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Extension from linear subvarieties for
the Bergman scale of spaces on convex domains

by Michał Jasiczak (Poznań)

Abstract. We study the problem of extending functions from linear affine subvari-
eties for the Bergman scale of spaces on convex finite type domains. Our results solve the
problem for H1(D). For other Bergman spaces the result is ε-optimal.

1. Introduction. In this paper we investigate the problem of extending
functions from a linear subvariety for Bergman spaces. A domain D on which
the function spaces are defined is assumed to be smoothly bounded and
convex of finite type. We explain what this means.

The domain is defined by a function r,

D = {z : r(z) < 0},

which is assumed to be smooth on some open neighbourhood of D̄ and satisfy
dr 6= 0 on bD (we say that r is non-degenerate on bD). We use the symbol
% to denote |r|.

The finite type assumption means that the maximal order of contact of
bD with germs of complex analytic sets is finite. Such domains have been
studied since the discovery of their importance in the ∂-Neumann problem
([24], [25], [12], [9], [10]). Our goal is to provide an important element of
function theory on convex finite type domains.

Let us recall that the Bergman space Hp(D), 1 ≤ p <∞, is the space of
all holomorphic functions F in D such that

�

D

|F |p dV <∞.

The symbol dV stands for the volume measure in Cn.
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Let ω = (ω1, . . . , ωn) ∈ D, e = (e1, . . . , en) ∈ Cn and set

A = A(ω, e) := {z ∈ Cn : hω,e(z) := 〈z − ω, e〉 = 0},
where

〈z − ω, e〉 =
n∑
j=1

(zj − ωj)ēj .

The operator RD∩A of restriction to the subvariety A is defined for all holo-
morphic functions in D in the following way:

RD∩A : H(D) 3 f 7→ f |D∩A ∈ H(D ∩A).

In this paper we examine for which functions f holomorphic in D ∩A there
is a function F in the Bergman space Hp(D), 1 ≤ p <∞, such that

f = RD∩AF.

The answer we give is the following: There exist positive Borel measures µ
and µε, ε > 0, supported on D ∩A such that if a function f holomorphic in
D ∩ A is integrable with respect to µ, then it extends to a function which
belongs toH1(D). A holomorphic function which is p-integrable with respect
to µε for some ε > 0 admits an extension to a function which belongs to
Hp(D), 1 < p < ∞. For p = 1 the result is sharp, i.e. the condition which
guarantees the existence of an extension is also necessary. When p is between
1 and∞ there is an ε-gap between a condition which suffices for an extension
with values in Hp(D) and the one which is necessary.

In both cases we prove that there exist linear extension operators with
values in Hp(D), 1 ≤ p <∞. If p = 1 the corresponding operator is defined
on the space of holomorphic functions which are integrable with respect
to the measure µ. When 1 < p < ∞ the extension operators are defined
on spaces of holomorphic functions which are p-integrable with respect to
one of the measures µε. What is important is that the measure µ and the
measures µε, ε > 0, depend on the specific non-isotropic geometry of the
convex domain of finite type and are independent of p.

The celebrated Ohsawa–Takegoshi extension theorem [30] states that in
the case of pseudoconvex domains each holomorphic L2(D ∩ A)-function
admits an extension to a holomorphic function inH2(D). Our results concern
the whole scale of Bergman spaces Hp(D), 1 ≤ p <∞. In the specific case of
H2(D) they say that under the additional assumption that D is convex and
of finite type the class of functions which admit an extension to a function
in H2(D) is larger than H2(D ∩ A). There appears the so called ‘gain of
regularity’. This seems interesting since K. Diederich and E. Mazzilli proved
in [16] that there are finite type domains and subvarieties (non-linear and
of higher codimension) with no ‘gain of regularity’ as far as the extension
problem is concerned.
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Let us now introduce some notation and formulate the results. Let ν be
a positive Borel measure on D ∩A(ω, e). Then

Hp(D ∩A(ω, e), dν) :=
{
f ∈ H(D ∩A(ω, e)) :

�

D∩A(ω,e)

|f |p dν <∞
}
,

for 1 ≤ p <∞, is the space of all functions holomorphic in D ∩A(ω, e) and
p-integrable with respect to the measure ν.

We can present the results now.

Theorem 1.1. Assume that D is a bounded convex domain of finite type
defined by a function r which is smooth on some neighbourhood of D̄ and
dr 6= 0 on bD. Let e ∈ Cn be a unit vector and ω ∈ D. There exists a
bounded operator

EA(ω,e) : H1
(
D ∩A(ω, e), |∂hω,e|2N dVA(ω,e)

)
→ H1(D)

such that
RD∩A ◦ EA(ω,e) = idH1(D∩A(ω,e),|∂hω,e|2N dVA(ω,e))

.

As already stated, we solve the extension and restriction problem for
H1(D) completely. The condition which suffices for the extension is also
necessary.

Theorem 1.2. Assume that D is a bounded convex domain of finite type
defined by a function r which is smooth on some neighbourhood of D̄ and
dr 6=0 on bD. Let ω∈D and e∈Cn with e 6= 0. A function f ∈H(D∩A(ω, e))
admits an extension which belongs to the Bergman space H1(D) if and only
if �

D∩A(ω,e)

|f | |∂hω,e|2N dVD∩A <∞.

In other words,

RD∩A[H1(D)] = H1
(
D ∩A(ω, e), |∂hω,e|2N dVD∩A

)
.

In order to prove Theorem 1.2 we invoke the following result proved by
the author in [23]:

Theorem 1.3. Assume that D is a bounded convex domain of finite type
defined by a function r which is smooth on some neighbourhood of D̄ and
dr 6= 0 on bD. Then for any 1 ≤ p <∞,

RD∩A[Hp(D)] ⊂ Hp
(
D ∩A(ω, e), |∂hω,e|2N dVD∩A

)
.

For other Bergman spaces we obtain an ε-optimal result.

Theorem 1.4. Assume that D is a bounded convex domain of finite type
defined by a function r which is smooth on some neighbourhood of D̄ and
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dr 6= 0 on bD. Let ω ∈ D and e ∈ Cn with e 6= 0. For any ε > 0 and
1 < p <∞ there exists a bounded operator

EA(ω,e) : Hp
(
D ∩A(ω, e), |∂hω,e|2−εN dVD∩A(ω,e)

)
→ Hp(D)

such that

RD∩A ◦ EA(ω,e) = idHp(D∩A(ω,e),|∂hω,e|2−εN dVD∩A(ω,e)
.

