-
minimality of the real field with restricted quasianalytic functions (a result
due to Rolin–Speissegger–Wilkie [13]) by means of a technique of decompo-
sition into special cubes; see [8–11] for other applications of this method.
Therein we asked, inter alia, whether, given a polynomially bounded o-
minimal expansion \mathcal{R} of the real field, the structure generated by global
smooth \mathcal{R}-definable functions is model complete. We should note that this
follows immediately from Wilkie’s complement theorem [14] (see also [12, 6]).
In this Addendum, we also wish to indicate that Gabrielov’s proof [5] of the
complement theorem can be adapted to the real field with restricted smooth
\mathcal{R}-definable functions.

Gabrielov’s approach relies on certain three preliminary lemmas. Below
we state their quasianalytic versions, whose proofs can be repeated mutatis
mutandis. Next, we shall outline our proof of the complement theorem based
on those lemmas. Denote by Q_n the algebra of those \mathcal{R}-definable functions
that are smooth in the vicinity of the closed cube $[0,1]^n$. The algebras Q_n give
rise to the notions of Q-analytic, Q-semianalytic and Q-subanalytic subsets
of the cubes $[0,1]^n$, $n \in \mathbb{N}$.

Lemma 1. Consider a Q-semianalytic subset E of $[0,1]^n$ of the form

$$E := \{x \in [0,1]^n : f_1(x) = \ldots = f_k(x) = 0, g_1(x) > 0, \ldots, g_l(x) > 0\}$$

with $f_i, g_j \in Q_n$. Then the closure \overline{E} and frontier ∂E are Q-semianalytic too.

2010 Mathematics Subject Classification: 14P15, 32B20, 26E10.

Key words and phrases: quasianalytic functions, quasi-subanalytic sets, complement the-
orem.

DOI: 10.4064/ap98-2-7
Moreover, \(E \) and \(\partial E \) can be described by functions which are polynomials in \(x \), in the functions \(f_i, g_j \), and in their (finitely many) partial derivatives.

Consequently, if \(F \) is a \(Q \)-subanalytic subset of \([0,1]^m\), then so are its closure \(\overline{F} \) and frontier \(\partial F \).

REMARK. As an easy generalization, one can formulate a parametric version of the above lemma, in which the \(R \)-definable functions involved in the description depend smoothly on parameters.

By a \(Q \)-leaf we mean a set of the form

\[
L := \{ x \in [0,1]^n : f_1(x) = \ldots = f_k(x) = 0, g_1(x) > 0, \ldots, g_l(x) > 0 \},
\]

where \(f_i, g_j \in Q_n \) and

\[
\frac{\partial(f_1, \ldots, f_k)}{\partial(x_{i_1}, \ldots, x_{i_k})}(x) \neq 0 \quad \text{for some } 1 \leq i_1 < \ldots < i_k \leq n \text{ and for all } x \in L.
\]

Lemma 2. Every \(Q \)-semianalytic subset \(E \) of \([0,1]^n\) is a finite union of \(Q \)-leaves.

The image of a \(Q \)-leaf \(L \subset [0,1]^n \) under a projection \(\pi : \mathbb{R}^n \to \mathbb{R}^m \), \(n \geq m \), will be called an immersed \(Q \)-leaf if the restriction of \(\pi \) to \(L \) is an immersion. By combining Lemma 2 with the technique of fiber cutting (see e.g. \([4, 5, 2, 3, 1, 7]\)), one can obtain

Lemma 3. Every \(Q \)-subanalytic subset \(F \) of \([0,1]^m\) is a finite union of immersed \(Q \)-leaves.

By a \(Q \)-cell we mean a cell given by smooth functions with \(Q \)-subanalytic graphs. Now we can readily outline our proof of the following main result wherefrom the complement theorem follows immediately.

Main Theorem. Consider \(Q \)-subanalytic subsets \(F_1, \ldots, F_r \) of \([0,1]^m\). Then there exists a \(Q \)-cell decomposition \(C \) of \([0,1]^m\) which is compatible with the sets \(F_i, i = 1, \ldots, r \).

We proceed by a double induction with respect to \(m \) and

\[
d := \max\{\dim F_1, \ldots, \dim F_r\}.
\]

The case \(m = 0 \) is trivial, and so take \(m > 0 \). Again, the case \(d = 0 \) is evident, and we may suppose \(d > 0 \). By virtue of Lemma 3, we can assume that \(F_i \) are immersed \(Q \)-leaves, i.e.

\[
F_i = p(E_i), \quad p : \mathbb{R}^n \to \mathbb{R}^m, \quad p(x_1, \ldots, x_m) = (x_1, \ldots, x_n),
\]

for all \(i = 1, \ldots, r \). Denote by \(q : \mathbb{R}^n \to \mathbb{R}^{m-1} \) and \(\pi : \mathbb{R}^m \to \mathbb{R}^{m-1} \) the canonical projections onto the first \(m - 1 \) coordinates; obviously, \(\pi \circ p = q \).
Put $d_i := \dim F_i = \dim E_i$, $d_i \leq d$, $i = 1, \ldots, r$, and

$$E_i' := \{ x \in E_i : \text{rank } q|E_i = d_i \}, \quad E_i'' := \{ x \in E_i : \text{rank } q|E_i = d_i - 1 \}.$$

