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Diffeomorphisms conformal on distributions

by Kamil Niedziałomski (Łódź)

Abstract. Let f : M → N be a local diffeomorphism between Riemannian manifolds.
We define the eigenvalues of f to be the eigenvalues of the self-adjoint, positive definite
operator df∗df : TM → TM , where df∗ denotes the operator adjoint to df . We show that
if f is conformal on a distribution D, then dimVλ ≥ 2 dimD − dimM , where Vλ denotes
the eigenspace corresponding to the coefficient of conformality λ of f . Moreover, if f has
distinct eigenvalues, then there is locally a distribution D such that f is conformal on D
if and only if 2 dimD < dimM + 1.

1. Introduction. Let (M, gM ) and (N, gN ) be Riemannian manifolds
with n = dimM = dimN . Let f : M → N be a local diffeomorphism. Fix
x ∈M . Let (dfx)∗ : Tf(x)N → TxM be the adjoint operator to dfx : TxM →
Tf(x)N , i.e.

gN (Y, dfxX) = gM ((dfx)∗Y,X), X ∈ TxM, Y ∈ Tf(x)N.

Then the self-adjoint and positive definite operator Sx = (dfx)∗dfx : TxM →
TxM has n real and positive eigenvalues λ1(x) ≥ · · · ≥ λn(x). The eigenspace
of Sx corresponding to the eigenvalue λi(x) is denoted by Vλi(x) ⊂ TxM .
An eigenvector of f at x is an eigenvector of Sx. We call λ1, . . . , λn the
eigenvalues of f . We say that λ1, . . . , λn are distinct if they are distinct at
every point, that is, λi(x) 6= λj(x) for all i 6= j and x ∈M . Note that given
any n distinct functions λ1, . . . , λn on M , there is locally a diffeomorphism
f : U → N , U open in M , such that the λi are the eigenvalues of f (see [2]).

Let D be a distribution on M . We say that f is conformal on D if
gN (f∗xX, f∗xY ) = λ(x)gM (X,Y ), X, Y ∈ Dx, x ∈M,

for some smooth and positive function λ : M → R, which is called the
coefficient of conformality of f . Properties of such transformations for codi-
mension one distributions on Riemannian manifolds were considered in [5]
and [6]. For contact manifolds, conformality of some diffeomorphisms with
respect to contact distributions was investigated in [4] and [7].
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Given a diffeomorphism f : M → N between Riemannian manifolds, one
may ask if there is a distribution D on M such that f is conformal on D.
Moreover, integrability of D is of interest. In [3] the author investigated the
case when M and N are open subsets of Euclidean space R3. Then, if f has
three everywhere distinct eigenvalues, there are locally exactly two smooth
2-dimensional distributions D1, D2 such that f is conformal on each of them.
The integrability condition leads to a second order nonlinear equation. It
turns out that integrability of one of these distributions does not imply
integrability of the other.

In dimensions higher than three the situation is much more complicated.
However, we are able to state some local criteria both for existence and
nonexistence of diffeomorphisms conformal on distributions.

We have the following results. Let f : M → N be a local diffeomor-
phism. Assume that f has everywhere distinct eigenvalues. Then there is
locally a k-dimensional distribution D such that f is conformal on D if and
only if k ≤ (dimM + 1)/2 (Theorem 3.3). For nonexistence the assump-
tion that f has distinct eigenvalues can be relaxed. Namely, if λl > λl+1 or
λl+1 > λl+2 for dimM = 2l + 1 and λl > λl+1 for dimM = 2l, then for
k > (dimM + 1)/2 there is no k-dimensional distribution D such that f is
conformal on D (Theorem 3.2). Thus if a diffeomorphism f is conformal on
a distribution D and dimD > (dimM + 1)/2, then f cannot have distinct
eigenvalues. A stronger result is valid: dimVλ ≥ 2 dimD − dimM , where
Vλ is the eigenspace of f corresponding to the coefficient of conformality λ
(Theorem 3.4).

