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Growth of solutions of
a class of complex differential equations

by Ting-Bin Cao (Nanchang)

Abstract. The main purpose of this paper is to partly answer a question of
L. Z. Yang [Israel J. Math. 147 (2005), 359–370] by proving that every entire solution
f of the differential equation f ′ − eP (z)f = 1 has infinite order and its hyperorder is a
positive integer or infinity, where P is a nonconstant entire function of order less than
1/2. As an application, we obtain a uniqueness theorem for entire functions related to a
conjecture of Brück [Results Math. 30 (1996), 21–24].

1. Introduction and main results. In this paper, we will use the
standard notations of Nevanlinna’s value distribution theory (see [12], [19]).
During the last ten years many papers have been devoted to the study
of the growth of solutions of complex differential equations (see [15]). By
making use of the properties of the logarithmic derivative, it is easy to
see that if A(z) is a transcendental entire function, then every nonzero so-
lution f of the equation f (k) + A(z)f = 0 is an entire function of order
σ(f) =∞. For the corresponding nonhomogeneous linear differential equa-
tion

(1) f (k) +A(z)f = F (z).

Chen and Gao (see [5]) proved that if A is a transcendental entire function
and if F 6≡ 0 is an entire function of finite order, then every solution f
satisfies σ(f) = λ(f) = ∞, with at most one possible exception. Here σ(f)
and λ(f) denote the order of f and the convergence exponent of zeros of f,
respectively.

Thus an interesting problem arises: What conditions on A and F guar-
antee that every solution f of (1) has infinite order?

G. G. Gundersen and L. Z. Yang obtained the following result related to
a conjecture of R. Brück [4].
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Theorem 1.1 ([11]). Let P be a nonconstant polynomial. Then every
solution f of the differential equation f ′ − eP (z)f = 1 is an entire function
of infinite order.

The hyperorder ([23]) of a meromorphic function f is defined by

σ2(f) = lim sup
r→∞

log+ log+ T (r, f)
log r

.

In [21] (see also [22]), L. Z. Yang raised the question below, and proved that
if, in Theorem 1.1; P is a nonconstant entire function then the hyperorder
of f is a positive integer or infinity with at most one exception. However,
we do not know whether the exceptional solution exists or not.

Question ([21] or [22]). Is it true that if P is a nonconstant entire
function then the hyperorder of f satisfying the equation of Theorem 1.1 is
a positive integer or infinity?

The main purpose of this paper is to deal with this question. We will
prove that if the order of P is less than 1/2, then there does not exist an
exceptional solution. The idea is taken from [6], [7] or [9], and it is very
different from Yang [22]. Now we show our main result which improves
Theorem 1.1 and some results in [18], [20], [9].

Theorem 1.2. Let P be a nonconstant entire function, let Q be a
nonzero polynomial , and let f be any entire solution of the differential equa-
tion

(2) f (k) − eP (z)f = Q(z) (k ∈ N).

If P is a polynomial , then f has infinite order and its hyperorder σ2(f) is
a positive integer not exceeding the degree of P. If P is transcendental with
order less than 1/2, then the hyperorder of f is infinite.

Theorem 1.2 immediately yields the following corollary, which answers
the above question when P is a nonconstant entire function with order less
than 1/2.

Corollary 1.1. Let P be a nonconstant entire function with σ(P ) <
1/2. Then every entire solution f of the differential equation f ′−eP (z)f = 1
has infinite order and its hyperorder is a positive integer or infinity.

Next, we shall show an interesting result when P is a gap series, which
also partly answers the question of L. Z. Yang.

Theorem 1.3. Let P (z) =
∑∞

ν=0 cνz
nν be a nonconstant entire function

of finite lower order with Fabry gaps, that is,

ν/nν → 0 as ν →∞.
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Then every entire solution f of the differential equation f ′− eP (z)f = 1 has
infinite order and its hyperorder is a positive integer or infinity.

2. Lemmas. For the proof of our result, we need the following lemmas.

Lemma 2.1 ([8]). Let g be an entire function of infinite order with hy-
perorder σ2(g) and let ν(r, g) be the central index of g. Then

lim sup
r→∞

log+ log+ ν(r, g)
log r

= σ2(g).

