On a Hölder type estimate for quasisymmetric functions

by XINZHONG HUANG (Quanzhou)

Abstract. We give a Hölder type estimate for normalized ρ -quasisymmetric functions, improving some results of J. Zając.

1. Introduction. It is known that a K-quasiconformal mapping f(z) of $D = \{z \mid |z| < 1\}$ onto itself can be extended to a homeomorphism of the closed unit disk. It induces a topological mapping of the circumference. In view of the conformal invariance of quasiconformal mappings, the closed unit disk can be replaced by the upper halfplane and we can assume that ∞ corresponds to ∞ . Thus, we can view f as a K-quasiconformal mapping of the upper halfplane on itself, sending ∞ to ∞ . The boundary correspondence $f : \mathbb{R} \to \mathbb{R}$ is then a continuous increasing function such that $f(-\infty) = -\infty$ and $f(+\infty) = +\infty$. It is a ρ -quasisymmetric function satisfying the Beurling–Ahlfors condition

(B-A)
$$\frac{1}{\rho} \le \frac{f(x+t) - f(x)}{f(x) - f(x-t)} \le \rho$$

for all $x \in \mathbb{R}$ and all t > 0 with $\rho = \lambda(K)$ (see [A], [BA]). The class of all increasing homeomorphisms $f : \mathbb{R} \to \mathbb{R}$ satisfying (B-A) with a constant $\rho \ge 1$ is denoted by $Q_{\mathbb{R}}(\rho)$. We let $Q_{\mathbb{R}}^{0}(\rho)$ denote the subset of $Q_{\mathbb{R}}(\rho)$ consisting of all functions normalized by h(0) = 0, h(1) = 1.

Beurling and Ahlfors introduced these boundary functions and characterized them by an explicit formula for extension to a K-quasiconformal mapping. Owing to these relations, quasisymmetric functions can be regarded as one-dimensional quasiconformal mappings, and they are expected to have properties analogous to those of two-dimensional quasiconformal mappings. Much research (see [Ke], [Kr1], [Z]) has been devoted to investigating properties of quasisymmetric functions, such as the distortion theorem, Hölder

²⁰¹⁰ Mathematics Subject Classification: Primary 30C60; Secondary 30C75.

 $Key\ words\ and\ phrases:$ quasisymmetric functions, quasiconformal mappings, Hölder type inequality.

type inequality and compactness characterization. Kelingos [Ke] first established some Hölder inequalities for normalized ρ -quasisymmetric functions. His results are closely analogous to results for quasiconformal mappings of the plane under which the origin is a fixed point and the unit disk is invariant. A characterization of f in the case of K-quasiconformal automorphisms F of the unit disk D with fixed point at zero was given by Krzyż [Kr1]. Kelingos [Ke] proved

THEOREM 1.1. Suppose u(x) is normalized and K-quasisymmetric on the real line. Then

(1.1)
$$2^{-\alpha}x^{\alpha} \le u(x) \le 2x^{\beta}$$

for $0 \leq x \leq 1$,

(1.2)
$$8^{-\alpha}(x_2 - x_1)^{\alpha} \le u(x_2) - u(x_1) \le 8^{\alpha}(x_2 - x_1)^{\beta}$$

for $0 \leq x_1 \leq x_2 \leq 1$, and

(1.3)
$$x^{\beta/2} \le u(x) \le (2x)^{\alpha}$$

for $x \geq 1$, where

(1.4)
$$\alpha = \log_2(1+K), \qquad \beta = \log_2(1+1/K).$$

Furthermore, the exponents α and β are best possible.

Zając [Z] improved Kelingos' results by giving some sharp Hölder type estimates for normalized ρ -quasisymmetric functions. He proved

THEOREM 1.2. Suppose that $\rho \geq 1$ and f is a normalized ρ -qs function on \mathbb{R} . Then for each $m \in \mathbb{N}$,

(1.5)
$$\left(1 - \left(\frac{\rho}{\rho+1}\right)^m\right) t^{\alpha_m} \le f(t) \le \left(1 + \frac{1}{(\rho+1)^m - 1}\right) t^{\beta_m}$$

for $0 \le t \le 1$,

(1.6)
$$\left(\frac{2}{\rho}-1\right)\left(1-\left(\frac{\rho}{\rho+1}\right)^{m}\right)(t_{2}-t_{1})^{\alpha_{m}} \leq f(t_{2})-f(t_{1})$$

