
ANNALES
POLONICI MATHEMATICI

95.2 (2009)

Uniqueness results for operators in the variational sequence

by W. M. Mikulski (Kraków)

Abstract. We prove that the most interesting operators in the Euler–Lagrange com-
plex from the variational bicomplex in infinite order jet spaces are determined up to
multiplicative constant by the naturality requirement, provided the fibres of fibred mani-
folds have sufficiently large dimension. This result clarifies several important phenomena
of the variational calculus on fibred manifolds.

0. Introduction. In the present note we study the Euler–Lagrange vari-
ational complex (called simply the variational sequence) in infinite order jet
spaces from the natural operator point of view. The notion (used in the
present note) of the variational sequence can be found in the handbook [8]
by R. Vitolo. The concept of natural operators can be found in the fun-
damental monograph [3] by I. Kolář, P. Michor and J. Slovák. Variational
sequences have many applications (e.g. in the variational calculus and theo-
retical mechanics). That is why they have been studied by many authors, e.g.
D. Krupka [5], D. Krupka and J. Musilová [6], I. M. Anderson [1], etc. In [8],
one can find over a hundred references concerning variational sequences and
their applications.

Let π : E → M be a fibred manifold with n-dimensional bases and
m-dimensional fibres. In [8], the variational sequence (of interest to us) has
been introduced basically in two ways. The first is through the variational
bicomplex associated to π : E →M ; this approach can be found e.g. in Sec-
tion 3 of [8]. The variational bicomplex is presented in the diagram (3.5) in [8]
(see Definition 3.1 there). The second way is through a spectral sequence;
this approach can be found e.g. in Section 4 of [8]. In the present note we
use the first approach only. Then the variational sequence (also called the
Euler–Lagrange complex)

0→ R→ E0,0
0 → E0,1

0 → · · · → E0,n−1
0 → E0,n

0

→ E1,n
1 → E2,n

1 → · · · → Ep,n1 → Ep+1,n
1 → · · ·
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is the most important part of the variational bicomplex associated to π :
E →M (see Definition 3.2 in [8]).

Let us briefly present the main results of the present note. Given an in-
teger p ≥ 1 we have the interior Euler operator I = Ip : Ep,n0 → Ep,n0 (see
Section 3.1 in [8]). By [8], Ep,n1 = Ep,n0 /ker(Ip) and we have the quotient
monomorphism (representation) Ep,n1 → Vp ⊂ Ep,n0 onto Vp = im(Ip). Then
the operator Ep,n1 → Ep+1,n

1 from the variational sequence is the compo-
sition of the so called Helmholtz operator H = Ip+1 ◦ dV | im(Ip) : im(I) =
Vp → Ep+1,n

0 with the quotient projection Ep+1,n
0 → Ep+1,n

1 , where dV :
Ep,n → Ep+1,n

0 is the vertical differentiation (see [8]). The main result of the
present note can be formulated in the following two theorems.

Theorem 1. Let π : E → M be a fibred manifold with n-dimensional
base and m-dimensional fibres. Let p ≥ 1 be an integer. If m ≥ p, then any
operator D : Ep,n0 → Ep,n0 of the interior Euler operator type (in the sense of
Definition 1 from Section 1 below) is of the form D = cI, c ∈ R.

Theorem 2. Let π : E → M be a fibred manifold with n-dimensional
base and m-dimensional fibres. Let p ≥ 1 be an integer. If m ≥ p + 1 then
any operator F : Im(I) = Vp → Ep+1,n

0 of the Helmholtz operator type (in
the sense of Definition 2 from Section 3 below) is of the form F = cH, c ∈ R.

Roughly speaking, the above theorems give uniqueness results for the
arrows Ep,n1 → Ep+1,n

1 in the Euler–Lagrange complex, provided the fibres
of π : E →M are of sufficiently high dimension.

We recall that the uniqueness result for the arrow E0,n
0 → E1,n

1 was
proved by I. Kolář in [2].

We observe that Theorem 1 with no assumption onD is false (the identity
map id : Ep,n0 → Ep,n0 is a counterexample).

