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Subextension of plurisubharmonic functions without
changing the Monge–Ampère measures and applications

by Le Mau Hai and Nguyen Xuan Hong (Hanoi)

Abstract. The aim of the paper is to investigate subextensions with boundary val-
ues of certain plurisubharmonic functions without changing the Monge–Ampère measures.
From the results obtained, we deduce that if a given sequence is convergent in Cn−1-
capacity then the sequence of the Monge–Ampère measures of subextensions is weakly∗-
convergent. As an application, we investigate the Dirichlet problem for a nonnegative mea-
sure µ in the class F(Ω, g) without the assumption that µ vanishes on all pluripolar sets.

1. Introduction. Let Ω ⊂ Ω̃ be domains in Cn and let u be a plurisub-
harmonic function on Ω (briefly, u ∈ PSH(Ω)). A function ũ ∈ PSH(Ω̃)
is said to be a subextension of u if ũ(z) ≤ u(z) for all z ∈ Ω. The subex-
tension problem in the class F(Ω) has been studied by Cegrell and Zeriahi
[CeZe], who proved that if Ω, Ω̃ are bounded hyperconvex domains in Cn

with Ω b Ω̃ and u ∈ F(Ω), then there exists ũ ∈ F(Ω̃) such that ũ ≤ u on
Ω and �

Ω̃

(ddcũ)n ≤
�

Ω

(ddcu)n.

For the class Ep(Ω), p > 0, the subextension problem was investigated by
P. H. Hiep [H2], who proved that if Ω ⊂ Ω̃ ⊂ Cn are hyperconvex domains
and u ∈ Ep(Ω), p > 0, then there exists a function ũ ∈ Ep(Ω̃) such that ũ ≤ u
on Ω and ep(ũ) =

	
Ω̃
(−ũ)p(ddcũ)n ≤

	
Ω(−u)

p(ddcu)n. The subextension
problem involving boundary values was considered by Czyż and Hed [CH],
who showed that if Ω1 and Ω2 are two bounded hyperconvex domains such
that Ω1 ⊂ Ω2 ⊂ Cn, n ≥ 1 and u ∈ F(Ω1, F ) with F ∈ E(Ω1), then u has a
subextension v ∈ F(Ω2, G) with G ∈ E(Ω2) ∩MPSH(Ω2) and�

Ω2

(ddcv)n ≤
�

Ω1

(ddcu)n,
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under the assumption that F ≥ G on Ω1, where F(Ω) (resp. E(Ω)) are the
classes of unbounded plurisubharmonic functions defined in Section 2 and
MPSH(Ω) denotes the set of maximal plurisubharmonic functions on Ω.
It should be remarked that in [CeZe] and [CH], only estimates on the to-
tal Monge–Ampère mass of the subextension and of the given function are
obtained.

In this paper, besides establishing the existence of a subextension with
given boundary values in the class F(Ω, f), we prove that the Monge–
Ampère measures of the subextension and of the given function do not
change. Namely, we prove the following:

Theorem 3.4. Let Ω ⊂ Ω̃ be bounded hyperconvex domains in Cn and
let f ∈ E(Ω) and g ∈ E(Ω̃) ∩MPSH(Ω̃) with f ≥ g on Ω. Then for every
u ∈ F(Ω, f) with

	
Ω(dd

cu)n < ∞ there exists ũ ∈ F(Ω̃, g) such that ũ ≤ u

on Ω and (ddcũ)n = 1Ω(dd
cu)n on Ω̃.

Note that from our results, it is easy to obtain estimates on the total
Monge–Ampère mass, appearing in [CeZe] and [CH]. Next, from the above
result, we deduce a result on the weak∗-convergence of the sequence of the
Monge–Ampère measures of subextensions if we assume that the given se-
quence is convergent in Cn−1-capacity (see Corolary 3.5 below). Also, using
the result obtained, we investigate the Dirichlet problem for a nonnegative
measure µ in the class F(Ω, g) with g ∈ E(Ω) ∩ MPSH(Ω). It should be
noticed that the above problem was considered earlier by Åhag, who solved
the Dirichlet problem in the class F(Ω, g) for a nonnegative measure µ under
the assumption that µ vanishes on pluripolar sets. In our note, we omit this
assumption.