Lemma 2.2 ([7]). Let f be an entire function of infinite order with hy-
perorder σ2(f) = α < ∞, and let E ⊂ [1,∞) be a set of finite logarithmic
measure. If α > 0, then there exists a sequence {zk = rke

iθk} such that
|f(zk)| = M(rk, f), θk ∈ [0, 2π), limk→∞ θk = θ0 ∈ [0, 2π), and for any
given ε > 0,

exp{rα−εk } < ν(rk, f) < exp{rα+ε
k }

for all sufficiently large rk 6∈ E. If α = 0, then there also exists such a
sequence, and for any large M > 0,

ν(rk, f) > rMk

for all sufficiently large rk 6∈ E.
Lemma 2.3 ([16]). Let P (z) = bnz

n + bn−1z
n−1 + · · ·+ b0, where n is a

positive integer and bn = αne
iθn , αn > 0, θn ∈ [0, 2π). For any given ε with

0 < ε < π/(4n), we introduce 2n open angles

Sj : −θn
n

+ (2j − 1)
π

2n
+ ε < θ < −θn

n
+ (2j + 1)

π

2n
− ε,

where j = 0, 1, . . . , 2n − 1. Then there exists a positive number R = R(ε)
such that for |z| = r > R,

Re{P (z)} > αn(1− ε) sin(nε)rn

if z ∈ Sj with j even, while

Re{P (z)} < −αn(1− ε) sin(nε)rn

if z ∈ Sj with j odd.

Now for any given θ ∈ [0, 2π), if θ 6= −θn/n + (2j − 1)π/(2n) (j =
0, 1, . . . , 2n−1), then for ε sufficiently small, there exists j ∈ {0, 1, . . . , 2n−1}
such that θ ∈ Sj .

For any E ⊂ R, define

log dens(E) = lim inf
r→∞

	r
1(χE(t)/t) dt

log r
,

log dens(E) = lim sup
r→∞

	r
1(χE(t)/t) dt

log r
.
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Lemma 2.4 ([2]). Let f be an entire function of order σ(f) = σ < 1/2,
and define

A(r) = inf
|z|=r

log |f(z)|, B(r) = sup
|z|=r

log |f(z)|.

If σ < α < 1, then

log dens{r : A(r) > (cosπα)B(r)} ≥ 1− σ/α.

Lemma 2.5 ([3]). Let f be an entire function with lower order µ(f) =
µ < 1/2 and µ(f) < σ(f) = σ. If µ ≤ δ < min(σ, 1/2) and δ < α < 1/2,
then

log dens{r : A(r) > (cosπα)B(r) > rα} > c(σ, δ, α),

where c(σ, δ, α) is a positive constant depending only on σ, δ and α.

Lemma 2.6 ([10]). Let f be a transcendental meromorphic function of
finite order σ. Let ε > 0 be a constant , and k and j be integers satisfying
k > j ≥ 0. Then:

(a) There exists a set E1 ⊂ (1,∞) of finite logarithmic measure such
that for all z satisfying |z| 6∈ E1 ∪ [0, 1], we have

(3)
∣∣∣∣f (k)(z)
f (j)(z)

∣∣∣∣ ≤ |z|(k−j)(σ−1+ε).

(b) There exists a set E2 ⊂ [0, 2π) of linear measure zero such that if
θ ∈ [0, 2π) \E2, then there is a constant R = R(θ) > 0 such that (3)
holds for all z satisfying arg z = θ and R ≤ |z|.

Lemma 2.7 ([1]). Let g : [0,∞)→ R and h : [0,∞)→ R be nondecreas-
ing functions such that g(r) ≤ h(r) off an exceptional set E2 of finite linear
measure. Then for any α > 1, there exists r0 such that g(r) ≤ h(αr) for all
r > r0.

Lemma 2.8 ([10]). Let f be a transcendental meromorphic function. Let
α > 1 be a constant , and k and j be integers satisfying k > j ≥ 0. Then:

(a) There exists a set E1 ⊂ (1,∞) of finite logarithmic measure, and a
constant C > 0 such that for all z satisfying |z| 6∈ E1 ∪ [0, 1], we
have (with r = |z|)

(4)
∣∣∣∣f (k)(z)
f (j)(z)

∣∣∣∣ ≤ C[T (αr, f)
r

(log r)α log T (αr, f)
]k−j

.