The proofs of Theorems 1 and 2 will occupy the rest of this note. We first
reformulate the theorems into finite jet versions. Then using a generalization
of the technique from [7] we prove the latter.

1. A reformulation of Theorem 1. Using the definition ofEp,n0 from [8],
one can easily see that Ep,n0 is the injective limit of the sequence of inclusions

(1) · · · ⊂ C∞JrE(JrE,
∧pV ∗JrE ⊗

∧nT ∗M)
⊂ C∞Jr+1E(Jr+1E,

∧pV ∗Jr+1E ⊗
∧nT ∗M) ⊂ · · ·

given by the pull-back with respect to the jet projections πr+1
r : Jr+1E →

JrE for all natural numbers r, where given two fibred manifolds Z1 → N
and Z2 → N over the same base N we denote the space of all base preserving
fibred manifold morphisms of Z1 into Z2 by C∞N (Z1, Z2). (Indeed, if we set
Kr = C∞JrE(JrE,

∧pV ∗JrE ⊗
∧nT ∗M) and use the notations of [8] and
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local coordinate arguments, we have the inclusions Kr ⊂ CpΩp
r+1 ∧ Ω

(0,n)
r+1

⊂ Kr+1.) Taking into account the definition of I one can easily see that:

1. For any natural number r we have

(2) (C∞JrE(JrE,
∧pV ∗JrE ⊗

∧nT ∗M))
⊂ C∞JqE(JsE,

∧p−1V ∗JqE ∧ V ∗E ⊗
∧nT ∗M)

for some integers s, q with s ≥ q ≥ r.
2. For any natural number r the restriction

(3) Ir : C∞JrE(JrE,
∧pV ∗JrE ⊗

∧nT ∗M)
→ C∞JqE(JsE,

∧p−1V ∗JqE ∧ V ∗E ⊗
∧nT ∗M)

of I is a regular πsr-local FMn,m-natural operator (see below for the defini-
tions).

Definition 1. We say that an operator D : Ep,n0 → Ep,n0 is of the
interior Euler operator type if the above properties 1 and 2 hold forD playing
the role of I.

Clearly, Theorem 1 is an immediate consequence of the following propo-
sition.

Proposition 1. Let m, n, r, s, q, p be natural numbers with m ≥ p
and s ≥ q ≥ r. Then the vector space of all πsr-local and FMn,m-natural
(regular) operators

D : C∞JrE(JrE,
∧pV ∗JrE ⊗

∧nT ∗M)
→ C∞JqE(JsE,

∧p−1V ∗JqE ∧ V ∗E ⊗
∧nT ∗M)

is of dimension ≤ 1.

A general notion of natural operators can be found in [3]. In partic-
ular, FMn,m denotes the category of all fibred manifolds π : E → M
with n-dimensional bases and m-dimensional fibres and their fibred embed-
dings. The naturality of an operator D (as in Proposition 1) means that D
transforms pairs of f -related morphisms into pairs of f -related morphisms
for any FMn,m-map f between arbitrary FMn,m-objects. The regularity
means that D transforms smoothly parametrized families into smoothly
parametrized families. The locality means that D(λ)u depends only on the
germ germπs

r(u)(λ) for any u ∈ JsE.

2. Proof of Proposition 1. From now on, Rn,m denotes the trivial
bundle Rn × Rm → Rn and x1, . . . , xn, y1, . . . , ym are the usual coordinates
on Rn,m. Let D be an operator as in the statement. Since an FMn,m-map
(x, y−σ(x)) sends js0(σ) into Θ = js0(0) ∈ Js0(Rn,Rm) = Js0(Rn,m), Js(Rn,m)
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is the FMn,m-orbit of Θ. Then D is uniquely determined by the evaluations