The paper is organized as follows. In Section 2, we give some elements of
pluripotential theory which are necessary for our results. We recall some
classes of unbounded plurisubharmonic functions introduced and investi-
gated by Cegrell. Note that by the results of Cegrell [Ce1], [Ce2], the Monge–
Ampère operator is well defined on these classes as a nonnegative Radon
measure. Next, in Section 3, we prove the main results of the paper. We give
new proofs for subextension of plurisubharmonic functions with boundary
values and show the equality between the Monge–Ampère measures of the
subextension and of the given function. In Section 4 we apply the above
result to investigating the Dirichlet problem.

2. Preliminaries. The elements of pluripotential theory that will be
used in this paper can be found in [ÅCCH], [BT], [Kl], [Ko1], [Ko2] and [Xi].
Now we recall some Cegrell’s classes of plurisubharmonic functions (see [Ce1]
and [Ce2]) and classes of plurisubharmonic functions with generalized bound-
ary values connected with Cegrell’s classes. Let Ω be an open set in Cn.
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By PSH−(Ω), we denote the set of negative plurisubharmonic functions
on Ω.

2.1. Now we assume that Ω is a bounded hyperconvex domain in Cn.
This means that Ω is a bounded domain in Cn and there exists a plurisub-
harmonic function ϕ : Ω → (−∞, 0) such that Ωc = {z ∈ Ω : ϕ(z) < c} b Ω
for every c < 0. As in [Ce1], we define the following subclasses of PSH−(Ω):

E0 = E0(Ω) =
{
ϕ ∈ PSH−(Ω) ∩ L∞(Ω) : lim

z→∂Ω
ϕ(z) = 0,

�

Ω

(ddcϕ)n <∞
}
,

F = F(Ω) =
{
ϕ ∈ PSH−(Ω) : ∃E0 3 ϕj ↘ ϕ, sup

j

�

Ω

(ddcϕj)
n <∞

}
,

and

E = E(Ω) =
{
ϕ ∈ PSH−(Ω) : ∀z0 ∈ Ω, ∃ a neighbourhood ω 3 z0,

E0 3 ϕj ↘ ϕ on ω, sup
j

�

Ω

(ddcϕj)
n <∞

}
.

The following inclusions are obvious: E0 ⊂ F ⊂ E .
Next, we recall classes of plurisubharmonic functions with generalized

boundary values in E . Let K ∈ {E0,F}. Then we say that a plurisubharmonic
function u defined onΩ is inK(Ω,G) for someG ∈ E if there exists a function
ϕ ∈ K such that

ϕ+G ≤ u ≤ G
on Ω. For a systematic and complete study of classes of plurisubharmonic
functions with generalized boundary values in other classes, we refer the
readers to [ÅhC2]. Note that functions in K(Ω,G) need not have finite total
Monge–Ampère mass (see [ÅhC1]).

2.2. Because in this note we also need the class of maximal plurisubhar-
monic functions, we recall the following definition given in [Bł1].

Definition 2.1. A plurisubharmonic function u on Ω is said to be max-
imal plurisubharmonic (briefly, u ∈ MPSH(Ω)) if for every compact set
K b Ω and every v ∈ PSH(Ω), if v ≤ u on Ω \K then v ≤ u on Ω.

It is well known (see, e.g., [Kl]) that locally bounded plurisubharmonic
functions are maximal if and only if they satisfy the homogeneous Monge–
Ampère equation (ddcu)n = 0. In [Bł2] Blocki extended the above result to
the class E(Ω).

2.3. We now recall the notion of Cn-capacity of a Borel set and exten-
sions of this notion, as well as the convergence in capacity of a sequence
of plurisubharmonic functions. For related definitions, we refer the readers
to [Xi] and [Ce3].
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Let Ω be an open set in Cn and E ⊂ Ω a Borel subset. Following [BT]
we define the Cn-capacity of E as follows:

Cn(E) = Cn(E,Ω) = sup
{ �
E

(ddcu)n : u ∈ PSH(Ω), −1 < u < 0
}
.

Extending this notion, Xing [Xi] introduced the notion of Cn−1-capacity. Let
E ⊂ Ω be a Borel subset. The Cn−1-capacity of E is defined by

Cn−1(E) = Cn−1(E,Ω) = sup
{ �
E

(ddcu)n−1 ∧ ddc|z|2 :

u ∈ PSH(Ω), −1 < u < 0
}
.

In [Xi], it is remarked that there is a constant AΩ > 0 such that Cn−1(E) ≤
AΩCn(E) for all Borel subsets E ⊂ Ω.

Next, we deal with the convergence of a sequence of plurisubharmonic
functions in capacity and recall an important result due to Cegrell [Ce3]
which we need in our proofs later.