Throughout this paper all manifolds, maps and distributions are assumed
to be smooth.

2. Geometric lemmas. In this section we prove some geometric results
about ellipsoids. By an ellipsoid E in Rn we mean a set

E = {x ∈ Rn : 〈Py, y〉 = 1},

where 〈·, ·〉 denotes the standard inner product and P is a positive definite
symmetric n×n matrix. Let λ1 ≥ · · · ≥ λn > 0 be the eigenvalues of P . Put
µi = 1/

√
λi. Let Vλ denote the eigenspace corresponding to the eigenvalue λ.

If P has distinct eigenvalues, then the eigenspaces are 1-dimensional and µi
are the lengths of the semi-principal axes of E.

We have the following lemma, generalizing a result from [1, p. 194].

Lemma 2.1. Let E be an ellipsoid in R2l+1.

(1) For any k ≤ l + 1 there is a k-dimensional subspace intersecting E
along a sphere.
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(2) If λl > λl+1 or λl+1 > λl+2, then

(i) every (l+1)-dimensional subspace intersecting E along a sphere
contains the eigenspace Vλl+1

,
(ii) there is no k-dimensional subspace intersecting E along a sphere

for any k > l + 1.

Proof. Let P be the matrix representing the ellipsoid E and let α1, . . .
. . . , α2l+1 be an orthonormal basis in R2l+1 consisting of eigenvectors of P
corresponding to the eigenvalues λ1 ≥ · · · ≥ λ2l+1 respectively. For x ∈ R2l+1

let (x1, . . . , x2l+1) denote its coordinates in this basis, x =
∑

i xiαi.
If in the sequence λ1 ≥ · · · ≥ λ2l+1 there are l consecutive equalities

then there is an (l+ 1)-dimensional (and hence k-dimensional for k ≤ l+ 1)
subspace intersecting E along a sphere. Therefore, we may assume that λi >
λi+1 and λj > λj+1 for some i, j = 1, . . . , 2l such that j − i < l + 1 and
i < l + 1 ≤ j.

Consider the following subsets of {1, . . . , 2l + 1}:
A1 = {1, . . . , i}, A2 = {i+ 1, . . . , l}, A3 = {l + 2, . . . , j},
A4 = {j + 1, . . . , l + j − i}, A5 = {l + j − i+ 1, . . . , 2l + 1}.

Then ]A1 = ](A3 ∪ A5) = i and ]A2 = ]A4 = l − i, where ]A denotes the
number of elements of A. Put

D0 :

{√
λk − λl+1 xk =

√
λl+1 − λmk xmk , k = 1, . . . , i,√

λl+1 − λpk xpk =
√
λnk − λl+1 xnk , k = 1, . . . , l − i.

where {mk}k=1,...,i = A3 ∪ A5, {nk}k=1,...,l−i = A2 and {pk}k=1,...,l−i = A4.
Since all the coefficients on the left hand sides are nonzero, D0 is an (l+ 1)-
dimensional subspace in R2l+1.

We will show that D0 intersects E along a sphere of radius µl+1. Since
E is given by

(1) λ1x
2
1 + · · ·+ λ2l+1x

2
2l+1 = 1,

x ∈ E satisfies

−λl+1(x2
1 + . . .+ x2

2l+1)=(λ1 − λl+1)x2
1 + · · ·+ (λl − λl+1)x2

l

+ (λl+2−λl+1)x2
l+2 + · · ·+ (λ2l+1−λl+1)x2

2l+1−1.

Thus we only need to show that for every x ∈ D0 ∩ E,

(2) (λ1 − λl+1)x2
1 + · · ·+ (λl − λl+1)x2

l

+ (λl+2 − λl+1)x2
l+2 + · · ·+ (λ2l+1 − λl+1)x2

2l+1 = 0.