D(λ)Θ(w1, . . . , wp−1, v) ∈
∧nT ∗0 Rn

for all λ ∈ C∞JrRn,m(Jr(Rn,m),
∧pV ∗Jr(Rn,m) ⊗

∧nT ∗Rn), all v ∈ T0Rm

= V(0,0)Rn,m and all w1, . . . , wp−1 ∈ Vπs
q(Θ)J

q(Rn,m).
Then by the multi-linearity of the above evaluations with respect to

w1, . . . , wp−1, v, we see that D is uniquely determined by the evaluations

D(λ)Θ

(
d

dt

∣∣∣∣
0

(tjq0(f1(x)u1)), . . . ,
d

dt

∣∣∣∣
0

(tjq0(fp−1(x)up−1)), w
)
∈
∧nT ∗0 Rn

for all λ ∈ C∞JrRn,m(Jr(Rn,m),
∧pV ∗Jr(Rn,m) ⊗

∧nT ∗Rn) and all maps
f1, . . . , fp−1 : Rn → R and all u1, . . . , up−1, w ∈ Rm. Using a density ar-
gument (since m ≥ p) one can assume that u1, . . . , up−1, w are linearly in-
dependent and that f1(0), . . . , fp−1(0) are not equal to zero. Then using the
invariance of D with respect to FMn,m-maps of the form idRn ×ψ with lin-
ear ψ we can assume u1 = e1, . . . , up−1 = ep−1, w = ep, where e1, . . . , en
is the usual basis in Rm. Then using the invariance of D with respect to
FMn,m-maps(

x1, . . . , xn,
1

f1(x)
y1, . . . ,

1
fp−1(x)

yp−1, yp, . . . , ym
)

preserving Θ, we see that D is uniquely determined by the evaluations

(4) D(λ)Θ

(
d

dt

∣∣∣∣
0

(tjq0(e1)), . . . ,
d

dt

∣∣∣∣
0

(tjq0(ep−1)),
∂

∂yp

∣∣∣∣
0

)
∈
∧nT ∗0 Rn

for all λ ∈ C∞JrRn,m(Jr(Rn,m),
∧pV ∗Jr(Rn,m)⊗

∧nT ∗Rn).
Fix such a λ. Using the invariance of D with respect to FMn,m-maps

ψτ =
(
x1, . . . , xn,

1
τ1
y1, . . . ,

1
τm

yn
)

for τ j 6= 0 we get the homogeneity condition

D((ψτ )∗λ)Θ

(
d

dt

∣∣∣∣
0

(tjq0(e1)), . . . ,
d

dt

∣∣∣∣
0

(tjq0(ep−1)),
∂

∂yp

∣∣∣∣
0

)
= τ1 · · · τpD(λ)Θ

(
d

dt

∣∣∣∣
0

(tjq0(e1)), . . . ,
d

dt

∣∣∣∣
0

(tjq0(ep−1)),
∂

∂yp

∣∣∣∣
0

)
for τ = (τ1, . . . , τm). By Corollary 19.8 in [3] of the non-linear Peetre theorem
we can assume that λ is a polynomial (of arbitrary degree). The regularity
of D implies that

D(λ)Θ

(
d

dt

∣∣∣∣
0

(tjq0(e1)), . . . ,
d

dt

∣∣∣∣
0

(tjq0(ep−1)),
∂

∂yp

∣∣∣∣
0

)
is smooth with respect to the coefficients of λ. Then by the homogeneous
function theorem (and the above type of homogeneity) we deduce that the
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evaluations (4) are fully determined by the evaluations (4) for

(5) λ = xβdy1
α1
∧ · · · ∧ dypαp

⊗ dxµ

for all multi-indices β, α1, . . . , αp ∈ (N ∪ {0})n with |α1| ≤ r, . . . , |αp| ≤ r,
where (xi, yjα) is the induced coordinate system on Js(Rn,m) and dxµ =
dx1 ∧ · · · ∧ dxn. Moreover, if we denote by W the vector space spanned by
all λ of the form (5), then (4) for λ ∈W depends linearly on λ.