 $\leq (2\rho-1)\left(1+\frac{1}{(\rho+1)^{m}-1}\right)(t_{2}-t_{1})^{\beta_{m}}$

for $0 \le t_1 \le t_2 \le 1$ (the left-hand bound in (1.6) is only significant for $1 \le \rho \le 2$), and

(1.7)
$$\left(1 + \frac{1}{(\rho+1)^m - 1}\right)t^{\beta_m} \le f(t) \le \left(1 - \left(\frac{\rho}{\rho+1}\right)^m\right)^{-1}t^{\alpha_m}$$

for $t \geq 1$, where

(1.8)
$$\alpha_m = \log_{1-2^{-m}} \left(1 - \left(\frac{\rho}{\rho+1}\right)^m \right),$$
$$\beta_m = \log_{1-2^{-m}} \left(1 - \left(\frac{1}{\rho+1}\right)^m \right).$$

As pointed out by Zając, if m = 1, (1.5) and (1.7) reduce to those of Kelingos while (1.6) is better. However, the left-hand bound in (1.6) is only significant for $1 \le \rho \le 2$, in order to have $2/\rho - 1 \ge 0$. In this note, we shall give better upper and lower bound estimates for these Hölder type inequalities without the restriction $1 \le \rho \le 2$.

2. Main theorem and its proof. Our main result can be stated as follows:

THEOREM 2.1. Suppose that $\rho \geq 1$ and f is a normalized ρ -qs function on \mathbb{R} . Then for each $m \in \mathbb{N}$,

(2.1)
$$M_{\rho} \left(1 - \left(\frac{\rho}{\rho+1} \right)^{m} \right) (t_{2} - t_{1})^{\alpha_{m}} \leq f(t_{2}) - f(t_{1}) \\ \leq \left(\rho + 2\frac{\rho-1}{\rho+1} \right) \left(1 + \frac{1}{(\rho+1)^{m}-1} \right) (t_{2} - t_{1})^{\beta_{m}}$$

for $0 \leq t_1 \leq t_2 \leq 1$, where

(2.2)
$$M_{\rho} = \begin{cases} \frac{1}{\rho} - 4\frac{\rho - 1}{(\rho + 1)^{2}}, & 1 \le \rho < \frac{5 + \sqrt{41}}{8}, \\ \frac{1}{1 + \rho}, & \frac{5 + \sqrt{41}}{8} \le \rho < \frac{3}{2}, \\ \frac{3 - \rho}{\rho(1 + \rho)}, & 3/2 \le \rho < 2, \\ \frac{1}{\rho(1 + \rho)}, & 2 \le \rho < \infty, \end{cases}$$
(2.3)
$$\alpha_{m} = \log_{1 - 2^{-m}} \left(1 - \left(\frac{\rho}{\rho + 1}\right)^{m}\right), \\ \beta_{m} = \log_{1 - 2^{-m}} \left(1 - \left(\frac{1}{\rho + 1}\right)^{m}\right). \end{cases}$$

In order to prove Theorem 2.1, we need the following Theorem 2.2 due to Krzyż [Kr2].

THEOREM 2.2. If h is ρ -quasisymmetric on \mathbb{R} and h(x) - x vanishes at the end-points of an interval I then

(2.4)
$$|h(x) - x| \le |I| \frac{\rho - 1}{\rho + 1}$$

for any $x \in I$, where |I| denotes the length of I.

Proof of Theorem 2.1. Suppose that f is a normalized ρ -qs function on \mathbb{R} satisfying (B-A) with a constant $\rho \geq 1$. Then for every $t_1 \in [0, 1]$ the

function

$$g_{t_1}(t) = \frac{f(t+t_1) - f(t_1)}{f(1+t_1) - f(t_1)}$$

belongs to $Q^0_{\mathbb{R}}(\rho)$. Therefore, by (1.5) of Theorem 1.2 with $t = t_2 - t_1$, $0 \le t_1 \le t_2 \le 1$, we have

$$(2.5) \quad f(t_2) - f(t_1) \le \left(f(1+t_1) - f(t_1)\right) \left(1 + \frac{1}{(\rho+1)^m - 1}\right) (t_2 - t_1)^{\beta_m},$$

$$(2.6) \quad f(t_2) - f(t_1) \ge \left(f(1+t_1) - f(t_1)\right) \left(1 - \left(\frac{\rho}{\rho+1}\right)^m\right) (t_2 - t_1)^{\alpha_m}$$
for every $\in \mathbb{N}$

for any $m \in \mathbb{N}$.