Then $E_i = E_i' \cup E_i''$. Clearly, the restriction

$$\text{res } q : E_i' \setminus q^{-1}(q(\partial E_i')) \to q(E_i') \setminus q(\partial E_i')$$

is proper. Now observe that the set S of self-intersections of the image of $\text{res } q$ is a Q-subanalytic subset of $q(E_i')$ as $S \times \{0\} = V \cap (q(E_i') \times \{0\})$, where

$$V := \{ (u_1, \ldots, u_{m-1}, \epsilon) \in (q(E_i') \setminus q(\partial E_i')) \times [0, 1] : \exists v = (v_1, \ldots, v_{n-m+1}), w = (w_1, \ldots, w_{n-m+1}) \in [0, 1]^{n-m+1} : 0 < |v - w| < \epsilon, (u, v), (u, w) \in E_i' \setminus q^{-1}(q(\partial E_i')) \}.$$

Then $T := S \cup q(\partial E_i')$ is a Q-subanalytic set of dimension $< d$, and the restriction

$$\text{res } q : E_i' \setminus q^{-1}(T) \to q(E_i') \setminus T$$

is a topological covering, whence so is the restriction

$$\text{res } \pi : p(E_i') \setminus \pi^{-1}(T) \to q(E_i') \setminus T.$$

Therefore, over any simply connected subset (below we shall take a Q-cell) of $q(E_i') \setminus T$, the set $p(E_i'')$ is a finite union of the Q-subanalytic graphs of smooth functions.

Further, notice that, for each $u \in q(E_i'')$, the fiber $(E_i'')_u := q^{-1}(u) \cap E_i''$ is a smooth Q-semianalytic arc, and the restriction of p to $(E_i'')_u$ is an immersion of this fiber into $\{u\} \times \mathbb{R}_{x_m}$ whence the fiber $(F_i)_u$ is a finite union of open intervals. By virtue of the parametric version of Lemma 1, the sets

$$Z_i := \bigcup_{u \in q(E_i'')} (\{u\} \times \partial p(E_i'') \cap [0, 1]^m$$

are Q-subanalytic of dimension $< d$. By the induction hypothesis, there exists a Q-cell decomposition $\{ C_p : p = 1, \ldots, s \}$ of $[0, 1]^m$ compatible with the sets Z_i, $i = 1, \ldots, r$. Clearly, for each cell C_p, the sets

$$W_{i,p} := \{ u \in [0, 1]^{m-1} : (C_p)_u \subset (E_i)_u \} \subset [0, 1]^{m-1}$$

are Q-subanalytic. Again by the induction hypothesis, one can find a Q-cell decomposition \mathcal{C} compatible with the sets

$$q(E_i'), \qquad q(\partial E_i'), \qquad W_{i,p}, \qquad p(E_i') \cap \pi^{-1}(q(\partial E_i')) \quad \text{and} \quad Z_i,$$

where the first three are subsets of $[0, 1]^{m-1}$, the last two are subsets of $[0, 1]^m$ of dimension $< d$. Indeed, one must construct a Q-cell decomposition compatible with the subsets of $[0, 1]^m$ under study, which are of dimension
< d, and next refine the induced Q-cell decomposition of \([0, 1]^{m-1}\) so as to be compatible with the remaining subsets of \([0, 1]^{m-1}\).

What remains to be done is to modify the Q-cell decomposition \(C\), achieved in this fashion, as follows. As we have already seen, over each Q-cell \(C\) from the induced Q-cell decomposition of \([0, 1]^{m-1}\) such that \(C \subset q(E'_i)\) but \(C \cap q(\partial E'_i) = \emptyset\), \(i = 1, \ldots, r\), the set \(p(E'_i)\) is a finite union of the Q-subanalytic graphs of smooth functions. Again, one must modify \(C\) by partitioning its Q-cells by means of those Q-subanalytic graphs; this is, of course, linked with a successive refinement of the cube \([0, 1]^{m-1}\), which is possible due to the induction hypothesis.

It is not difficult to check that eventually we attain a Q-cell decomposition \(C\) of \([0, 1]^m\) compatible with the sets \(p(E'_i)\) and \(p(E''_i)\), and a fortiori with the sets \(F_i := p(E_i) = p(E'_i) \cup p(E''_i)\). We leave the details to the reader.

Acknowledgments. This research was partially supported by Research Project No. N N201 372336 from the Polish Ministry of Science and Higher Education.

References

Addendum

Krzysztof Jan Nowak
Institute of Mathematics
Jagiellonian University
Łojasiewicza 6
30-348 Kraków, Poland
E-mail: nowak@im.uj.edu.pl

Received 21.9.2009
and in final form 2.10.2009 (2092)