This follows from the definition of D0. Therefore D0 intersects E along a
sphere of radius µl+1. Moreover, for any k < l+1, a k-dimensional subspace
of D0 cuts E along a sphere.
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Assume now that λl > λl+1 or λl+1 > λl+2. Let D be an (l + 1)-
dimensional subspace cutting E along a sphere of radius µl+1. We will show
that D contains Vλl+1

. We have

(3) D :


c1,1x1 + · · ·+ c1,2l+1x2l+1 = 0,

. . .

cl,1x1 + · · ·+ cl,2l+1x2l+1 = 0,

for some ci,j . Since D cuts E along a sphere of radius µl+1, points in E ∩D
solve (1) and λl+1x

2
1 + · · ·+ λl+1x

2
2l+1 = 1. In addition, if x satisfies (2), so

does tx for any t ∈ R. Thus we see that if x ∈ D, then x satisfies (2). Put

C =


c1,1 . . . c1,l
...

. . .
...

cl,1 . . . cl,l

 , C̃ =


c1,l+2 . . . c1,2l+1

...
. . .

...
cl,l+2 . . . cl,2l+1

 .
Suppose detC = det C̃ = 0. Consider first the condition detC = 0. Then
rankC < l, so dim(D ∩ Lin(α1, . . . , αl)) ≥ 1. Moreover, D ∩ Lin(α1, . . . , αl)
cuts an ellipsoid E∩Lin(α1, . . . , αl) along a sphere of radius not greater than
µl. SinceD intersects E along a sphere of radius µl+1, we get µl = µl+1. Thus
λl = λl+1. Similarly det C̃ = 0 implies λl+1 = λl+2. Thus λl = λl+1 = λl+2,
which is impossible. Therefore, without loss of generality, we may assume
that λl > λl+1 and detC 6= 0. Thus we can write (3) in the form

D :


x1 = a1,l+1xl+1 + a1,l+2xl+2 + · · ·+ a1,2l+1x2l+1,

. . .

xl = al,l+1xl+1 + al,l+2xl+2 + · · ·+ al,2l+1x2l+1,

(3′)

for some ai,j . Moreover, Vλl+1
= Lin(αl+1, . . . , αp) for some p ≥ l + 1. Thus

(2) becomes

(2′) (λ1 − λl+1)x2
1 + · · ·+ (λl − λl+1)x2

l

+ (λp+1 − λl+1)x2
p+1 + · · ·+ (λ2l+1 − λl+1)x2

2l+1 = 0.

Substituting (3′) to (2′) we find that the coefficient of x2
i , l + 1 ≤ i ≤ p,

equals
a2

1,i(λ1 − λl+1) + · · ·+ a2
l,i(λl − λl+1).

On the other hand, it must be equal to zero (by taking xl+1 = · · · = xi−1 =
xi+1 = x2l+1 = 0 and xi = 1). Therefore aj,i = 0 for j = 1, . . . , l and
i = l + 1, . . . , p. We get

D :


x1 = a1,p+1xp+1 + · · ·+ a1,2l+1x2l+1,

. . .

xl = al,p+1xp+1 + · · ·+ al,2l+1x2l+1,

so D contains Vλl+1
.
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Suppose now that there is an (l+1)-dimensional subspace D′ which does
not contain Vλl+1

and intersects E along a sphere. Then, by the above, the
radius of this sphere is µ 6= µl+1. Since dim(D ∩ D′) ≥ 1, we can choose a
1-dimensional subspace l ⊂ D ∩D′. It intersects E in four points, two with
norm µ and two with norm µl+1. This is impossible.