We now explain the notation used in Theorems 1.1–1.4. The symbol
dVD∩A stands for the measure induced by the volume element of the complex
subvariety A = A(ω, e), and |∂hω,e|N is a special non-isotropic norm of the
(1, 0)-covector ∂hω,e. It is important to realize that although hω,e is affine
linear, the function z 7→ |∂hω,e|2N (z) = |∂hω,e(z)|2N is not constant. To define
the norm we first recall an object which is of key importance in convex finite
type domains.

The complex boundary distance is defined for z in U , a small neighbour-
hood of bD, v ∈ Cn and ε > 0 in the following way:

τ(z, v, ε) := sup{c : |r(z + λv)− r(z)| < ε, |λ| < c}.

This notion was introduced by J. D. McNeal [28], [29].
Assume thatΩ is a (1, 0)-covector at a point ζ. We define its non-isotropic

norm by
|Ω|N (ζ) := sup{|Ω(v)|τ(ζ, v, |r(ζ)|) : v 6= 0}.

The norm | · |N was introduced by J. Bruna, P. Charpentier and Y. Dupain
[7] when constructing zero varieties of Nevanlinna class functions. Roughly
speaking, its role in Theorems 1.1–1.4 is to compensate in Wirtinger’s for-
mula for a lacking variable in the volume form dVD∩A.

In the proof of Theorems 1.1 and 1.4 we use extension operators con-
structed by B. Berndtsson [4]. The construction is based on integral formulae
developed by M. Andersson and B. Berndtsson [5]. The fundamental element
of the method is the support function constructed for convex finite type do-
mains by K. Diederich and J. E. Fornæss [14]. In order to prove our results
we first obtain certain non-isotropic estimates (Lemma 3.1). This suffices
to prove Theorem 1.1 and, as a result, also Theorem 1.2. In order to prove
Theorem 1.4 we have to modify Schur’s test (Proposition 3.2). The proof of
Theorem 1.4 is completed once we prove additional non-isotropic estimates
(Lemma 3.3).

One may wonder what is the reason for the ε-gap between the conditions
in Theorems 1.4 and 1.1. The gap is a consequence of the fact that in Schur’s
test (and its modified version) one needs to integrate in both variables in
order to have boundedness on Lp spaces when 1 < p < ∞. In the L1 case,
control over only one variable is needed.
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The problem of extension from linear subvarieties for bounded holomor-
phic functions was considered by K. Diederich and E. Mazzilli [15] who
generalized to convex finite type domains the result by G. Henkin [22].
The same problem for hypersurfaces which are not affine linear was inves-
tigated in [1]. Extension problems were also considered by E. Amar [3], [2],
A. Cumenge [11] and E. Mazzilli [27]. Other aspects of function theory
on convex finite type domains have also been studied. We list only those
most relevant to our work. Regularity of the ∂-equation on convex finite
type domains was investigated by K. Diederich, J. E. Fornæss and B. Fi-
scher [13], B. Fischer [18], [19] and T. Hefer [20], [21]. The Henkin–Skoda
problem for convex finite type domains was solved by J. Bruna, P. Char-
pentier and Y. Dupain [7]. Duality problems were investigated by S. G.
Krantz and S.-Y. Li [26]. The present author also studied extension prob-
lems for varieties which are not linear [23]. The elementary example of the
domain D = {(z1, z2, z3) ∈ C3 : |z1|2 + |z2|4 + |z3|2 < 1} and the subvari-
ety A = {z3 = 0} shows that neither Theorem 1.1 nor Theorem 1.4 is a
consequence of the results of [23].

The paper is divided into three sections. In the next one we provide
background on analysis on convex finite type domains, and construction of
the support function and the extension operator. In order to make the paper
self-contained we recall both definitions and properties of the objects we use.
The last section contains the proofs of Theorems 1.1, 1.2 and 1.4.

We write A . B if there exists a constant c such that A ≤ cB. If both
A . B and B . A, then we write A ∼ B.

2. Preliminaries

2.1. Geometry of convex domains of finite type. In this section we
recall basic information concerning smoothly bounded convex domains of
finite type in Cn, n > 1. Such a domain will be denoted by D throughout the
paper. The domain D is assumed to be defined by a smooth function r with
dr 6= 0 on the boundary of D. Without loss of generality we may assume
that D contains 0 and r = pD − 1 with pD standing for the Minkowski
functional of D. As a result, we may assume that r is convex on some neigh-
bourhood of bD. Notice that with this choice of r, sublevels of the defining
function are just dilations of the boundary. Thus, for small |t| the domains
Dt := {z ∈ Cn : r(z) < t} are convex as well. We write %(ζ) to denote
|r(ζ)|.

Recall that p ∈ bD is said to be of finite type if the maximal order of
contact at p of the hypersurface bD with germs of non-singular analytic sets
is finite. The domain D is said to be of finite type if each of its boundary
points is of finite type. Under the assumption that D is convex it suffices
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to take into account only germs of complex lines. This was proved in [6]
and [31]. The maximal order of contact of points p ∈ bD with complex lines
is called the type of the domain.

We shall make use of concepts introduced by J. D. McNeal [28], [29],
H. P. Boas and E. Straube [6], J. Bruna, P. Charpentier and Y. Dupain [7],
K. Diederich and J. E. Fornæss [14] and others. In order to make the paper
self-contained we recall the concepts we will use.

The symbol U stands for a sufficiently small open neighbourhood of bD.
The complex boundary distance is defined for z ∈ U , v ∈ Cn and ε > 0 by

τ(z, v, ε) := sup{c : |r(z + λv)− r(z)| < ε, |λ| < c}.
The function τ may also be considered to be defined by the condition

(1)
∑

1≤i+j≤M
|aij(z, v)|τ(z, v, ε)i+j = ε,

where

aij(z, v) =
∂i+j

∂λi∂λ̄j
r(z + λv)

∣∣∣∣
λ=0

and M in (1) stands for the type of the domain. As a result,

(2) τ(z, v, ε) ∼ min
1≤k≤M

{(
ε∑

i+j=k |aij(z, v)|

)1/k}
.

