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On a Hölder type estimate for quasisymmetric functions

by Xinzhong Huang (Quanzhou)

Abstract. We give a Hölder type estimate for normalized ρ-quasisymmetric func-
tions, improving some results of J. Zając.

1. Introduction. It is known that a K-quasiconformal mapping f(z)
of D = {z | |z| < 1} onto itself can be extended to a homeomorphism of
the closed unit disk. It induces a topological mapping of the circumference.
In view of the conformal invariance of quasiconformal mappings, the closed
unit disk can be replaced by the upper halfplane and we can assume that∞
corresponds to ∞. Thus, we can view f as a K-quasiconformal mapping of
the upper halfplane on itself, sending∞ to∞. The boundary correspondence
f : R → R is then a continuous increasing function such that f(−∞) =
−∞ and f(+∞) = +∞. It is a ρ-quasisymmetric function satisfying the
Beurling–Ahlfors condition

(B-A)
1

ρ
≤ f(x+ t)− f(x)
f(x)− f(x− t)

≤ ρ

for all x ∈ R and all t > 0 with ρ = λ(K) (see [A], [BA]). The class of all in-
creasing homeomorphisms f : R→ R satisfying (B-A) with a constant ρ ≥ 1
is denoted by QR(ρ). We let Q0

R(ρ) denote the subset of QR(ρ) consisting of
all functions normalized by h(0) = 0, h(1) = 1.

Beurling and Ahlfors introduced these boundary functions and character-
ized them by an explicit formula for extension to a K-quasiconformal map-
ping. Owing to these relations, quasisymmetric functions can be regarded
as one-dimensional quasiconformal mappings, and they are expected to have
properties analogous to those of two-dimensional quasiconformal mappings.
Much research (see [Ke], [Kr1], [Z]) has been devoted to investigating prop-
erties of quasisymmetric functions, such as the distortion theorem, Hölder
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type inequality and compactness characterization. Kelingos [Ke] first estab-
lished some Hölder inequalities for normalized ρ-quasisymmetric functions.
His results are closely analogous to results for quasiconformal mappings of
the plane under which the origin is a fixed point and the unit disk is invari-
ant. A characterization of f in the case of K-quasiconformal automorphisms
F of the unit disk D with fixed point at zero was given by Krzyż [Kr1].
Kelingos [Ke] proved

Theorem 1.1. Suppose u(x) is normalized and K-quasisymmetric on
the real line. Then

(1.1) 2−αxα ≤ u(x) ≤ 2xβ

for 0 ≤ x ≤ 1,

(1.2) 8−α(x2 − x1)α ≤ u(x2)− u(x1) ≤ 8α(x2 − x1)β

for 0 ≤ x1 ≤ x2 ≤ 1, and

(1.3) xβ/2 ≤ u(x) ≤ (2x)α

for x ≥ 1, where

(1.4) α = log2(1 +K), β = log2(1 + 1/K).

Furthermore, the exponents α and β are best possible.

Zając [Z] improved Kelingos’ results by giving some sharp Hölder type
estimates for normalized ρ-quasisymmetric functions. He proved

Theorem 1.2. Suppose that ρ ≥ 1 and f is a normalized ρ-qs function
on R. Then for each m ∈ N,

(1.5)
(
1−

(
ρ

ρ+ 1

)m)
tαm ≤ f(t) ≤

(
1 +

1

(ρ+ 1)m − 1

)
tβm

for 0 ≤ t ≤ 1,

(1.6)
(
2

ρ
− 1

)(
1−

(
ρ

ρ+ 1

)m)
(t2 − t1)αm ≤ f(t2)− f(t1)

≤ (2ρ− 1)

(
1 +

1

(ρ+ 1)m − 1

)
(t2 − t1)βm

for 0 ≤ t1 ≤ t2 ≤ 1 (the left-hand bound in (1.6) is only significant for
1 ≤ ρ ≤ 2), and

(1.7)
(
1 +

1

(ρ+ 1)m − 1

)
tβm ≤ f(t) ≤

(
1−

(
ρ

ρ+ 1

)m)−1
tαm

for t ≥ 1, where
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(1.8)
αm = log1−2−m

(
1−

(
ρ

ρ+ 1

)m)
,

βm = log1−2−m

(
1−

(
1

ρ+ 1

)m)
.