(b) There exists a set E2 ⊂ [0, 2π) of linear measure zero such that if
θ ∈ [0, 2π) \E2, then there is a constant R = R(θ) > 0 such that (4)
holds for all z satisfying arg z = θ and R ≤ |z|.
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Lemma 2.9. Let P be a nonconstant polynomial and let Q be a nonzero
polynomial. Then every solution f of the differential equation (2) is an entire
function of infinite order.

Proof. It is well known that f must be an entire function. It is easy
to see that f is transcendental. We shall prove that f is of infinite order.
Indeed, otherwise by Lemma 2.6(b), there exists a set E ⊂ [0, 2π) of linear
measure zero such that for any ray arg z = θ ∈ [0, 2π) \ E and any given
0 < ε < 1, there is an R > 0 such that

(5)
∣∣∣∣f (k)(reiθ)
f(reiθ)

∣∣∣∣ ≤ |z|k(σ(f)−1+ε)

for |z| = r > R. Set

P (z) = bnz
n + bn−1z

n−1 + · · ·+ b0, bn 6= 0,

where n ∈ N and bn = αne
iθn , αn > 0, θn ∈ [0, 2π). By Lemma 2.3, if

θ 6= −θn/n + (2j − 1)π/(2n) (j = 0, 1, . . . , 2n − 1), then for sufficiently
large r, we have

(6) Re{P (z)} > αnθr
n or Re{P (z)} < −αnθrn,

where αnθ is a positive constant. Now take

arg z = θ ∈ [0, 2π) \
(
E ∪

2n−1⋃
j=0

{
−θn
n

+ (2j − 1)
π

2n

})
.

Case (i): If Re{P (z)} > αnθr
n, then by (5),

(7)
∣∣∣∣f (k)(reiθ)
f(reiθ)

∣∣∣∣ 1
rk(σ(f)+M)

→ 0,
|Q(reiθ)|
rk(σ(f)+M)

→ 0,
|eP (reiθ)|
rk(σ(f)+M)

→∞,

as r → ∞, where M is a constant with M > max{deg(Q)/k − σ(f), 2}.
From (2),

(8)
f (k)

f
− eP (z) =

Q(z)
f

.

It follows from (8) and (7) that

(9) |f(reiθ)| → 0.

Case (ii): If Re{P (z)} < −αnθrn, then by (2) we have

(10) 1− eP (reiθ) f(reiθ)
f (k)(reiθ)

=
Q(reiθ)
f (k)(reiθ)

.

Now we assert that |f (k)(reiθ)| ≤ 2|qs|rdeg(Q) on arg z = θ, where we set
Q(z) = qsz

s + qs−1z
s−1 + · · · + q0. If it is not true, then there exists a

sequence {rm} such that

(11) 2|qs|rdeg(Q)
m < |f (k)(reiθ)| = M(rm, f (k)(reiθ), θ),
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where

M(rm, f (k)(reiθ), θ) := max{|f (k)(reiθ)| : 0 ≤ r ≤ rm, arg z = θ}.
From

f (k−1)(rmeiθ) = f (k−1)(0) +
rmeiθ�

0

f (k)(u) du,

we have
|f (k−1)(rmeiθ)| ≤ |fk−1(0)|+ rm|f (k)(rmeiθ)|.

Again by

f (k−2)(rmeiθ) = f (k−2)(0) +
rmeiθ�

0

f (k−1)(u) du

= f (k−2)(0) +
rmeiθ�

0

(
f (k−1)(0) +

u�

0

f (k)(s) ds
)
du,

we have

|f (k−2)(rmeiθ)| ≤ |f (k−2)(0)|+ rm|f (k−1)(0)|+ r2m|f (k)(rmeiθ)|.
By induction we obtain

|f(rmeiθ)| ≤
k−1∑
j=0

rjm|f (j)(0)|+ rkm|f (k)(rmeiθ)|

= (1 + o(1))rkm|f (k)(rmeiθ)|,
and hence

(12)
∣∣∣∣ f(rmeiθ)
f (k)(rmeiθ)

∣∣∣∣ ≤ (1 + o(1))rkm.