We only need to show that there is no k-dimensional subspace intersecting
E along a sphere if k > l+ 1 (still with the assumption λl > λl+1 or λl+1 >
λl+2). Suppose such a subspace D exists. Without loss of generality we may
assume that λl > λl+1. Consider the subspaces V1 = Lin(α1, . . . , α2l−1) and
V2 = Lin(α2, . . . , α2l). Then dim(D ∩ Vi) ≥ l. Let Wi be an l-dimensional
subspace of D ∩ Vi. Then, by the previous part, W1 and W2 intersect the
ellipsoids E ∩ V1 and E ∩ V2 along spheres of radii µl and µl+1 respectively,
a contradiction since µl < µl+1.

Lemma 2.2. Let E be an ellipsoid in R2l.

(1) For any k ≤ l there is a k-dimensional subspace intersecting E along
a sphere.

(2) If λl > λl+1 and k > l then there is no k-dimensional subspace
intersecting E along a sphere.

Proof. Choose a basis (α1, . . . , α2l) as in the proof of Lemma 2.1. Con-
sider an ellipsoid E1 = E ∩ Lin(α1, . . . , α2l−1). By Lemma 2.1 there exists
an l-dimensional subspace D intersecting E1 along a sphere. Therefore D in-
tersects E along a sphere. If we take k < l then any k-dimensional subspace
of D cuts E along a sphere.

Suppose there is a k-dimensional subspace D intersecting E along a
sphere for k > l and λl > λl+1. Let D̃ be any (l + 1)-dimensional subspace
of D. Let λ be such that λl > λ > λl+1. Extend E ⊂ R2l to an ellipsoid Ẽ
in R2l+1 putting

Ẽ : λ1x
2
1 + · · ·+ λ2lx

2
2l + λx2

2l+1 = 1,

where x =
∑

i xiαi + x2l+1e2l+1 and e2l+1 is the (2l + 1)th vector of the
canonical basis in R2l+1. Then D̃ intersects Ẽ along a sphere but Vλ 6⊂ D̃, a
contradiction with Lemma 2.1.

3. Main results

Lemma 3.1. Let f : M → N be a local diffeomorphism between n-
dimensional Riemannian manifolds (M, gM ) and (N, gN ), and D a distribu-
tion on M . Let e1(x), . . . , en(x) be an orthonormal basis of TxM consisting
of eigenvectors of f at x ∈ M . Let λ1(x), . . . , λn(x) be the corresponding
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eigenvalues. Then for every x ∈M , Dx intersects the ellipsoid

Ex =
{∑

i

Xiei(x) :
∑
i

λi(x)X2
i = 1

}
⊂ TxM

along a sphere if and only if f is conformal on D.

Proof. Let X ∈ Ex, X =
∑

iXiei(x). Then

|dfxX|2N = gM (SxX,X) =
∑
i,j

XiXjgM (Sxei(x), ej(x)) =
∑
i

λiX
2
i = 1,

where Sx = (dfx)∗dfx and | · |N denotes the norm in the metric gN . Therefore
dfx(Ex) = S, where S ⊂ Tf(x)N is the unit sphere. If f is conformal on D,
then Dx ∩Ex is a sphere since its image dfx(Dx)∩ S is a sphere. Conversely,
if Dx ∩Ex is a sphere, then dfx(Dx ∩Ex) = dfx(Dx)∩ S is a sphere. Thus f
is conformal on D.

Theorem 3.2. Let f : M → N be a local diffeomorphism between n-
dimensional Riemannian manifolds, and λ1 ≥ · · · ≥ λn the eigenvalues of f .
Let x ∈M . Assume that λl(x) > λl+1(x) or λl+1(x) > λl+2(x) if n = 2l+ 1
and λl(x) > λl+1(x) if n = 2l. Then for any k ∈ N satisfying dimM < 2k−1
there is no k-dimensional distribution D in any neighbourhood of x such that
f is conformal on D.

Proof. Follows from Lemmas 2.1, 2.2 and 3.1.

Theorem 3.3. Let f : M → N be a local diffeomorphism between Rie-
mannian manifolds. Assume that f has distinct eigenvalues. Then there ex-
ists locally a k-dimensional distribution D such that f is conformal on D if
and only if k ≤ (dimM + 1)/2.