Formula (1) implies in particular that τ(z, v, ε) . ε1/M and the estimate is
uniform for z ∈ U and |v| = 1.

Definition 2.1 (ε-extremal basis). Let D = {r < 0} be a smooth con-
vex domain of finite type M , with r convex and smooth. For ζ ∈ D̄ and
ε > 0 the ε-extremal basis

uζ,ε1 , . . . , uζ,εn

at ζ is defined as follows: Choose a point q1 with r(q1) = r(ζ) + ε in the
direction of the line given by the gradient ∂r(ζ). Then |q1− ζ| is comparable
to the distance from ζ to the level set bDζ,ε := {z : r(z) = r(ζ) + ε}. Let uζ,ε1

be the unit vector in the direction of q1 − ζ. Then choose a unit vector uζ,ε2

orthogonal to SpanC{u
ζ,ε
1 } such that the maximal distance from ζ to bDζ,ε

along directions orthogonal to SpanC{u
ζ,ε
1 } is achieved along the line given

by uζ,ε2 at a point q2. Now continue by choosing a unit vector uζ,ε3 orthogonal
to SpanC{u

ζ,ε
1 , uζ,ε2 } etc. until the basis is constructed.

Extremal bases are used to define certain polydisks. Namely, fix ζ ∈ U
and let ε > 0 be small enough. Let, for j = 1, . . . , n,

τj(ζ, ε) := |qj − ζ| = τ(ζ, uζ,εj , ε).
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For C ∈ R+
0 , define polydisks

CPε(ζ) :=
{
z = ζ +

n∑
j=1

zζ,ε,ju
ζ,ε
j ∈ Cn : |zζ,ε,j | < Cτ ej (ζ, ε) for j = 1, . . . , n

}
.

We now recall properties of these objects. First of all, if z ∈ Pε(ζ), then
(3) τ(ζ, v, ε) ∼ τ(z, v, ε).

This is Proposition 2.3 in [29]. This implies that if z ∈ Pε(ζ) then
(4) V (Pε(z)) ∼ V (Pε(ζ)).

Proposition 2.2 ([13, Proposition 1.3]). Let U be a sufficiently small
neighbourhood of bD.

(i) There exists a constant C1 such that if ζ1, ζ2 ∈ U and ε > 0 and

Pε(ζ1) ∩ Pε(ζ2) 6= ∅
then

Pε(ζ1) ⊂ PC1ε(ζ2) and Pε(ζ2) ⊂ PC1ε(ζ1).

(ii) For each constant K there are constants c(K), C(K) such that for
each ζ ∈ U and ε > 0,

Pc(K)ε(ζ) ⊂ KPε(ζ) ⊂ PC(K)ε(ζ),

c(K)Pε(ζ) ⊂ PKε(ζ) ⊂ C(K)Pε(ζ).

(iii) There are constants c2 < 1, C2 > 1 such that
1
2Pε(ζ) ⊂ C2Pε/2(ζ),

C2Pt(ζ) ⊂ Pε(ζ) if t < c2ε.

(iv) There exists a constant c3 such that for each ζ ∈ D,

c3P|r(ζ)|(ζ) ⊂ D.
For i ∈ N0 we introduce the polyannuli

P iε(z) := CP2iε(z) \ 1
2P2iε(z)

with a suitably defined constant C > 0. Proposition 2.2 implies that if ε0 > 0
is sufficiently small, then

Pε0(z) \ Pε(z) ⊂
C5dlog(ε0/ε)e⋃

i=0

P iε(z)

with a uniform constant C5.
We will need to compare τ(z, v, ε) for different values of ε.
Lemma 2.3 ([15, Proposition 3.3]). Let D be a convex domain of finite

type defined by a smooth function r such that dr 6= 0 on bD. If ε1 ≥ ε2 then

τ(z, v, ε1) .
ε1

ε2
τ(z, v, ε2).
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2.2. Support functions. In [14] K. Diederich and J. E. Fornæss con-
structed support functions for convex domains of finite type in Cn. We now
recall elements of this construction.

Assume that D = {z : r(z) < 0}, where r is chosen in such a way that
|grad r| > 1/2 in an open set U containing bD and

Dt := {z : r(z) < t}

are convex domains of type M for t = r(ζ), ζ ∈ U . Let nζ be the unit outer
normal vector to the hypersurface {z : r(z) = r(ζ)} at the point ζ. There
exists a family of unitary transformations Φ(ζ) : Cn → Cn, ζ ∈ U ,

Φ(ζ)?Φ(ζ) = Φ(ζ)Φ(ζ)? = I

such that Φ(ζ)nζ = (1, 0, . . . , 0) for all ζ ∈ U . The family Φ(ζ), ζ ∈ U , may
be chosen to depend smoothly on ζ (cf. [14]). Define

rζ(w) := r(ζ + Φ(ζ)?w),

Sζ(w) = 3w1 +K1w
2
1 − c

M∑
j=2

K2σj
∑

|α|=j, α1=0

1

α!

∂jrζ
∂wα

(0)wα,

for K1,K2 suitably large and c > 0 suitably small. The only symbol which
needs an explanation is σj :

σj :=


1 if j ≡ 0 mod 4,
−1 if j ≡ 2 mod 4,
0 otherwise.

Define

S(z, ζ) := Sζ(Φ(ζ)(z − ζ)).

The following fundamental fact was proved by K. Diederich and J. E. Fornæss:

Theorem 2.4 (Diederich–Fornæss [14]). Let D ⊂⊂ Cn be a smooth con-
vex domain of finite type M and r a convex defining function of D in a
neighbourhood U of bD. Then the function S = S(z, ζ) ∈ C∞(D̄ × Cn),
holomorphic in z, constructed in [14], has the following property:

Let ζ ∈ U , let nζ denote the outer unit normal to the level set {η :
r(η) = r(ζ)} and let v be any unit vector complex tangential to this level set
at ζ. Define

aαβ :=
∂α+β

∂λα∂λ̄β
r(ζ + λv)

∣∣∣∣
λ=0

.

Then there are constants K, c, d > 0 such that for all z = ζ + µnζ + λv with
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λ, µ ∈ C, we have

<S(z, ζ)

≤ −
∣∣∣∣<µ2

∣∣∣∣− K

2
(=µ)2 − c

M∑
j=2

∑
α+β=j

|aαβ| |λ|j + d sup{0, r(z)− r(ζ)}.