We will need the fact that if $f \in Q^0_{\mathbb{R}}(\rho)$, then f(x) - x vanishes at the end-points of I = [0, 1] so by Theorem 2.2,

(2.7)
$$|f(x) - x| \le \frac{\rho - 1}{\rho + 1} \text{ for } x \in [0, 1].$$

Now, we shall prove the upper estimate of (2.1). By (B-A), we have (2.8) $N = f(1+t_1) - f(t_1) \le \rho(1 - f(1-t_1)) + 1 - f(t_1).$

Using (2.7), we deduce from (2.8) that

(2.9)
$$N \le (\rho - 1)(1 - f(1 - t_1)) + 1 - t_1 - f(1 - t_1) + t_1 - f(t_1) + 1$$
$$\le (\rho - 1) + 2\frac{\rho - 1}{\rho + 1} + 1 = \rho + 2\frac{\rho - 1}{\rho + 1}.$$

By (2.5) and (2.9), we obtain

$$f(t_2) - f(t_1) \le \left(\rho + 2\frac{\rho - 1}{\rho + 1}\right) \left(1 + \frac{1}{(\rho + 1)^m - 1}\right) (t_2 - t_1)^{\beta_m}.$$

Note that for $\rho \in [1, \infty)$, we have

$$\rho + 2\frac{\rho - 1}{\rho + 1} \le 2\rho - 1.$$

Next, for the lower estimate of (2.1), if $1 \ge t_1 \ge \frac{4\rho}{(1+\rho)^2}$, then, by (B-A) and (2.7), we have

$$(2.10) N \ge \frac{1}{\rho} (f(t_1) - f(1 - t_1)) = \frac{1}{\rho} (f(t_1) - t_1 + (1 - t_1) - f(1 - t_1) + 2t_1 - 1) \ge \frac{1}{\rho} \left(-2\frac{\rho - 1}{\rho + 1} + 2t_1 - 1 \right) \ge \frac{1}{\rho} \left(-2\frac{\rho - 1}{\rho + 1} + \frac{8\rho}{(1 + \rho)^2} - 1 \right) = \frac{1}{\rho} - 4\frac{\rho - 1}{(1 + \rho)^2}.$$

50

If
$$0 \le t_1 \le \frac{4\rho}{(1+\rho)^2}$$
, (B-A) and (2.7) imply that
(2.11) $N \ge \frac{1}{\rho}(1-f(1-t_1))+1-f(t_1)$
 $= \frac{1}{\rho}(t_1+1-t_1-f(1-t_1))+(1-t_1)+t_1-f(t_1)$
 $\ge \frac{1}{\rho}\left(t_1-\frac{\rho-1}{\rho+1}\right)+(1-t_1)-\frac{\rho-1}{\rho+1}$
 $= \left(\frac{1}{\rho}-1\right)t_1+\frac{1}{\rho}\ge \frac{1}{\rho}-4\frac{\rho-1}{(1+\rho)^2}.$

It is easy to check that for every $\rho \in [1, \infty)$,

$$\frac{1}{\rho} - 4 \frac{\rho - 1}{(1 + \rho)^2} \ge \frac{2}{\rho} - 1.$$

On the other hand, we need the following estimate. First, for $f \in Q^0_{\mathbb{R}}(\rho)$, from [A] we have

(2.12)
$$\frac{1}{1+\rho} \le f\left(\frac{1}{2}\right) \le \frac{\rho}{1+\rho}.$$

We consider two cases.

(i) If $1/2 \le t_1 \le 1$, then by (B-A), (2.12) and the monotonicity of f(t), we have

(2.13)
$$f(1+t_1) - f(t_1) \ge \frac{1}{\rho}(f(t_1) - f(t_1 - 1)) \ge \frac{1}{\rho}f(t_1) \ge \frac{1}{\rho}f\left(\frac{1}{2}\right)$$
$$\ge \frac{1}{\rho(1+\rho)},$$

and again by (B-A) and (2.4),

(2.14)
$$f(1+t_1) - f(t_1) \ge \frac{1}{\rho} (1 - t_1 + t_1 - f(1 - t_1)) + 1 - f(t_1)$$
$$\ge \frac{t_1}{\rho} - \frac{\rho - 1}{\rho(\rho + 1)} + \frac{1 - f(t_1)}{\rho}$$
$$\ge \frac{3 - \rho}{\rho(1 + \rho)}.$$