Then by the invariance of Dr with respect to the FMm,n-maps

(τ1x1, . . . , τnxn, y1, . . . , ym)

for τ i 6= 0 we get

(6) D(xβdy1
α1
∧ · · · ∧ dypαp

⊗ dxµ)Θ
(
d

dt

∣∣∣∣
0

(tjq0(e1)), . . . ,

d

dt

∣∣∣∣
0

(tjq0(ep−1)),
∂

∂yp

∣∣∣∣
0

)
= 0

if only β 6= α1 + · · ·+ αp for all β, α1, . . . , αp as above.
Define α = α1 + · · · + αp = (α1, . . . , αn). Suppose that αi 6= 0 for some

i = 1, . . . , n. The map

ψ = (x1, . . . , xn, y1, . . . , yp + xiyp, . . . , ym)−1

is an FMm,n-map near 0. It preserves x1, . . . , xn, Θ, d
dt

∣∣
0
(tjq0(e1)), . . . ,

d
dt

∣∣
0
(tjq0(ep−1)) and ∂

∂yp

∣∣
0
. It sends yp% (for |%| ≤ r) into

yp% + xiyp% + yp%−1i

where the third summand does not occur if %i = 0. (Indeed, we have

yp% ◦ Jrψ−1(jrx0
η) = ∂%(ηp + xiηp)(x0)

= ∂%η
p(x0) + xio∂%η

p(x0) + ∂%−1iη
p(x0)

= (yp% + xiyp% + yp%−1i
)(jrx0

η)

for jrx0
η ∈ JrRn,m where ∂% is the iterated partial derivative as indicated

multiplied by 1/%!). It preserves the other yjσ. Thus it sends dyp% into dyp% +
xidyp% + dyp%−1i

as dxi = 0 on V Rn,m. Then using the invariance of D with
respect to ψ, from (6) for β = α− 1i we deduce that the evaluation (4) for λ
as in (5) and β = α is a linear combination of evaluations (4) for λ as in (5)
and β = α− 1i and α− 1i playing the role of α.

Continuing this process we deduce that the evaluations (4) for λ as in (5)
for β = α are determined by the evaluation (4) for λ as in (5) with β =
α = (0).

That is why the vector space of all D in question is 1-dimensional.
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3. A reformulation of Theorem 2. Using quite similar arguments to
the ones from Section 1 we see that:

1. For any natural number r we have

H(Im(Ir)) ⊂ C∞JqE(JsE,
∧pV ∗JqE ∧ V ∗E ⊗

∧nT ∗M)

for some integers s, q with s ≥ q ≥ s, where
(7) Ir : C∞JrE(JrE,

∧pV ∗JrE ⊗
∧nT ∗M)

→ C∞JqE(JsE
∧p−1V ∗JqE ∧ V ∗E ⊗

∧nT ∗M)

is the restriction of the interior Euler operator (as in Section 1).

2. For any natural number r, the restriction

(8) Hr : Im(Ir)→ C∞JqE(JsE,
∧pV ∗JqE ∧ V ∗E ⊗

∧nT ∗M)

of H is a regular πss-local FMm,n-natural operator.

Definition 2. We say that an operator F : Im(I) → Ep+1,n
0 is of the

Helmholtz operator type if the above properties 1 and 2 hold for F playing
the role of H.

It is clear that Theorem 2 is an immediate consequence of the following
proposition.

Proposition 2. Let n, m, p, r, s, q, s, q be natural numbers as above
with m ≥ p+ 1. Then any πss-local and FMn,m-natural (regular) operator

F : Im(Ir)→ C∞JqE(JsE,
∧pV ∗JqE ∧ V ∗E ⊗

∧nT ∗M)

is of the form F = cHr, c ∈ R.

Remark 1. Proposition 2 for p = 1 and r = 1, 2 was proved in [4], and
for p = 1 and all r in [7].

Let F be an operator as above. Considering the composition

F ◦ Ir : C∞JrE(JrE,
∧pV ∗JrE ⊗

∧nT ∗M)

→ C∞JqE(JsE,
∧pV ∗JqE ∧ V ∗E ⊗

∧nT ∗M)

we see that Proposition 2 is an immediate consequence of the following one.