The existence of support functions was proved in [14]. We repeated how-
ever the formulation of Theorem 2.4 after [17]. We can replace the function
S(z, ζ) by 1

2dS(z, ζ). Therefore, we may assume that

<S(z, ζ)

≤ −
∣∣∣∣<µ2

∣∣∣∣− K

2
(=µ)2 − c

M∑
j=2

∑
α+β=j

|aαβ| |λ|j +
1

2
sup{0, r(z)− r(ζ)}.

We now recall some crucial properties of the function S.

Lemma 2.5 ([18, Lemma 3.2]). Let U be a sufficiently small neighbour-
hood of bD and ε0 > 0 sufficiently small. For all z, ζ ∈ U and ε < ε0 we
have

|S(z, ζ)| & ε

for all ζ ∈ P 0
ε (z) or z ∈ P 0

ε (ζ).

Notice that for z, ζ ∈ D,

r(ζ) + 1
2 max{0, r(z)− r(ζ)} =

{
r(ζ) if r(z)− r(ζ) < 0,
1
2r(z) + 1

2r(ζ) if r(z)− r(ζ) ≥ 0,
≤ 1

2r(ζ).

In view of Proposition 2.4, this suffices to prove the following fact:

Lemma 2.6. For each z, ζ ∈ D,

|r(ζ) + S(z, ζ)| & %(ζ).

We will also use the following lemma:

Lemma 2.7. There exists an open set U ⊃ bD and a constant c > 0 such
that if z, ζ ∈ D ∩ U and ζ ∈ Pc(z) \ P2i%(z)(z) with 2i%(z) < c, then

|r(ζ) + S(z, ζ)| & 2i%(z).

The proof of Lemma 2.7 is exactly the same as the proof of Lemma 4.2 in
[13] or Lemma 3.3 in [17], therefore we omit it. Next one defines n functions
Q1, . . . , Qn : (U ∩D)× U → C holomorphic in the first variable and C∞ in
the second such that

S(z, ζ) =
n∑
j=1

Qj(z, ζ)(zj − ζj).
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This is accomplished in the following way:

(5) Q(z, ζ) := Φ(ζ)TQζ(Φ(ζ)(z − ζ)),

where

Q1
ζ(w) := 3 +K1w1,

Qkζ (w) := −c
M∑
j=2

K2j

2 σj
∑

|α|=j, α1=0, αk>0

αk
jα!

∂jrζ
∂wα

(0)
wα

wk
, k = 2, . . . , n.

With the function Q = (Q1, . . . , Qn) defined in (5) one associates the (1, 0)-
form

n∑
j=1

Qj(z, ζ)dζj .

Fix ζ0 ∈ D ∩ U and choose an ε-extremal basis (u1, . . . , un) at ζ0. Write

z = ζ0 +

n∑
j=1

wjuj , ζ = ζ0 +

n∑
j=1

ηjuj .

Let Φ be a unitary transformation such that w = Φ(z−ζ0) and η = Φ(ζ−ζ0)
and set

ϕ(w) := ζ0 + Φ?w.

Consider the pull-back of the form
∑n

j=1Qj(z, ζ)dζj ,

(6) ϕ∗
( n∑
j=1

Qj(z, ζ)dζj

)
=

n∑
j=1

Qj(z, ζ0 + Φ?η)ϕ∗(dζj) =

n∑
j=1

Q̃j(w, η)dηj ,

with Q̃ defined by

Q̃(w, η) := Φ̄Q(ζ0 + Φ?w, ζ0 + Φ?η).

We use the following estimates of the function Q̃.

Proposition 2.8 ([18, Lemma 3.3]). For all η with |ηj | < τj(ζ0, ε),

|Q̃k(0, η)| . ε

τk(ζ0, ε)
,∣∣∣∣ ∂∂η̄j Q̃k(0, η)

∣∣∣∣ . ε

τj(ζ0, ε)τk(ζ0, ε)
,

and the constants involved are independent of ζ0 and ε.

Proposition 2.9 ([18, Lemma 3.4]). For all w with |wj | < τj(ζ0, ε),

|Q̃k(w, 0)| . ε

τk(ζ0, ε)
,

∣∣∣∣ ∂∂η̄j Q̃k(w, 0)

∣∣∣∣ . ε

τj(ζ0, ε)τk(ζ0, ε)

and the constants involved are independent of ζ0 and ε.
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2.3. Extension operator. Assume as before that D is a smoothly
bounded convex domain of finite type defined by a smooth function r such
that dr 6= 0 on bD. We intend to recall the construction of an extension
operator. Although our results concern affine linear hypersurfaces, we con-
sider a more general setting now. Namely, let V ⊃ D̄ be an open set and
h : V → C a holomorphic function. Define

A := {z ∈ V : h(z) = 0}.
The variety A is assumed to be non-singular and to cut the boundary bD
transversally. In other words, we assume that ∂h 6= 0 on A and ∂h ∧ ∂r 6= 0
at each point of A ∩ bD.

In order to be able to use integral formulae from [4] we need to define

Q1(ζ, z) :=
1

r(ζ)

(
(1− φ(ζ))

n∑
j=1

Qj(z, ζ) + φ(ζ)
n∑
j=1

∂r

∂ζj
dζj

)
.

The symbol φ stands for a smooth cut-off function supported on a compact
subset of D.

With this definition we are ready to recall the construction developed
in [4].

Proposition 2.10. For any N > 1 the integral operator ENA defined on
any function f ∈ H∞(D ∩A) for any z ∈ D by

ENA f(z) :=
�

D∩A
f(ζ)

·
[
dV #c

(
rN+n−1(ζ)

(r(ζ) + (1− φ(ζ))S(z, ζ) + φ(ζ)
∑n

j=1
∂r
∂ζj

(ζ)(zj − ζj))N+n−1

· (∂Q1(ζ, z))n−1 ∧
∂h(ζ) ∧ (

∑n
j=1 hj(ζ, z)dζj)

‖∂h‖2

)]
dVD∩A

is a linear extension operator. Furthermore, the function ENA f( · ) is contin-
uous on D̄ \ (bD ∩A).

The holomorphic functions hj : V × V → C are defined by

h(z)− h(ζ) =

n∑
j=1

hj(ζ, z)(zj − ζj).