(ii) If $0 \le t_1 \le 1/2$, then

(2.15)
$$f(1+t_1) - f(t_1) \ge \frac{1}{\rho} (1 - f(1-t_1)) + 1 - f(t_1)$$
$$\ge 1 - f\left(\frac{1}{2}\right) \ge \frac{1}{1+\rho}.$$

We see that $\rho_0 = \frac{5+\sqrt{41}}{8}$ is one of the roots of the equation

$$\frac{1}{\rho} - 4\frac{\rho - 1}{(1 + \rho)^2} = \frac{1}{1 + \rho},$$

and if $\rho \in \left[1, \frac{5+\sqrt{4}1}{8}\right)$, then

$$\frac{1}{\rho} - 4\frac{\rho - 1}{(1 + \rho)^2} \ge \frac{1}{1 + \rho}.$$

By (2.10) and (2.11), we have

(2.16)
$$f(1+t_1) - f(t_1) \ge \frac{1}{\rho} - 4\frac{\rho - 1}{(1+\rho)^2}, \quad \rho \in \left[1, \frac{5+\sqrt{41}}{8}\right].$$

If $\rho \in \left[\frac{5+\sqrt{41}}{8}, \frac{3}{2}\right)$, then

$$\frac{3-\rho}{\rho(1+\rho)} \ge \frac{1}{1+\rho},$$

and $\frac{3}{2}$ is a root of the equation

$$\frac{3-\rho}{\rho(1+\rho)} = \frac{1}{1+\rho}.$$

By (2.14) and (2.15) we have

(2.17)
$$f(1+t_1) - f(t_1) \ge \frac{1}{1+\rho}, \quad \rho \in \left[\frac{5+\sqrt{41}}{8}, \frac{3}{2}\right).$$

If $\rho \in [3/2, 2)$, then

$$\frac{1}{1+\rho} \ge \frac{3-\rho}{\rho(1+\rho)},$$

and by (2.14) and (2.15) we obtain

(2.18)
$$f(1+t_1) - f(t_1) \ge \frac{3-\rho}{\rho(1+\rho)}, \quad \rho \in [3/2, 2)$$

If $\rho \in [2,\infty)$, then 2 is one of the roots of the equation

$$\frac{3-\rho}{\rho(1+\rho)} = \frac{1}{\rho(1+\rho)}$$

By (2.13) and (2.15), we have

(2.19)
$$f(1+t_1) - f(t_1) \ge \frac{1}{\rho(1+\rho)}, \quad \rho \in [2,\infty).$$

Combining (2.6) and (2.16)-(2.19), we have proved that

$$f(t_2) - f(t_1) \ge M_\rho \left(1 - \left(\frac{\rho}{\rho+1}\right)^m\right) (t_2 - t_1)^{\alpha_m}$$

with M_ρ as stated in the theorem. \blacksquare

Acknowledgements. The author would like to thank the referee very much for his many valuable suggestions.

This project was supported by the Science Foundation of Fujian Province, P.R.C. (grant no. 2011J01011).

References

- [A] L. V. Ahlfors, Lectures on Quasiconformal Mappings, Van Nostrand, Princeton, 1966, 63–74.
- [BA] A. Beurling and L. V. Ahlfors, The boundary correspondence under quasiconformal mappings, Acta Math. 96 (1956), 125–142.
- [Ke] J. A. Kelingos, Boundary correspondence under quasiconformal mappings, Michigan Math. J. 13 (1966), 235–249.
- [Kr1] J. G. Krzyż, Harmonic analysis and boundary correspondence under quasiconformal mappings, Ann. Acad. Sci. Fenn. Ser. A.I. Math. 14 (1989), 225–242.
- [Kr2] J. G. Krzyż, Universal Teichmüller space and Fourier series, Ann. Acad. Sci. Fenn. Ser. A.I. Math. 20 (1995), 387–400.
- J. Zając, Distortion function and quasisymmetric mappings, Ann. Polon. Math. 55 (1991), 361–369.

Xinzhong Huang School of Mathematical Sciences Huaqiao University Quanzhou, Fujian 362021, China E-mail: huangxz@hqu.edu.cn

> Received 4.6.2013 and in final form 24.10.2013

(3124)