By the assumption Re{P (z)} < −αnθrn, together with (11) and (12), we
have

(13)
∣∣∣∣eP (rmeiθ) f(rmeiθ)

f (k)(rmeiθ)

∣∣∣∣ ≤ (1 + o(1))rkme
−αnθrnm

and

(14)
∣∣∣∣ Q(rmeiθ)
f (k)(rmeiθ)

∣∣∣∣ ≤ (|qs|+ o(1))rdeg(Q)
m

2|qs|rdeg(Q)
m

→ 1
2

(m→∞).

Now (13) and (14) contradict (10). This implies that

(15) |f(reiθ)| ≤ (1 + o(1))2|qs|rk+deg(Q)

on arg z = θ.
Since the linear measure of E ∪

⋃2n−1
j=0 {−θn/n+ (2j− 1)π/(2n)} is equal

to 0, and since we assume that f is of finite order, it can be deduced
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from (9), (15), the Phragmén–Lindelöf theorem (see [16, pp. 270-271]) and
Liouville’s theorem that f must be a polynomial. This contradicts (2) which
implies that f is transcendental. This proves that the order of f is infinite.

Lemma 2.10 ([17]). Let f be an entire function of finite lower order
µ(f). Suppose that 0 < ε < 1 and

f(z) =
∑

ckz
nk

with {nk} an increasing sequence of nonnegative integers for which

k/nk → 0 (k →∞).

Then for a set of radii r of infinite logarithmic measure,

logL(r) > (1− ε) logM(r),

where L(r) = L(r, f) is the minimum modulus of f on |z| = r and M(r) =
M(r, f) is the maximum modulus of f on |z| = r.

3. Proof of Theorem 1.2. We split the proof into two cases as follows.
First, suppose that P is a nonconstant polynomial

P (z) = bnz
n + bn−1z

n−1 + · · ·+ b0, bn 6= 0.

Then by Lemma 2.9, any solution f of (2) is of infinite order. By the Wiman–
Valiron theory (see [13] or [15]), there exists a set E ⊂ [1,∞) of finite
logarithmic measure such that for |z| = r 6∈ [0, 1]∪E, and |f(z)| = M(r, f),
we have

(16)
f (k)(z)
f(z)

=
(
ν(r, f)
z

)k
(1 + o(1)).

Substituting (16) into (2), we get

(17)
(
ν(r, f)
z

)k
(1 + o(1)) = eP (z) +

Q(z)
f(z)

.

Set bn = αne
iϑn , αn > 0, and ϑn ∈ [0, 2π). Since the order of f is infinite

and since Q(z)−Q′(z) is a polynomial, for sufficiently large |z| = r and for
any given ε > 0, Lemma 2.1, Lemma 2.7 and (17) imply that σ2(f) ≤ t ≤
deg(P ) = n when we choose z with |z| = r 6∈ [0, 1]∪E, and |f(z)| = M(r, f),
where the integer t satisfies 0 ≤ t ≤ n and Re{bnzn} = · · · = Re{bt+1z

t+1}
= 0 and Re{btzt} 6= 0.

Let E ⊂ [1,∞) have finite logarithmic measure. By Lemma 2.2, if δ > 0
then there exists a sequence {zm = rme

iθm} such that |f(zm)| = M(rm, f),
θm ∈ [0, 2π), limm→∞ θm = θ0 ∈ [0, 2π), and for any given 0 < 3ε <
min{δ, n− δ, π/(4n)},
(18) exp{rδ−εm } < ν(rm, f) < exp{rδ+εm }
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for all sufficiently large rm 6∈ E; if δ = 0 then there also exists such a
sequence, and for 0 < 3ε < π/(4n) and any large M1 > 0,

(19) ν(rm, f) > rM1
m

for all sufficiently large rm 6∈ E. It follows from (17) that for zm = rme
iθm

and |f(zm)| = M(rm, f), we have

(20)
(
ν(rm, f)
zm

)k
(1 + o(1)) = eP (zm) + o(1).

By Lemma 2.3, there are 2n open angles for ε as above,

(21) Sj : −ϑn
n

+ (2j − 1)
π

2n
+ ε < θ < −ϑn

n
+ (2j + 1)

π

2n
− ε,

(j = 0, 1, . . . , 2n− 1).