We now explain the meaning of the symbols used in Proposition 2.10. For
an (n, n)-form Ω the symbol dV #cΩ stands for the contraction of the (n, n)-
vector dV #, which is dual to the volume form, with the form Ω. The duality
between the exterior algebras of the complexified tangent and cotangent
bundles is induced by the duality between vectors and covectors. In order
to make this statement clear, observe that once holomorphic coordinates
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(ζ1, . . . , ζn) are chosen in such a way that

dV = cdζ1 ∧ dζ̄1 ∧ · · · ∧ dζn ∧ dζ̄n
for some constant c, which is the case in our situation, and

Ω = Ωndζ1 ∧ dζ̄1 ∧ · · · ∧ dζn ∧ dζ̄n,

then

(7) dV #cΩ = cΩn.

Thus, for an (n, n)-form Ω the expression dV #cΩ is a smooth function, and
consequently[

dV #c
(

rN+n−1(ζ)

(r(ζ) + (1− φ(ζ))S(z, ζ) + φ(ζ)
∑n

j=1
∂r
∂ζj

(ζ)(zj − ζj))N+n−1

· (∂Q1(ζ, z))n−1 ∧
∂h(ζ) ∧ (

∑n
j=1 hj(ζ, z)dζj)

‖∂h‖2

)]
dVD∩A

is an (n−1, n−1)-form. Thus the integral in Proposition 2.10 is meaningful.
One more comment is in order. The operator ENA in Proposition 2.10

is defined for f ∈ H∞(D ∩ A) and under this assumption is an extension
operator. It is easy to observe however that for an appropriateN the operator
ENA is well-defined and is also an extension operator for those holomorphic
functions which we consider. This will also follow from estimates which we
prove in the next section.

3. Proofs. We shall deal now with extension operators. But first we
need some auxiliary remarks. Assume that A and B are (p, q)-forms,

A =
∑
α,β

AαβZ
∗α ∧ Z̄∗β =

∑
α,β

AαβZ
∗
α1
∧ · · · ∧ Z∗αp ∧ Z̄

∗
β1 ∧ · · · ∧ Z̄

∗
βq ,

B =
∑
α,β

BαβZ
∗α ∧ Z̄∗β =

∑
α,β

BαβZ
∗
α1
∧ · · · ∧ Z∗αp ∧ Z̄

∗
β1 ∧ · · · ∧ Z̄

∗
βq ,

and ϕ is a differentiable map. The symbols Z∗1 , . . . , Z∗n stand for the frame of
(1, 0)-differential forms, which is dual to a frame Z1, . . . , Zn of (1, 0)-vectors.
Thus

A# =
∑
α

AαβZα1 ∧ · · · ∧ Zαp ∧ Z̄β1 ∧ · · · ∧ Z̄βq .

The pull-back of A#cB by the map ϕ satisfies

ϕ∗(A#cB) = (ϕ∗A)#c(ϕ∗B).

We will use this fact below in the proofs of Lemmas 3.1 and 3.3.
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Lemma 3.1. Assume that ω ∈ D and e ∈ Cn is a unit vector. Let, as
before,

A(ω, e) := {z ∈ Cn : hω,e(z) = 〈z − ω, e〉 = 0}

be the complex affine linear hypersurface determined by ω and e. For the
variety A(ω, e) consider the operator ENA(ω,e) from Proposition 2.10. Denote
by ENA(ω,e)( · , · ) the kernel function of this operator. If N > 2 then there
exists a constant C > 0, which depends neither on ω nor on e, such that

(8)
�

D

|ENA(ω,e)(ζ, z)| dV (z) < C|∂hω,e|2N (ζ).

Proof. Notice that

∂Q1(ζ, z) = − ∂r

r2(ζ)
∧

n∑
j=1

Qj(z, ζ)dζj +
1

r(ζ)

n∑
j=1

∂Qj(z, ζ) ∧ dζj .

As a result,

(∂Q1(ζ, z))n−1 =
1

rn−1(ζ)

( n∑
j=1

∂Qj(z, ζ) ∧ dζj
)n−1

− (n− 1)
∂r(ζ)

rn(ζ)
∧
( n∑
j=1

Qj(z, ζ)dζj

)
∧
( n∑
j=1

∂Qj(z, ζ) ∧ dζj
)n−2

.

Thus

(9) rN+n−1(ζ)(Q1(ζ, z))n−1 ∧Ω[hω,e](ζ, z)

= rN (ζ)
( n∑
j=1

∂Qj(z, ζ) ∧ dζj
)n−1

∧Ω[hω,e](ζ, z)

− (n− 1)rN−1(ζ)∂r(ζ) ∧
( n∑
j=1

Qj(z, ζ)dζj

)
∧
( n∑
j=1

∂Qj(z, ζ) ∧ dζj
)n−2

∧Ω[hω,e](ζ, z),

where

Ω[hω,e](ζ, z) :=
∂hω,e(ζ) ∧ (

∑n
j=1 hω,e,j(ζ, z)dζj)

‖∂hω,e‖2
.

We will deal with the part EN1 of the kernel ENA (ζ, z) which corresponds to
the first term on the right-hand side of (9).

We may assume that ζ ∈ U∩D, since otherwise the estimate is trivial. For
such a fixed ζ consider a cover {c3P%(ζ)(ζ), P i%(ζ)(ζ)}i∈N of D (the constant c3
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was defined in Proposition 2.2). It follows from Lemma 2.6 that

(10) |r(ζ) + S(z, ζ)| & %(ζ).

Furthermore, there exists i0 ∈ N such that if i ≥ i0 and z ∈ P i%(ζ)(ζ), then

(11) |r(ζ) + S(z, ζ)| ≥ |S(z, ζ)| − %(ζ) & 2i%(ζ),

by Lemma 2.5. Since estimate (11) may only fail for i ≤ i0 with a uniform i0,
we may assume in view of (10) that it holds for each i ∈ N.