As pointed out by Zając, if m = 1, (1.5) and (1.7) reduce to those of
Kelingos while (1.6) is better. However, the left-hand bound in (1.6) is only
significant for 1 ≤ ρ ≤ 2, in order to have 2/ρ − 1 ≥ 0. In this note, we
shall give better upper and lower bound estimates for these Hölder type
inequalities without the restriction 1 ≤ ρ ≤ 2.

2. Main theorem and its proof. Our main result can be stated as
follows:

Theorem 2.1. Suppose that ρ ≥ 1 and f is a normalized ρ-qs function
on R. Then for each m ∈ N,

(2.1) Mρ

(
1−

(
ρ

ρ+ 1

)m)
(t2 − t1)αm ≤ f(t2)− f(t1)

≤
(
ρ+ 2

ρ− 1

ρ+ 1

)(
1 +

1

(ρ+ 1)m − 1

)
(t2 − t1)βm

for 0 ≤ t1 ≤ t2 ≤ 1, where

Mρ =


1
ρ − 4 ρ−1

(ρ+1)2
, 1 ≤ ρ < 5+

√
41

8 ,
1

1+ρ ,
5+
√
41

8 ≤ ρ < 3
2 ,

3−ρ
ρ(1+ρ) , 3/2 ≤ ρ < 2,

1
ρ(1+ρ) , 2 ≤ ρ <∞,

(2.2)

αm = log1−2−m

(
1−

(
ρ

ρ+ 1

)m)
,

βm = log1−2−m

(
1−

(
1

ρ+ 1

)m)
.

(2.3)

In order to prove Theorem 2.1, we need the following Theorem 2.2 due
to Krzyż [Kr2].

Theorem 2.2. If h is ρ-quasisymmetric on R and h(x)− x vanishes at
the end-points of an interval I then

(2.4) |h(x)− x| ≤ |I|ρ− 1

ρ+ 1

for any x ∈ I, where |I| denotes the length of I.

Proof of Theorem 2.1. Suppose that f is a normalized ρ-qs function on
R satisfying (B-A) with a constant ρ ≥ 1. Then for every t1 ∈ [0, 1] the
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function

gt1(t) =
f(t+ t1)− f(t1)
f(1 + t1)− f(t1)

belongs to Q0
R(ρ). Therefore, by (1.5) of Theorem 1.2 with t = t2 − t1,

0 ≤ t1 ≤ t2 ≤ 1, we have

f(t2)− f(t1) ≤
(
f(1 + t1)− f(t1)

)(
1 +

1

(ρ+ 1)m − 1

)
(t2 − t1)βm ,(2.5)

f(t2)− f(t1) ≥
(
f(1 + t1)− f(t1)

)(
1−

(
ρ

ρ+ 1

)m)
(t2 − t1)αm(2.6)

for any m ∈ N.
We will need the fact that if f ∈ Q0

R(ρ), then f(x) − x vanishes at the
end-points of I = [0, 1] so by Theorem 2.2,

(2.7) |f(x)− x| ≤ ρ− 1

ρ+ 1
for x ∈ [0, 1].

Now, we shall prove the upper estimate of (2.1). By (B-A), we have

(2.8) N = f(1 + t1)− f(t1) ≤ ρ(1− f(1− t1)) + 1− f(t1).
Using (2.7), we deduce from (2.8) that

N ≤ (ρ− 1)(1− f(1− t1)) + 1− t1 − f(1− t1) + t1 − f(t1) + 1(2.9)

≤ (ρ− 1) + 2
ρ− 1

ρ+ 1
+ 1 = ρ+ 2

ρ− 1

ρ+ 1
.

By (2.5) and (2.9), we obtain

f(t2)− f(t1) ≤
(
ρ+ 2

ρ− 1

ρ+ 1

)(
1 +

1

(ρ+ 1)m − 1

)
(t2 − t1)βm .

Note that for ρ ∈ [1,∞), we have

ρ+ 2
ρ− 1

ρ+ 1
≤ 2ρ− 1.

Next, for the lower estimate of (2.1), if 1 ≥ t1 ≥ 4ρ
(1+ρ)2

, then, by (B-A)
and (2.7), we have

N ≥ 1

ρ
(f(t1)− f(1− t1))(2.10)

=
1

ρ

(
f(t1)− t1 + (1− t1)− f(1− t1) + 2t1 − 1

)
≥ 1

ρ

(
−2ρ− 1

ρ+ 1
+ 2t1 − 1

)
≥ 1

ρ

(
−2ρ− 1

ρ+ 1
+

8ρ

(1 + ρ)2
− 1

)
=

1

ρ
− 4

ρ− 1

(1 + ρ)2
.