For the above θ0, we now consider the following three cases.

Case (i): θ0 ∈ Sj with j odd. Since Sj is an open set and limm→∞ θm
= θ0, there is M2 > 0 such that θm ∈ Sj when m > M2, and by Lemma 2.3,

(22) Re{P (rmeiθm)} < −drnm,
where d = αn(1 − nε) sin(nε) > 0. If δ > 0, then from 3ε < δ and (18),
(20), (22), we obtain

exp{krδ−εm } < (ν(rm, f))k(1 + o(1)) < rkm exp{−drnm}+ o(rkm).

This is a contradiction. If δ = 0, then by (19), (20), (22), we obtain

rkm exp{−drnm}+ o(rkm) > (ν(rm, f))k > rM1−1+k
m ,

a contradiction.

Case (ii): θ0 ∈ Sj with j even. Again there is M3 > 0 such that θm ∈ Sj
when m > M3, and by Lemma 2.3,

Re{P (rmeiθm)} > drnm,

where d = αn(1 − nε) sin(nε) > 0. Together with (20), for {zm = rme
iθm},

we deduce that

(ν(rm, f))k > rkm exp{drnm} − o(rkm).

This implies that σ2(f) ≥ n = deg(P ). Hence, σ2(f) = n = deg(P ).

Case (iii): θ0 = −ϑn/n+ (2j−1)π/(2n) for some j ∈ {0, 1, . . . , 2n−1}.
Then, for the above ε, there exists some N such that θm ∈ Ω1 = [θ0−ε, θ0+ε]
and zm ∈ Ω = {z : θ0 − ε ≤ arg z ≤ θ0 + ε} for m > N. If we fix a ray
arg z = θ ∈ Ω1\{θ0}, then Lemma 2.3 shows that there is a positive constant
R such that Re{P (reiθ)} > d1r

n or Re{P (reiθ)} < −d1r
n for r > R, where

d1 is a suitable positive constant. A similar discussion to the one in the proof
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of Lemma 2.9, making use of Lemma 2.8 instead of Lemma 2.6, gives

(23) |f(reiθ)| ≤ (1 + o(1))2|qs|rk+deg(Q), θ ∈ Ω1 \ {θ0},
where qs is as above. However, noting that zm ∈ Ω (m > N), |f(zm)| =
M(rm, f) and that f is of infinite order, we infer from (23) that θm = θ0
for m > N, that is, zm = rme

iθ0 for m > N. Together with θ0 = −ϑn/n
+ (2j − 1)π/(2n), we have Re{αneiϑn(reiθ0)n} = 0. From that and the ex-
pression of P (z), we now have to consider the following two subcases.

Subcase (iii)(a): The t mentioned above satisfies Re{bn−1(reiθ0)n−1} =
· · · = Re{bt+1(reiθ0)t+1} = 0 and Re{bt(reiθ0)t} 6= 0, where 1 ≤ t ≤ n − 1.
Then for sufficiently large rm, we have Re{P (rmeiθm)} = Re{P (rmeiθ0)} >
d2r

t
m or Re{P (rmeiθm)} < −d2r

t
m, where d2 is a suitable positive constant.

If Re{P (rmeiθm)} < −d2r
t
m, then by a similar argument to the proof of

case (i), we find that for δ > 0,

exp{krδ−εm } < (ν(rm, f))k(1 + o(1)) < rkm exp{−d2r
t
m}+ o(rkm),

and for δ = 0,

rk(M−1)
m <

(
ν(rm, f)
rm

)k
(1 + o(1)) < exp{−d2r

t
m}+ o(1),

two contradictions. If Re{P (rmeiθm)} > d2r
t
m, then by a similar discussion

to the proof of case (ii), we get

(ν(rm, f))k(1 + o(1)) > rm exp{d2r
t
m} − o(1).

This implies that σ2(f) ≥ t ≥ 1. Hence σ2(f) = t.

Subcase (iii)(b): Re{bn−1(reiθ0)n−1} = · · · = Re{b1(reiθ0)} = 0. Then
there exists some positive constant M1 such that −M1 < Re{P (rmeiθ0)}
< M1, that is,

(24) e−M1 ≤ |eP (rmeiθm )| = |eP (rmeiθ0 )| ≤ eM1 .