As a consequence, for each ζ, z ∈ D,

(12) |EN1 (ζ, z)|

. %−(n−1)(ζ)
∣∣∣ dV #c

(( n∑
j=1

∂Qj(z, ζ) ∧ dζj
)n−1

∧Ω[hω,e](ζ, z)
)∣∣∣,

and if additionally z ∈ P i%(ζ)(ζ), then

(13) |EN1 (ζ, z)|

. (2i)−N (2i%(ζ))−(n−1)
∣∣∣(dV #)c

( n∑
j=1

∂Qj(z, ζ) ∧ dζj
)n−1

∧Ω[hω,e](ζ, z)
)∣∣∣.

In order to estimate the right-hand side in (12) and (13), we change coor-
dinates. Choose a 2i%(ζ)-extremal basis (u

ζ,2i%(ζ)
1 , . . . , u

ζ,2i%(ζ)
n ) at the point

ζ and let (w1(z), . . . , wn(z)) be the corresponding coordinates of a point z.
Then

w = (Φζ,2
i%(ζ))−1(z − ζ)

with Φζ,2i%(ζ) standing for a unitary transformation and

z = Φζ,2
i%(ζ)(w) + ζ = ϕζ,2

iϕ(ζ)(w).

Naturally,

P2i%(ζ)(ζ) = ϕζ,2
i%(ζ)

(
{w ∈ Cn : |wj | < τ(ζ, u

ζ,2i%(ζ)
j , 2i%(ζ)), j = 1, . . . , n}

)
.

To simplify the notation we write ϕ,Φ for ϕζ,2i%(ζ), Φζ,2
i%(ζ), respectively, if

ζ and i are fixed.
Denote

E(ζ, z) :=
( n∑
j=1

∂Qj(z, ζ) ∧ dζj
)n−1

∧Ω[hω,e](ζ, z).

With this notation we can write

(dV #cE)(ζ, z) = (dV #cE)(ϕϕ−1(ζ), ϕϕ−1(z))

= ϕ∗
(
dV #cE( · , ϕ(w))

)
(η)

=
(
(ϕ∗dV )#cϕ∗E( · , ϕ(w))

)
(η).
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Notice that

ϕ∗(∂hω,e) =

n∑
j=1

∂(hω,e ◦ ϕ)

∂ηj
dηj

and

hω,e(z)− hω.e(ζ) =
n∑
j=1

∂hω,e
∂ζj

(zj − wj) =
n∑
j=1

hω,e,j(ζ, z)(zj − ζj)

with hω,e,j = ∂hω.e
∂ζj

. This implies that
n∑
j=1

hω,e,j(ζ, z)dζj = ∂ζhω,e

and, as a result,

(14) ϕ∗
(
∂hω,e ∧

n∑
j=1

hω,e,j(ζ, z)dζj

)
= ∂(hω,e ◦ ϕ) ∧ ∂(hω,e ◦ ϕ)

=
n∑

j,l=1

∂(hω,e ◦ ϕ)

∂ηj

∂(hω,e ◦ ϕ)

∂ηl
dη̄j ∧ dηl.

Thus we obtain

(ϕ∗E)(0, ϕ(w)) =

( n∑
i,j=1

∂Q̃j
∂η̄i

(w, 0)dη̄i ∧ dηj
)n−1

∧
n∑

k,l=1

∂(hω,e ◦ ϕ)

∂ηk

∂(hω,e ◦ ϕ)

∂ηl
dη̄k ∧ dηl

with the notation of Propositions 2.8 and 2.9. We can now complete the
estimates of (12) and (13):∣∣∣(dV #)c

( n∑
j=1

∂Qj(z, ζ) ∧ dζj
)n−1

∧Ω[hω,e](ζ, z)
)∣∣∣

≤
∑
α,β

n−1∏
j=1

∣∣∣∣∂Q̃αj∂η̄βj
(w, 0)

∣∣∣∣∣∣∣∣∂(hω,e ◦ ϕ)

∂ηαn

∂(hω,e ◦ ϕ)

∂ηβn

∣∣∣∣,
where the sum is over all permutations α, β of 1, . . . , n. In order to estimate
derivatives of the function Q̃ we apply Proposition 2.9. Eventually, we obtain
for z ∈ P i%(ζ)(ζ) the estimate

|EN1 (ζ, z)|

. 2−iN (2i%(ζ))−(n−1)
∣∣∣(dV #)c

(( n∑
j=1

∂Qj(z, ζ) ∧ dζj
)n−1

∧Ω[hω,e](ζ, z)
)∣∣∣
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. 2−iN
n∑

j,l=1

1∏
α 6=j, β 6=l τα(ζ, 2i%(ζ))τβ(ζ, 2i%(ζ))

∣∣∣∣∂(hω,e ◦ ϕ)

∂ηj

∂(hω,e ◦ ϕ)

∂ηl

∣∣∣∣
. 2−iN

n∑
j=1

1∏
α6=j τ

2
α(ζ, 2i%(ζ))

∣∣∣∣∂(hω,e ◦ ϕ)

∂ηj

∣∣∣∣2,
and a similar one for z ∈ P%(ζ)(ζ).

As a consequence, it follows from Lemma 2.3 that
�

P i
%(ζ)

(ζ)

|EN1 (ζ, z)| dV (z) ≤ 2−iN
n∑
j=1

∣∣∣∣∂(hω,e ◦ ϕ)

∂ηj

∣∣∣∣2τ(ζ, u
ζ,2i%(ζ)
j , 2i%(ζ))2

. 2−i(N−2)|∂hω,e|2N (ζ),

since

V (P i%(ζ)) ≤ V (P2i%(ζ)(ζ)) ∼
n∏
j=1

τ2(ζ, u
ζ,2i%(ζ)
j , 2i%(ζ)).

This completes the proof of the lemma.

The estimate in Lemma 3.1 suffices to prove Theorem 1.1.

Proof of Theorem 1.1. The proof follows immediately from estimate (8)
in Lemma 3.1 and Fubini’s Theorem.

Observe that Theorems 1.1 and 1.3 immediately imply Theorem 1.2.
We now proceed to prove Theorem 1.4. Recall that Schur’s test is a tool

which allows one to prove that an integral operator

Tf(x) =
�

X

K(x, y)f(y) dµ(y)

is bounded from Lp(X, dµ) into Lp(X, dν) when µ and ν are positive mea-
sures on X, and K is a non-negative kernel. However, the situation which we
come across in Theorem 1.4 does not fit exactly into the pattern of Schur’s
test. The measure which appears in the definition of the operator ENA(ω,e)

differs from the measures which define the Lp spaces. We therefore need to
modify Schur’s criterion:

Proposition 3.2. Let µ, ν be positive Borel measures on X and let m be
a positive weight function. If there exist non-negative functions h1, h2 such
that �

X

K(x, y)h1(y)qm(y)−q/pdµ(y) ≤ C1h2(x)q,

�

X

K(x, y)h2(x)p dν(x) ≤ C2h1(y)p,
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then the operator
Tf(x) =

�

X

f(y)K(x, y) dµ(y)

is bounded between Lp(X,mdµ) and Lp(X, dν).