Proof. Nonexistence for k > (dimM + 1)/2 follows from Theorem 3.2.
Let n = dimM and k ≤ (n + 1)/2. Let λ1(x) > · · · > λn(x) > 0 be
the eigenvalues of f at x ∈ M . Since f has globally distinct eigenvalues,
the functions λi, i = 1, . . . , n, are smooth. Fix x0 ∈ M . Let (X1, . . . , Xn)
be an orthonormal basis in a neighbourhood U of x0 such that Xi(x) is
an eigenvector of f at x corresponding to the eigenvalue λi(x), x ∈ U ,
i = 1, . . . , n. If dimM = 2l + 1 put

Yi =
√
λi − λl+1Xi −

√
λl+1 − λl+1+iXl+1+i, i = 1, . . . , l,

while if dimM = 2l put

Zi =
√
λi − λlXi −

√
λl − λl+iXl+i, i = 1, . . . , l − 1.

Define

D =
{

Lin(Y1, . . . , Yk−1, Xl+1) if dimM = 2l + 1,
Lin(Z1, . . . , Zk−1, Xl) if dimM = 2l.
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Then D is a k-dimensional distribution on U . By the proof of Lemma 2.1
(definition of D0) and Lemma 3.1, f is conformal on D.

Theorem 3.4. Let f : M → N be a local diffeomorphism between Rie-
mannian manifolds. Let D be a distribution on M such that f is conformal
on D. Let Vλ(x) denote the eigenspace of f at x ∈ M corresponding to the
coefficient of conformality λ(x). Then

(4) dimVλ(x) ≥ 2 dimD − dimM, x ∈M.

Proof. Let n = dimM and k = dimD. Fix x ∈ M and consider the
notations from Lemma 3.1. Let µi(x) = 1/

√
λi(x). We divide the proof into

two cases.

Case 1: n = 2l + 1. If k ≤ l, then

2 dimD − dimM ≤ 2l − (2l + 1) = −1,

so (4) holds. If k ≥ l + 1, then dimDx ∩Di ≥ 1, i = 1, 2, where

D1 = Lin(e1(x), . . . , el+1(x)), D2 = Lin(el+1(x), . . . , e2l+1(x)).

Let µ = 1/
√
λ(x) be the radius of the sphere Ex ∩ Dx (see Lemma 3.1).

As Dx ∩D1 intersects Ex along a sphere of radius ≤ µl+1(x), and Dx ∩D2

intersects Ex along a sphere of radius ≥ µl+1(x), we get µ = µl+1(x).
Therefore λl+1(x) = λ(x) and dimVλ(x) ≥ 1. Moreover, for k = l + 1,

2 dimD − dimM = 2(l + 1)− (2l + 1) = 1 ≤ dimVλ(x),

so (4) holds.
Suppose now k > l + 1. Let

p = k − l − 1 ≥ 1.

For i = 0, 1, . . . , p define

ki = k − 2i, li = l − i.

Since ki − li = p− i+ 1,

ki > li + 1, i = 0, 1, . . . , p− 1, kp = lp + 1.

By Lemma 2.1 (k0 > l0 + 1) there is a 2-dimensional subspace V0 of Vλ(x).
Consider the ellipsoid Ex ∩ V ⊥0 and the subspace Dx ∩ V ⊥0 . We have

dim(TxM ∩ V ⊥0 ) = 2l1 + 1, dim(Dx ∩ V ⊥0 ) ≥ k1.

