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A DSM proof of surjectivity of
monotone nonlinear mappings

by A. G. Ramm (Manhattan, KS)

Abstract. A simple proof is given of a basic surjectivity result for monotone opera-
tors. The proof is based on the dynamical systems method (DSM).

1. Introduction. It is well-known that a continuous monotone function
f : R→ R such that

(1) lim
|x|→∞

xf(x)
|x|

=∞

is surjective, i.e., the equation f(x) = y is solvable for any y ∈ R. Indeed,
the monotonicity of f implies

(2) [f(x)− f(s)](x− s) ≥ 0, ∀x, s ∈ R.

Therefore, taking y = 0 without loss of generality, one concludes from (1)
that f(x) ≤ 0 for x ≤ 0 and f(x) ≥ 0 for x ≥ 0. Since f is continuous, it
follows that there is a point x0 such that f(x0) = 0.

If y 6= 0 is an arbitrary real number, then the function F (x) = f(x)− y
satisfies inequality (2) with F in place of f , provided that (2) holds for f .
Condition (1) is also satisfied for F if it holds for f :

lim
|x|→∞

xF (x)
|x|

= lim
|x|→∞

(
xf(x)
|x|

− xy

|x|

)
=∞.

Conditions (1) and (2) are generalized for nonlinear mappings F in a real
Hilbert space H as follows:

(3) lim
‖u‖→∞

(u, F (u))
‖u‖

=∞
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and

(4) (F (u)− F (v), u− v) ≥ 0 ∀u, v ∈ H.
Here (u, v) stands for the inner product in H. Equations with monotone
operators arise in many applications.

We want to prove that if F is twice Fréchet differentiable and conditions
(3)–(4) hold, then F is surjective, i.e., the equation

(5) F (u) = h

is solvable for every h ∈ H. This is a basic result in the theory of monotone
operators (see, e.g., [1]), which can be proved without the assumption about
twice Fréchet differentiability, but then its proof becomes considerably less
simple. Our aim is to give a simple and short proof of this result. It is based
on the dynamical systems method (DSM) developed in [2].

Theorem 1. Assume that F : H → H is a Fréchet differentiable map-
ping satisfying conditions (3), (4). Then equation (5) is solvable for any h.

Remark 1. If in (4) one has a strict inequality for u 6= v, then the
solution to (5) is unique.

Remark 2. Condition (4) and Fréchet differentiability imply that A :=
F ′(u) ≥ 0 for all u ∈ H.

Remark 3. The Fréchet differentiability assumption can be weakened
to semicontinuity ([3], see also [1]), but then the proof loses its elementary
character.

2. Proof. Let us formulate the steps of our proof.

Step 1. For any a = const > 0 the equation

(6) F (ua) + aua = h

has a unique solution ua.

Step 2.

(7) sup
0<a<1

‖ua‖ < c, c = const > 0.

By c we denote various constants independent of a.

Step 3. Using (7), select a sequence un = uan , an → 0, weakly conver-
gent in H to an element u:

(8) un ⇀ u, n→∞.
From (6) and (8) it follows that

(9) F (un)→ h, n→∞.
From (8), (9) and (4) one concludes that u solves (5).
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Let us give a detailed proof.

Step 1. Consider the problem

(10) v̇ = −A−1
a [F (v) + av − h], v(0) = 0.

Here v̇ := dv
dt , Aa := A + aI, A := F ′(v). Problem (10) is a version of the

DSM (see [2, p. 115]). We claim that:

(a) problem (10) has a unique global solution, that is, the solution de-
fined for all t ∈ [0,∞),

(b) there exists v(∞) := limt→∞ v(t),
(c) F (v(∞)) + av(∞) = h.

Claim (a) follows from local solvability of problem (10) and a uniform (with
respect to t) bound on the norm ‖v(t)‖. This bound is obtained below (see
(13)). The local solvability follows from the standard result on local solvabil-
ity of a differential equation with Lipschitz right-hand side. Our asumption
about twice differentiability of F implies that the right-hand side of equa-
tion (10) is Lipschitz. For monotone F the twice differentiability assumption
can be considerably weakened (see [2, 3]), but then the proof of the local
solvability becomes more complicated.

Define

‖F (v(t)) + av(t)− h‖ =: g(t), ġ :=
dg

dt
.

Using (10), one gets

gġ =
(
(F ′(v) + aI)v̇, F (v(t)) + av(t)− h

)
= −g2.

Thus

(11) g(t) = g(0)e−t.

From (11) and (10) one deduces

(12) ‖v̇‖ ≤ g(0)
a

e−t,

where the estimate ‖A−1
a ‖ ≤ 1/a was used. This estimate holds because

A = F ′(v(t)) ≥ 0 by the monotonicity of F . Integrating (12) from t to
infinity yields

(13) ‖v(t)− v(∞)‖ ≤ g(0)
a

e−t.

Note that if ‖v̇‖ ≤ g(t) and g(t) ∈ L1(0,∞), then v(∞) exists by the Cauchy
criterion for the existence of a limit:

‖v(t)− v(s)‖ ≤
t�

s

g(τ) dτ → 0, t, s→∞, t > s.
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It follows from (12) that

(14) lim
t→∞
‖v̇‖ = 0.

Therefore, passing to the limit t→∞ in (10), one gets

(15) 0 = −A−1
a (v(∞))[F (v(∞)) + av(∞)− h].

Applying the operator Aa(v(∞)) to equation (15), one sees that v(∞) solves
equation (6).

Uniqueness of the solution to (6) is easy to prove: if v and w solve (6),
then

F (v)− F (w) + a(v − w) = 0, a > 0.

Multiply this equation by v − w, use the monotonicity of F (see (4)), and
conclude that v = w. Step 1 is completed.

Step 2. Multiply (6) by ua/‖ua‖ to get

(16)
(F (ua), ua)
‖ua‖

+ a‖ua‖ =
(h, ua)
‖ua‖

.

Since a > 0 and (h, ua)/‖ua‖ ≤ ‖h‖, one gets

(17)
(F (ua), ua)
‖ua‖

≤ ‖h‖.

From (17) and (3) the desired estimate (7) follows. Step 2 is completed.

Step 3. Let us prove that (4), (8) and (9) imply (5). Let η ∈ H be
arbitrary, and s > 0 be a small number. Note that un ⇀ u and gn → g
imply (un, gn)→ (u, g). Using (4), one gets

(18) (F (un)− F (u− sη), un − u+ sη) ≥ 0, ∀η ∈ H, s > 0.

Let n→∞ in (18). Then, using (8) and (9), one concludes that

(h− F (u− sη), sη) ≥ 0 ∀η ∈ H, s > 0, or
(h− F (u− sη), η) ≥ 0 ∀η ∈ H, s > 0.

(19)

Let s → 0 and use the continuity of F . (Here hemicontinuity of F would
suffice.) Then (19) implies

(20) (h− F (u), η) ≥ 0 ∀η ∈ H.
Taking η = h − F (u) in (20), one concludes that F (u) = h. Step 3 is
completed. Theorem 1 is proved.
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