Hölder type estimate for quasisymmetric functions 51

If 0 ≤ t1 ≤ 4ρ
(1+ρ)2

, (B-A) and (2.7) imply that

N ≥ 1

ρ
(1− f(1− t1)) + 1− f(t1)(2.11)

=
1

ρ
(t1 + 1− t1 − f(1− t1)) + (1− t1) + t1 − f(t1)

≥ 1

ρ

(
t1 −

ρ− 1

ρ+ 1

)
+ (1− t1)−

ρ− 1

ρ+ 1

=

(
1

ρ
− 1

)
t1 +

1

ρ
≥ 1

ρ
− 4

ρ− 1

(1 + ρ)2
.

It is easy to check that for every ρ ∈ [1,∞),
1

ρ
− 4

ρ− 1

(1 + ρ)2
≥ 2

ρ
− 1.

On the other hand, we need the following estimate. First, for f ∈ Q0
R(ρ),

from [A] we have

(2.12)
1

1 + ρ
≤ f

(
1

2

)
≤ ρ

1 + ρ
.

We consider two cases.
(i) If 1/2 ≤ t1 ≤ 1, then by (B-A), (2.12) and the monotonicity of f(t),

we have

f(1 + t1)− f(t1) ≥
1

ρ
(f(t1)− f(t1 − 1)) ≥ 1

ρ
f(t1) ≥

1

ρ
f

(
1

2

)
(2.13)

≥ 1

ρ(1 + ρ)
,

and again by (B-A) and (2.4),

f(1 + t1)− f(t1) ≥
1

ρ
(1− t1 + t1 − f(1− t1)) + 1− f(t1)(2.14)

≥ t1
ρ
− ρ− 1

ρ(ρ+ 1)
+

1− f(t1)
ρ

≥ 3− ρ
ρ(1 + ρ)

.

(ii) If 0 ≤ t1 ≤ 1/2, then

f(1 + t1)− f(t1) ≥
1

ρ
(1− f(1− t1)) + 1− f(t1)(2.15)

≥ 1− f
(
1

2

)
≥ 1

1 + ρ
.
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We see that ρ0 = 5+
√
41

8 is one of the roots of the equation
1

ρ
− 4

ρ− 1

(1 + ρ)2
=

1

1 + ρ
,

and if ρ ∈
[
1, 5+

√
41

8

)
, then

1

ρ
− 4

ρ− 1

(1 + ρ)2
≥ 1

1 + ρ
.

By (2.10) and (2.11), we have

(2.16) f(1 + t1)− f(t1) ≥
1

ρ
− 4

ρ− 1

(1 + ρ)2
, ρ ∈

[
1,

5 +
√
41

8

)
.

If ρ ∈
[
5+
√
41

8 , 32
)
, then

3− ρ
ρ(1 + ρ)

≥ 1

1 + ρ
,

and 3
2 is a root of the equation

3− ρ
ρ(1 + ρ)

=
1

1 + ρ
.

By (2.14) and (2.15) we have

(2.17) f(1 + t1)− f(t1) ≥
1

1 + ρ
, ρ ∈

[
5 +
√
41

8
,
3

2

)
.

If ρ ∈ [3/2, 2), then

1

1 + ρ
≥ 3− ρ
ρ(1 + ρ)

,

and by (2.14) and (2.15) we obtain

(2.18) f(1 + t1)− f(t1) ≥
3− ρ
ρ(1 + ρ)

, ρ ∈ [3/2, 2).

If ρ ∈ [2,∞), then 2 is one of the roots of the equation
3− ρ
ρ(1 + ρ)

=
1

ρ(1 + ρ)
.

By (2.13) and (2.15), we have

(2.19) f(1 + t1)− f(t1) ≥
1

ρ(1 + ρ)
, ρ ∈ [2,∞).

Combining (2.6) and (2.16)–(2.19), we have proved that

f(t2)− f(t1) ≥Mρ

(
1−

(
ρ

ρ+ 1

)m)
(t2 − t1)αm

with Mρ as stated in the theorem.
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