Proposition 3. Let n, m, p, r, s, q be arbitrary natural numbers with
s ≥ q ≥ r and m ≥ p+1. Then the vector space of all πsr-local and FMn,m-
natural (regular) operators

D : C∞JrE(JrE,
∧pV ∗JrE ⊗

∧nT ∗M)

→ C∞JqE(JsE,
∧pV ∗JqE ∧ V ∗E ⊗

∧nT ∗M)
is of dimension ≤ 1.
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4. Proof of Proposition 3. Let D be an operator as in the statement.
Then (by a similar argument to the proof of Proposition 1) D is uniquely
determined by the evaluations

(9) D(λ)Θ

(
d

dt

∣∣∣∣
0

(tjq0(e1)), . . . ,
d

dt

∣∣∣∣
0

(tjq0(ep)),
∂

∂yp+1

∣∣∣∣
0

)
∈
∧nT ∗0 Rn

for all λ ∈ C∞JrRn(Jr(Rn,m),
∧pV ∗Jr(Rn,m) ⊗

∧nT ∗Rn), where Θ = js0(0)
∈ JsRn,m.

Fix λ as above. Using the invariance of D with respect to the FMm,n-
maps

ψτ =
(
x1, . . . , xn,

1
τ1
y1, . . . ,

1
τm

ym
)

for τ j 6= 0 we get the homogeneity condition

D((ψτ )∗λ)Θ

(
d

dt

∣∣∣∣
0

(tjq0(e1)), . . . ,
d

dt

∣∣∣∣
0

(tjq0(ep)),
∂

∂yp+1

∣∣∣∣
0

)
= τ1 · · · τp+1D(λ)Θ

(
d

dt

∣∣∣∣
0

(tjs0(e1)), . . . ,
d

dt

∣∣∣∣
0

(tjq0(ep)),
∂

∂yp+1

∣∣∣∣
0

)
for τ = (τ1, . . . , τm). By Corollary 19.8 in [3] of the non-linear Peetre theorem
we can assume that λ is a polynomial (of arbitrary degree). The regularity
of D implies that

D(λ)Θ

(
d

dt

∣∣∣∣
0

(tjq0(e1)), . . . ,
d

dt

∣∣∣∣
0

(tjq0(ep)),
∂

∂yp+1

∣∣∣∣
0

)
is smooth with respect to the coefficients of λ. Then by the homogeneous
function theorem (and the above type of homogeneity) we deduce that the
evaluations (9) are fully determined by the evaluations (9) for

(10) λ = xβyσ(p+1)
αp+1

dyσ(1)
α1
∧ · · · ∧ dyσ(p)

αp
⊗ dxµ

for all permutations σ ∈ Bp+1, all multi-indices β, α1, . . . , αp+1 ∈ (N∪{0})n

with |α1| ≤ r, . . . , |αp+1| ≤ r, where (xi, yjα) is the induced coordinate system
on Jr(Rn,m) and dxµ = dx1 ∧ · · · ∧ dxn. Moreover, if we denote by W the
vector space spanned by all λ of the form (10), then (9) for λ ∈W depends
linearly on λ.

Then by the invariance of D with respect to (τ1x1, . . . , τnxn, y1, . . . , ym)
for τ i 6= 0 we get

(11) D(xβyσ(p+1)
αp+1

dyσ(1)
α1
∧ · · · ∧ dyσ(p)

αp
⊗ dxµ)Θ

(
d

dt

∣∣∣∣
0

(tjq0(e1)), . . . ,

d

dt

∣∣∣∣
0

(tjq0(ep)),
∂

∂yp+1

∣∣∣∣
0

)
= 0

provided β 6= α1 + · · ·+ αp+1 for all β, α1, . . . , αp+1, σ as above.
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Define α = α1 + · · ·+αp+1 = (α1, . . . , αn). Suppose that αi 6= 0 for some
i = 1, . . . , n. The map

ψ = (x1, . . . , xn, y1, . . . , yp+1 + xiyp+1, . . . , ym)−1

is an FMm,n-map near 0. It preserves x1, . . . , xn, Θ, d
dt

∣∣
0
(tjq0(e1)), . . . ,

d
dt

∣∣
0
(tjq0(ep)) and ∂

∂yp+1

∣∣
0
and sends yp+1

% (for |%| ≤ r) into

yp+1
% + xiyp+1

% + yp+1
%−1i

(see the proof of Proposition 1) and preserves the other yjσ (and then sends
dyp+1
% into dyp+1

% + xidyp+1
% + dyp+1

%−1i
as dxi = 0 on V Rn,m). Then using the

invariance of D with respect to ψ, from (11) for β = α− 1i we deduce that
the evaluation (9) for λ as in (10) and β = α is a linear combination of
evaluations (9) for λ as in (10) and β = α − 1i and α − 1i playing the role
of α.

