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A DSM proof of surjectivity of
monotone nonlinear mappings

by A. G. RaAMM (Manhattan, KS)

Abstract. A simple proof is given of a basic surjectivity result for monotone opera-
tors. The proof is based on the dynamical systems method (DSM).

1. Introduction. It is well-known that a continuous monotone function
f :R — R such that
(1) lim 2/ () =00

lz|—o0 ||

is surjective, i.e., the equation f(z) = y is solvable for any y € R. Indeed,
the monotonicity of f implies

(2) [f(x) = f(s)l(x =) 20, Va,seR

Therefore, taking y = 0 without loss of generality, one concludes from (1)
that f(x) <0 for z < 0 and f(z) > 0 for x > 0. Since f is continuous, it
follows that there is a point z¢ such that f(z¢) = 0.

If y # 0 is an arbitrary real number, then the function F(z) = f(z) — y
satisfies inequality (2) with F' in place of f, provided that (2) holds for f.
Condition (1) is also satisfied for F' if it holds for f:

lim zF(z) = lim <xf(:c) - :Uy) =0
|x|—o00

o] —oo || || ||

Conditions (1) and (2) are generalized for nonlinear mappings F' in a real
Hilbert space H as follows:

) [ lﬁm (%\Q\u)) -
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and
(4) (F(u) — F(v),u—v)>0 VYu,ve H.
Here (u,v) stands for the inner product in H. Equations with monotone
operators arise in many applications.

We want to prove that if F' is twice Fréchet differentiable and conditions
(3)-(4) hold, then F is surjective, i.e., the equation
(5) F(u) =h

is solvable for every h € H. This is a basic result in the theory of monotone
operators (see, e.g., [1]), which can be proved without the assumption about
twice Fréchet differentiability, but then its proof becomes considerably less
simple. Our aim is to give a simple and short proof of this result. It is based
on the dynamical systems method (DSM) developed in [2].

THEOREM 1. Assume that F' : H — H is a Fréchet differentiable map-
ping satisfying conditions (3), (4). Then equation (5) is solvable for any h.

REMARK 1. If in (4) one has a strict inequality for w # v, then the
solution to (5) is unique.

REMARK 2. Condition (4) and Fréchet differentiability imply that A :=
F'(u) >0 for all u € H.

REMARK 3. The Fréchet differentiability assumption can be weakened
to semicontinuity ([3], see also [1]), but then the proof loses its elementary
character.

2. Proof. Let us formulate the steps of our proof.
STEP 1. For any a = const > 0 the equation

(6) F(ug) +aug =h

has a unique solution u,,.
STEP 2.

(7) sup |luqll < ¢, ¢=const > 0.
0<a<1

By ¢ we denote various constants independent of a.

STEP 3. Using (7), select a sequence u,, = u,,, a, — 0, weakly conver-
gent in H to an element u:

(8) Up — U, N — 00.
From (6) and (8) it follows that
(9) F(uy) — h, n— oo.

From (8), (9) and (4) one concludes that u solves (5).
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Let us give a detailed proof.
STEP 1. Consider the problem
(10) = —A7'F(v)+av—h], v(0)=0.

Here v := 9, A, := A+ al, A = F'(v). Problem (10) is a version of the
DSM (see [2, p. 115]). We claim that:

(a) problem (10) has a unique global solution, that is, the solution de-
fined for all ¢ € [0, 00),

(b) there exists v(0c0) := limy_ o v(t),

(¢) F(v(0))+ av(oco) = h.

Claim (a) follows from [ocal solvability of problem (10) and a uniform (with
respect to ¢t) bound on the norm |[v(¢)||. This bound is obtained below (see
(13)). The local solvability follows from the standard result on local solvabil-
ity of a differential equation with Lipschitz right-hand side. Our asumption
about twice differentiability of F' implies that the right-hand side of equa-
tion (10) is Lipschitz. For monotone F' the twice differentiability assumption
can be considerably weakened (see [2, 3]), but then the proof of the local
solvability becomes more complicated.
Define
.. dg
1£(v(t)) + av(t) = hll =: g(t),  g:=—.
Using (10), one gets

gg = ((F’(v) +al)v, F(v(t)) + av(t) — h) = —¢%

Thus

(11) 4(t) = g(0)e.
From (11) and (10) one deduces

(12) ol < 22 e,

where the estimate |A;!|| < 1/a was used. This estimate holds because
A = F'(v(t)) > 0 by the monotonicity of F. Integrating (12) from ¢ to
infinity yields
9(0) -
(13) Jo(t) — w(oo) < £ e
Note that if |9 < g(¢) and g(t) € L*(0, 00), then v(cc) exists by the Cauchy
criterion for the existence of a limit:
t
lo(t) —v(s)|| < \g(r)dr — 0, t,s—o00,t>s.
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It follows from (12) that
(14) lim ||o]| = 0.
t—o00

Therefore, passing to the limit ¢ — oo in (10), one gets
(15) 0= —Ag" (v(00))[F(v(00)) + av(c0) — h].
Applying the operator A,(v(c0)) to equation (15), one sees that v(oco) solves
equation (6).

Uniqueness of the solution to (6) is easy to prove: if v and w solve (6),

then
F)—-F(w)+alv—w)=0, a>0.

Multiply this equation by v — w, use the monotonicity of F' (see (4)), and
conclude that v = w. Step 1 is completed.

STEP 2. Multiply (6) by us/||ua|| to get

(F(ua), ta) (h, uq)
16 ————— 4 allug|| = .
(16) Fuall el = Tl
Since a > 0 and (h,ugs)/||uql| < |||, one gets
F(ug), uq

From (17) and (3) the desired estimate (7) follows. Step 2 is completed.
STEP 3. Let us prove that (4), (8) and (9) imply (5). Let n € H be

arbitrary, and s > 0 be a small number. Note that v, — u and g, — ¢
imply (s, gn) — (u,g). Using (4), one gets

(18) (F(up) — F(u—sn),u, —u+sn) >0, VYneH,s>D0.

Let n — oo in (18). Then, using (8) and (9), one concludes that
(h—F(u—sn),sn) >0 VneH,s>0, or
(h—F(u—sn),n) >0 VneH, s>0.

Let s — 0 and use the continuity of F. (Here hemicontinuity of F would
suffice.) Then (19) implies

(20) (h—F(u),n) >0 VneH.

Taking n = h — F(u) in (20), one concludes that F(u) = h. Step 3 is
completed. Theorem 1 is proved. =

(19)
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