For the sake of completeness we include the proof which is a minor mod-
ification of the standard case.

Proof. We can write

Tf(x) =
�

X

K(x, y)h1(y)h1(y)−1f(y)m(y)−1/pm(y)1/p dµ(y)

≤
( �
X

K(x, y)h1(y)qm(y)−q/p dµ(y)
)1/q

×
( �
X

K(x, y)h1(y)−pm(y)|f(y)|pdµ(y)
)1/p

≤ C1/q
1 h2(x)

( �
X

K(x, y)h1(y)−pm(y)|f(y)|p dµ(y)
)1/p

.

Therefore,
�

X

|Tf(x)|p dν(x) ≤ Cp/q1

�

X

h2(x)p
�

X

K(x, y)h1(y)−pm(y)|f(y)|p dµ(y) dν(x)

= C
p/q
1

�

X

|f(y)|ph1(y)−pm(y)
�

X

K(x, y)h2(x)p dν(x) dµ(y)

≤ Cp/q1 C2

�

X

|f(y)|pm(y) dµ(y).

Thus ( �
X

|Tf(x)|pdν(x)
)1/p

≤ C1/q
1 C

1/p
2

( �
X

|f(x)|pm(x)dµ(x)
)1/p

.

We now apply Proposition 3.2 with dν = dV , dµ = dVD∩A(ω,e) and
m = |∂hω,e|2−εN for some ε > 0. Set h2 ≡ 1 and h1(ζ) = |∂hω,e|2/pN (ζ). Lemma
3.1 says that the second estimate in Proposition 3.2 holds true with this
choice of measures and functions. In order to prove that

ENA(ω,e) : Hp(D ∩A(ω, e), |∂hω,e|2−εN )→ Hp(D)

with 1 < p < ∞ and ε > 0 we therefore need to show that for some con-
stant Cε,�

D∩A
|ENA(ω,e)(ζ, z)| |∂hω,e|

2q/p
N |∂hω,e|−q/p(2−ε)N dVD∩A(ω,e) ≤ Cε.
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This means that the proof of Theorem 1.4 will be completed once we prove
the following lemma:

Lemma 3.3. Assume that ω ∈ D and e ∈ Cn is a unit vector. Let, as
before,

A(ω, e) := {z ∈ Cn : hω,e(z) = 〈z − ω, e〉 = 0}

be the complex affine linear hypersurface determined by ω and e. For the
variety A(ω, e) consider the operator ENA(ω,e) from Proposition 2.10. Denote
by ENA(ω,e)( · , · ) the kernel function of this operator. If N > 2 and ε > 0 then
there exists a constant Cε > 0, which depends neither on ω nor on e, such
that

(15)
�

D∩A(ω,e)

|ENA(ω,e)(ζ, z)| |∂hω,e|
ε
N (ζ) dVD∩Aω,e(ζ) < Cε.

Proof. Fix z ∈ D. It is enough to provide estimates under the assumption
that ζ ∈ Pc(z) for some small fixed c > 0 which is independent of z. Indeed,
it follows from Lemmas 2.5 and 2.6 that

�

(D∩A(ω,e))\Pc(z)

|ENA(ω,e)(ζ, z)| |∂hω,e|
ε
N (ζ) dVD∩A(ω,e) . 1.

Consider a family P i%(z)(z) with 2i%(z) < Cc with a uniform C > 0 which is
chosen in such a way that

Pc(z) \ 1
2P%(z)(z) ⊂

dlog2
Cc
%(z)
e⋃

i=0

P i%(z)(z).

In order to prove the lemma we need to deal with the following integrals:
�

D∩A(ω,e)∩ 1
2
P%(z)(z)

|ENA(ω,e)(ζ, z)| |∂hω,e|
ε
N (ζ) dVD∩A(ζ),

�

D∩A(ω,e)∩P i
%(z)

(z)

|ENA(ω,e)(ζ, z)| |∂hω,e|
ε
N (ζ) dVD∩A(ζ),

for i = 0, . . . , dlog2
Cc
%(z)e.

As in Lemma 3.1, we estimate the kernel function EN1 (ζ, z). This time
however z is fixed.

We may assume that if ζ ∈ 1
2P%(z)(z) then %(ζ) . %(z). It then follows

from Lemma 2.6 that
|r(ζ) + S(z, ζ)| & %(z).
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As a consequence, for ζ ∈ 1
2P%(z)(z),

(16) |EN1 (ζ, z)|

. %−(n−1)(z)
∣∣∣dV #c

(( n∑
j=1

∂Qj(z, ζ) ∧ dζj
)n−1

∧Ω[hω,e](ζ, z)
)∣∣∣.

If ζ ∈ P i%(z)(z) then it follows from Lemmas 2.6 and 2.7 that

|EN1 (ζ, z)| . 1

(2i%(z))n−1

∣∣∣∣dV #c
(( n∑

j=1

∂Qj(z, ζ) ∧ dζj
)n−1

∧Ω[hω,e](ζ, z)
)∣∣∣∣.

Also,

|∂hω,e|N (ζ) = sup{|∂hω,e(v)|τ(ζ, v, %(ζ)) : v 6= 0}

= sup

{∣∣∣∣∂hω,e(|v| v|v|
)∣∣∣∣τ(ζ, v, %(ζ)) : v 6= 0

}
= sup

{∣∣∣∣∂hω,e( v

|v|

)∣∣∣∣τ(ζ, v|v| , %(ζ)

)
: v 6= 0

}
and, as a result, uniformly

|∂hω,e|N (ζ) = sup{|∂hω,e(v)|τ(ζ, v, %(ζ)) : |v| = 1} . %(ζ)1/M .

If ζ ∈ 1
2P%(z)(z) then %(ζ) . %(z), and if ζ ∈ P i%(z)(z) then %(ζ) . 2i%(z).