Let uj , u be plurisubharmonic functions in an open set Ω of Cn. We say
that uj converges to u in Cs-capacity , s = n, n − 1, if for every compact
subset K of Ω and every δ > 0,

lim
j→∞

Cs({z ∈ K : |uj(z)− u(z)| > δ}) = 0.

From the inequality Cn−1(E) ≤ AΩCn(E) for all E ⊂ Ω it follows that
convergence in Cn-capacity implies convergence in Cn−1-capacity. Moreover,
by using the quasi-continuity of plurisubharmonic functions [BT], it is not
difficult to prove that if a sequence {uj} of plurisubharmonic functions is
increasing (or decreasing) and converges to a plurisubharmonic function u
then it converges to u in Cn-capacity.

An important result proved recently by Cegrell [Ce3] is as follows. Assume
that u0 ∈ E and {uj} ⊂ E is a sequence with u0 ≤ uj for j ≥ 1. If uj converges
to a plurisubharmonic function u ∈ E in Cn−1-capacity then the sequence of
measures (ddcuj)

n converges to (ddcu)n in the weak∗-topology as j → ∞.
We shall use this result several times in our proofs in the next section.

3. Subextension with boundary values without changing the
Monge–Ampère measures. The aim of this section is to study subexten-
sions of plurisubharmonic functions in the class F(Ω, f), f ∈ E . Our results
differ those in [CH] in that we control the Monge–Ampère mesures of subex-
tensions and of the given function. In order to arrive at the main result of
this note (Theorem 3.4 below) we need some auxiliary results.

The following proposition is the main tool in the proof of Theorem 3.4
and in Section 4.
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Proposition 3.1. Let Ω ⊂ Ω̃ be bounded hyperconvex domains in Cn
and let g ∈ E(Ω̃) ∩MPSH(Ω̃). Assume that u ∈ E(Ω) satisfies the following
conditions:

(a)
	
Ω(dd

cu)n <∞,
(b) (ddcv)n ≤ 1Ω(dd

cu)n on Ω̃ with some v ∈ F(Ω̃, g) and v ≤ u on Ω.

Then there exists ũ ∈ F(Ω̃, g) such that ũ ≤ v on Ω̃ and (ddcũ)n =

1Ω(dd
cu)n on Ω̃.

Proof. Since (ddcv)n ≤ 1Ω(dd
cu)n on Ω̃, we have

1{v=−∞}(dd
cv)n ≤ 1Ω∩{u=−∞}(dd

cu)n

on Ω̃. Moreover, since v ≤ u on Ω, Lemma 4.1 in [ÅCCH] implies that

1Ω∩{v=−∞}(dd
cv)n ≥ 1Ω∩{u=−∞}(dd

cu)n

on Ω. Therefore 1{v=−∞}(dd
cv)n = 1Ω∩{u=−∞}(dd

cu)n on Ω̃. Put µ =

1Ω(dd
cu)n − (ddcv)n on Ω̃. We notice that µ is a nonnegative measure van-

ishing on all pluripolar subsets of Ω̃. We split the proof into three steps.

Step 1. We prove that there exists w ∈ F(Ω̃, g) such that w ≤ v and

(ddcw)n ≥ µ+ 1{v>−∞}(dd
cv)n.

Indeed, since µ vanishes on all pluripolar sets in Ω̃ and

µ(Ω̃) ≤
�

Ω

(ddcu)n <∞,

Lemma 5.14 in [Ce1] implies that there exists v0 ∈ F(Ω̃) such that (ddcv0)n

= µ. Put w = v + v0. We have w ∈ F(Ω̃, g), w ≤ v and

(ddcw)n ≥ (ddcv0)
n + (ddcv)n ≥ µ+ 1{v>−∞}(dd

cv)n.

Step 2. Put

ũ = (sup{ϕ ∈ E(Ω̃) : ϕ ≤ v and (ddcϕ)n ≥ µ+ 1{v>−∞}(dd
cv)n})∗.

It is clear that w ≤ ũ ≤ v. Hence, ũ ∈ F(Ω̃, g). We will prove that

(ddcũ)n ≥ 1Ω(dd
cu)n on Ω̃.

Indeed, by using the Choquet lemma we infer that there exists a sequence
{ϕj} ⊂ E(Ω̃) such that ϕj ≤ v, (ddcϕj)n ≥ µ+ 1{v>−∞}(dd

cv)n and

ũ =
(
sup
j∈N∗

ϕj

)∗
.