Continuing this process we deduce that the evaluations (9) for λ as in (10)
and β = α are determined by the evaluations (9) for all λ as in (10) with
β = α = (0).

The above considerations show that D is uniquely determined by the
evaluations (9) for all λ as in (10) for β = α = (0) and all σ ∈ Bp+1.
Then using the invariance of D with respect to the permutations of first
p fibred coordinates (preserving Θ and ∂

∂yp+1

∣∣
0
and sending d

dt

∣∣
0
(tjq0(e1)) ∧

· · · ∧ d
dt

∣∣
0
(tjq0(ep)) to ε ddt

∣∣
0
(tjq0(e1)) ∧ · · · ∧ d

dt

∣∣
0
(tjq0(ep)) for ε = +1 or −1),

we see that D is determined by the values (9) for λ = λ1, λ2, where λ1 =
yp+1
(0) dy

1
(0) ∧ · · · ∧ dy

p
(0) ⊗ dx

µ and λ2 = y1
(0)dy

2
(0) ∧ · · · ∧ dy

p+1
(0) ⊗ dx

µ.
Using the invariance of D with respect to the (locally defined) FMn,m-

map
(x1, . . . , xn, y1 + y1yp+1, y2, . . . , ym)−1

preserving Θ, ∂
∂yp+1

∣∣
0
and d

dt

∣∣
0
(tjq0(e1)) ∧ · · · ∧ d

dt

∣∣
0
(tjq0(ep)), from

D(dy1
(0) ∧ · · · ∧ dy

p−1
(0) ∧ dy

p ⊗ dxµ)Θ
(
d

dt

∣∣∣∣
0

(tjq0(e1)), . . . ,

d

dt

∣∣∣∣
0

(tjq0(ep)),
∂

∂yp+1

∣∣∣∣
0

)
= 0

(a consequence of the invariance of D with respect to the fibre homotheties
(x1, . . . , xn, y1, . . . , typ+1, . . . , ym)), we deduce that the value (9) for λ = λ1

is plus or minus the value (9) for λ = λ2.
Thus the vector space of all D in question is 1-dimensional.

5. Uniqueness of the extended Helmholtz operator. We have the
extended Helmholtz operator H̃ = I ◦ dV : Ep,n0 → Ep+1,n

0 , where dV :
Ep,n0 → Ep+1,n

0 is the vertical differential and I : Ep+1,n
0 → Ep+1,n

0 is the
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interior Euler operator. (The name is because H̃ is really an extension of
the Helmholtz operator H : Im(I) → Ep+1,n

0 , where I : Ep,n0 → Ep,n0 .)
The operator H̃ satisfies appropriate modifications of properties 1 and 2
from Definition 1. We say that an operator G : Ep,n0 → Ep+1,n

0 is of the
extended Helmholtz operator type if it has those modified properties. Then
Proposition 3 implies the following corollary.

Corollary 1. Let π : E →M be a fibred manifold with n-dimensional
basis and m-dimensional fibres. Let p ≥ 1 be an integer. If m ≥ p+ 1 then
any operator G : Ep,n0 → Ep+1,n

0 of the extended Helmholtz operator type is
of the form G = cH̃, c ∈ R.

Of course, Corollary 1 for p = 0 is also true because of the result of [2].
We observe that Corollary 1 with no assumption onG is false (the vertical

differential dV : Ep,n0 → Ep+1,n
0 is a counterexample).

Acknowledgements. The author thanks R. Vitolo for suggesting the
problem and helpful discussions.
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