Thus
�

D∩A(ω,e)∩ 1
2
P%(z)(z)

|EN1 (ζ, z)| |∂hω,e|εN (ζ) dVD∩A(ζ)

. (%(z))ε/M
1

(%(z))n−1

�

D∩A(ω,e)∩ 1
2
P%(z)(z)

|((dV #)cE)(ζ, z)| dVD∩A(ζ),

and
�

D∩A(ω,e)∩P i
%(z)

(z)

|EN1 (ζ, z)| |∂hω,e|εN (ζ) dVD∩A(ζ)

. (2i%(z))ε/M
1

(2i%(z))n−1

�

D∩A(ω,e)∩P i
%(z)

(z)

|((dV #)cE)(ζ, z)| dVD∩A(ζ),

where, as in Lemma 3.1,

E(ζ, z) :=
( n∑
j=1

∂Qj(z, ζ) ∧ dζj
)n−1

∧Ω[hω,e](ζ, z).
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We have therefore to estimate
�

D∩A(ω,e)∩ 1
2
P%(z)(z)

|((dV #)cE)(ζ, z)| dVD∩A(ζ)

and �

D∩A(ω,e)∩P i
%(z)

(z)

|((dV #)cE)(ζ, z)| dVD∩A(ζ).

We consider the latter integral; the former is treated in the same way. Choose
a 2i%(z)-extremal basis at z and as in Proposition 2.8 let

η = Φ(ζ − z)

for a unitary transformation Φ, and

ζ = ϕ(η) = z + Φ?η.

We change variables and put z = ϕ(0) to obtain
�

D∩A(ω,e)∩P i
%(z)

(z)

|(dV #cE)(ζ, z)| dVD∩A(ζ)

≤
�

D∩A(ω,e)∩ϕ({η : |ηj |<τj(z,2i%(z)), j=1,...,n})

|(dV #cE)(ζ, z))| dVD∩A(ζ)

=
�

{η : |ηj |<τj(z,2i%(z)), j=1,...,n}∩ϕ−1(D∩A)

∣∣ϕ∗((dV #cE(ζ, z))
)∣∣ϕ∗(dVD∩A)(η)

=
�

{η : |ηj |<τj(z,2i%(z)), j=1,...,n}∩ϕ−1(D∩A)

∣∣((ϕ∗ dV #)c(ϕ∗E)
)
(η, ϕ(0))

∣∣
·ϕ∗(dVD∩A)(η).

Since
ϕ∗dV ∼ dη1 ∧ dη̄1 ∧ · · · ∧ dηn ∧ dη̄n,

the function (ϕ∗dV #)c(ϕ∗E) is, up to a constant, equal to the coefficient of

dη1 ∧ dη̄1 ∧ · · · ∧ dηn ∧ dη̄n

in ϕ∗E (cf. comments preceding (7)). With the same notation as in (6) and
(14) we obtain

∣∣((ϕ∗dV #)c(ϕ∗E)
)
(η, ϕ(0))

∣∣ ≤∑
α,β

n−1∏
j=1

∣∣∣∣∂Q̃αj∂ηβj
(0, η)

∣∣∣∣ ∣∣∣∣∂(hω,e ◦ ϕ)

∂ηαn

∂(hω,e ◦ ϕ)

∂ηβn

∣∣∣∣
where the sum is over all permutations α, β of 1, . . . , n. Therefore it follows
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from Proposition 2.8 that

(17)
�

D∩A(ω,e)∩P i
%(z)

(z)

∣∣(dV #cE)(ζ, z)
∣∣dVD∩A

.
n∑
j=1

(2i%(z))n−1∏
k 6=jτ

2
k (z, 2i%(z))

�

{η:|ηj |<τj(z,2i%(z))}∩ϕ−1(D∩A)

∣∣∣∣∂(hω,e ◦ ϕ)

∂ηj

∣∣∣∣2ϕ∗(dVD∩A).

Thus we need to estimate ϕ∗(dVD∩A). Consider a d-dimensional complex
submanifold N ⊂ D ⊂⊂ Cn. According to Wirtinger’s formula, if

n∑
j,l=1

hjl̄dzj ⊗ dzl

is a Hermitian metric in D ⊂ Cn (in general on an n-dimensional complex
manifold), then (√

−1

2d!

)d( n∑
j,l=1

hjl̄dzj ∧ dz̄l
)d

restricted to N is equal to the volume form on N induced by the metric in
Cn on N . This means that

dVD∩A ∼
( n∑
j=1

dζj ∧ dζ̄j
)n−1

|D∩A

and consequently

ϕ∗(dVD∩A) ∼
( n∑
j=1

dηj ∧ dη̄j
)n−1

|ϕ−1(D∩A)
.

Since A(ω, e) = {ζ : hω,e(ζ) = 0}, we have

0 =

n∑
j=1

∂(hω,e ◦ ϕ)

∂ηj
dηj

on ϕ−1(A(ω, e)). As a result, if ∂(hω,ε◦ϕ)
∂ηj

6= 0, then

(18) ϕ∗(dVD∩A)

. (
√
−1)n−1dη1∧dη̄1∧ . . .∧dηj−1∧dη̄j−1∧dηj+1∧dη̄j+1∧ . . .∧dηn∧dη̄n∣∣∂(hω,e◦ϕ)

∂ηj

∣∣2
with a uniform constant.
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Therefore it follows from (17) that
�

D∩A∩P i
%(z)

(z)

|EN1 (ζ, z)| |∂hω,e|εN (ζ) dVD∩A(ζ)

.
n∑
j=1

(2i%(z))ε/M
1∏

k 6=j τ
2
k (z, 2i%(z))

·
�

P ij

d<η1 d=η1 . . . d<ηj−1 d=ηj−1 d<ηj+1 d=ηj+1 . . . d<ηn d=ηn

. (2i%(z))ε/M ,

where we used the symbol P ij to denote the projection of ϕ−1(P2i%(z)(z))

onto the hyperplane {ηj=0} ∼= Cn−1. Consequently,

�

D∩A
|EN1 (ζ, z)| |∂hω,e|εN dVD∩A(ζ) . 1 + %(z)ε/M

dlog2
Cc
%(z)
e∑

i=0

2εi/M . 1,

which completes the proof.
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