We replace TxM by TxM ∩ V ⊥0 and Dx by a k1-dimensional subspace of
Dx∩V ⊥0 and continue the process (if k1 > l1 +1). In the ith step (ki > li+1
for i < p) we take a 2-dimensional subspace Vi of Vλ(x) ∩ (V0 ⊕ · · · ⊕ Vi−1)⊥.
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Thus we have

V0 ⊕ · · · ⊕ Vp−1 ⊂ Vλ(x),

dim(TxM ∩ (V0 ⊕ · · · ⊕ Vp−1)⊥) = 2lp + 1,

dim(Ex ∩ (V0 ⊕ · · · ⊕ Vp−1)⊥) ≥ kp.
By the part of the proof for k ≥ l + 1 we conclude that dim(Vλ(x) ∩ (V0 ⊕
· · · ⊕ Vp−1)⊥) ≥ 1. Therefore

dimVλ(x) ≥ dim(V0 ⊕ · · · ⊕ Vp−1) + 1 = 2p+ 1

= 2(k − l − 1) + 1 = 2k − (2l + 1)
= 2dimD − dimM.

Case 2: n = 2l. It is analogous to the previous one. If k ≤ l, then
2 dimD − dimM ≤ 2l − 2l = 0 ≤ dimVλ(x),

so (4) holds. Assume k > l. As before, we show that λ(x) = λl(x) = λl+1(x).
Put p = k − l and define

ki = k − 2i, li = l − i, i = 0, 1, . . . , p.

Since ki − li = p − i, we get ki > li for i = 0, 1, . . . , p − 1 and kp = lp. By
Lemma 2.2 (k0 > l0) there is a 2-dimensional subspace V0 of Vλ(x). In the ith
step (ki > li) we find a 2-dimensional subspace Vi of Vλ(x)∩(V0⊕· · ·⊕Vi−1)⊥.
Thus

V0 ⊕ · · · ⊕ Vp−1 ⊂ Vλ(x),

so
dimVλ(x) ≥ 2p = 2(k − l) = 2 dimD − dimM.

4. Examples

Example 4.1. Consider the n-dimensional torus Tn = Rn/Zn, n > 3.
Let A ∈ SLn(Z). Assume each of the matrices A and A>A has n distinct
eigenvalues. For example, one may set

A =


M1 0

. . .

0 Ml

 if n = 2l

and

A =


1 0

M1

. . .

0 Ml

 if n = 2l + 1,
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where

Mi =

[
1 1

ai − 1 ai

]
, ai 6∈ {−3,−2,−1, 0, 1}, ai 6= aj for i 6= j.

Since A(Zn) = Zn, A induces a diffeomorphism A′ : Tn → Tn. Let π : Rn

→ Tn be the natural projection. ThenA′◦π = π◦A. ThereforeA′∗◦π∗ = π∗◦A
and (A′∗)

∗ ◦ π∗ = π∗ ◦A>. Thus S = (A′∗)
∗A′∗ satisfies

S ◦ π∗ = π∗ ◦ (A>A),

so S has n distinct eigenvalues. If k > (n+ 1)/2, Theorem 3.3 implies A′ is
not conformal on D for any k-dimensional distribution D on Tn.

Example 4.2. Consider Euclidean space R3 and the diffeomorphism

f(x1, x2, x3) = (x1, 2x2, 3x3), x = (x1, x2, x3) ∈ R3.

Then Sx = df(x)>df(x) = diag(1, 4, 9) has different eigenvalues. Let F be
the family of planes perpendicular to N = (

√
3, 0,−

√
5). Thus F = {Lt}t is

a 2-dimensional foliation on R3, where

Lt = Lin((
√

5, 0,
√

3), (0, 1, 0)) + tN.

Moreover,

|df(x)(
√

5α, β,
√

3α)|2 = 4(8α2 + β2) = 4|(
√

5α, β,
√

3α)|2.
Thus for every t, the map f : Lt → f(Lt) is conformal. We see that F is
determined by the distribution D0 from the proof of Lemma 2.1. Therefore,
using D0 and the arguments in the proof of Theorem 3.3, we can easily
generalize this example to Rn and foliations by k-planes, provided that k ≤
(n+ 1)/2.
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