It follows from (18) (or (19)), (20) and (24) that

1
rkm

exp{krδ−εm } − o(1) ≤
(
ν(rm, f)
rm

)k
(1 + o(1))− o(1)

≤ |exp{P (rmeiθm)}| ≤ eM1 ,

or

rk(M−1)
m − o(1) ≤

(
ν(rm, f)
rm

)k
(1 + o(1))− o(1) ≤ |exp{P (rmeiθm)}| ≤ eM1 ,

two contradictions.
In conclusion, the hyperorder of f is a positive integer not exceeding the

degree of P when P is a polynomial.
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Secondly, suppose that P is a transcendental entire function with σ(P )
< 1/2. By Lemma 2.9 and (2), f must be transcendental and of infinite
order. Choose z satisfying |z| = r 6∈ [0, 1] ∪ E1 and |f(z)| = M(r, f), where
E1 is a subset of (1,∞) of finite logarithmic measure. Then (17) also holds.
Hence, we have

(25) eP (z) =
(
ν(r, f)
z

)k
(1 + o(1)) + o(1).

Since σ(P ) < 1/2, Lemma 2.4 (or 2.5) yields a set H ⊂ (1,∞) of positive
lower logarithmic density (hence, of infinite logarithmic measure) such that
for all |z| = r ∈ H, we have |P (z)| ≥ M(r, P )c, where c is a constant with
0 < c < 1. Assume that the hyperorder of f is finite. Then by Lemma 2.2, we
have ν(r, f) ≥ |z|M for any positive constant M. Taking a principal branch
of log((ν(r, f)/z)k(1 + o(1)) + o(1)), it follows from (25) that for all z with
|z| = r ∈ H \ [0, 1] ∪ E1 and for any given ε > 0,

M(r, P )c ≤ |P (z)| ≤
∣∣∣∣log

∣∣∣∣(ν(r, f)
z

)k
(1 + o(1)) + o(1)

∣∣∣∣∣∣∣∣
≤ k log ν(r, f) +O(1) ≤ krσ2(f)+1 +O(1).

This contradicts the assumption that P is transcendental. Therefore the
hyperorder of f must be infinite.

4. Proof of Theorem 1.3. Theorem 1.3 can be proved in much the
same way as Theorem 1.2 by making use of Lemma 2.10 instead of Lem-
ma 2.4 (or 2.5).

5. Application. We say that two nonconstant meromorphic functions
f and g share a meromorphic function h provided that f(z)−h(z) = 0 if and
only if g(z)−h(z) = 0. The functions f and g share h CM if f −h and g−h
have the same zeros with the same multiplicities. Let us recall the conjecture
of Brück [4]: Let f be a nonconstant entire function whose hyperorder is finite
but not a positive integer. If f and f ′ share some finite value a CM, then
f ′ − a = c(f − a), where c is a nonzero constant. The conjecture has been
partly confirmed under various conditions (see [4], [11], [7]). Here we extend
these results to the case where f shares a polynomial with its kth derivative.

Theorem 5.1. Let f be a nonconstant entire function with hyperorder
less than 1/2. If f and f (k) share a polynomial R CM , then f (k) − R =
c(f −R), where c is a nonzero constant.

Proof. When R is a constant, the theorem has been proved by Chen
and Shon [6]. Now we assume that R is a nonconstant polynomial. By the
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assumptions and the essential part of the factorization theorem for mero-
morphic functions of finite iterated order ([14, Satz 12.4]), we have

(26)
f (k) −R
f −R

= eP (z),

where P is an entire function with σ(P ) = σ2(eP ) < 1/2.
If P is a constant, then the conclusion immediate. Now we assume that

P is a nonconstant entire function with σ(P ) < 1/2. Set F (z) = f(z)−R(z)
and Q(z) = R(z) +R(k)(z). Then (26) can be rewritten as

F (k) − eP (z)F = Q(z).

By Theorem 1.2, the order of F, and hence of f , is infinite, and the hyper-
order of f is a positive integer or infinity. This contradicts the assumption
that the hyperorder of f is less than 1/2.
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