By Proposition 4.3 in [KH] we can replace ϕj by max{w,ϕ1, . . . , ϕj}. Hence,
we can assume that w ≤ ϕj and ϕj ↗ ũ a.e. Therefore, ϕj → ũ in
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Cn-capacity and by [Ce3] we have (ddcϕj)
n → (ddcũ)n weakly. Thus,

(ddcũ)n ≥ µ+ 1{v>−∞}(dd
cv)n.

The above inequality is equivalent to

(3.1) 1{ũ>−∞}(dd
cũ)n ≥ µ+ 1{v>−∞}(dd

cv)n.

Moreover, since ũ ≤ v on Ω̃, Lemma 4.1 in [ÅCCH] implies that

(3.2) 1{ũ=−∞}(dd
cũ)n ≥ 1{v=−∞}(dd

cv)n.

Combining (3.1) and (3.2) we infer that

(ddcũ)n ≥ µ+ (ddcv)n = 1Ω(dd
cu)n.

Step 3. For each j = 1, 2, . . . , put

ũj = (sup{ϕ ∈ E(Ω̃) : ϕ ≤ max(v, g− j), (ddcϕ)n ≥ µ+1{v>g−j}(dd
cv)n})∗.

It is easy to see that ũ ≤ ũj+1 ≤ ũj for every j and ũ = limj→∞ ũj . Now,
since µ+(ddcmax(v, g− j))n vanishes on all pluripolar sets, by Theorem 3.9
in [Ce2] there exists a function wj ∈ F(Ω̃, g) such that

(ddcwj)
n = µ+ (ddcmax(v, g − j))n.

Since (ddcwj)
n ≥ (ddcmax(v, g − j))n, Theorem 3.8 in [Ce2] implies that

wj ≤ max(v, g − j). Moreover, by Theorem 4.1 in [KH] we have

(ddcwj)
n ≥ µ+ 1{v>g−j}(dd

cmax(v, g − j))n = µ+ 1{v>g−j}(dd
cv)n.

Hence, wj ≤ ũj . From Proposition 2.2 in [CH] it follows that

�

Ω

(ddcu)n ≤
�

Ω̃

(ddcũ)n = lim
j→∞

�

Ω̃

(ddcũj)
n

≤ lim sup
j→∞

�

Ω̃

(ddcwj)
n

≤ lim sup
j→∞

�

Ω̃

[µ+ (ddcmax(v, g − j))n] =
�

Ω

(ddcu)n.

Hence,
(ddcũ)n = 1Ω(dd

cu)n.

The next lemma is important for the proof of Theorem 3.4.

Lemma 3.2. Let Ω ⊂ Ω̃ be bounded hyperconvex domains in Cn. Assume
that f ∈ E(Ω) and g ∈ E(Ω̃)∩MPSH(Ω̃) are such that f ≥ g+ δ on Ω with
some δ > 0. Then for every u ∈ E0(Ω, f) such that the function

w := (sup{ϕ ∈ PSH−(Ω̃) : ϕ ≤ g on Ω̃ \Ω and ϕ ≤ min(u, g) on Ω})∗

is in E(Ω̃), we have (ddcw)n ≤ 1Ω(dd
cu)n on Ω̃.
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Proof. We split the proof into two steps.

Step 1. We prove that (ddcw)n = 0 on Ω̃\Ω. Indeed, since u ∈ E0(Ω, f),
there exists ψ ∈ E0(Ω) such that ψ + f ≤ u ≤ f on Ω. Put U := {ψ < −δ}
b Ω. Then ψ ≥ −δ on Ω \U so it is easy to see that min(u, g) = g on Ω \U .
Since Ω̃\U is an open set and g ∈ MPSH(Ω̃\U), we have w ∈ MPSH(Ω̃\U).
Indeed, let v ∈ PSH−(Ω̃ \ U) and v ≤ w outside K b Ω̃ \ U . Put

v1 =

{
max(v, w) on Ω̃ \ U ,
w on U .

Then v1 ∈ PSH−(Ω̃) and v1 ≤ w ≤ g outsideK in Ω̃. By the maximality of g
it follows that v1 ≤ g on Ω̃. It is easy to see that v1 ≤ min(u, g) on Ω. Hence,
by definition of w it follows that v1 ≤ w on Ω̃ and the desired conclusion
follows. Thus (ddcw)n = 0 on Ω̃ \Ω.

Step 2. We will prove (ddcw)n ≤ (ddcu)n on Ω. First, we prove that
(ddcw)n = 0 on {w < min(u, g)} ∩Ω. It is easy to see that

{w < min(u, g)} ∩Ω =
⋃
a∈Q−

({w < a < min(u, g)} ∩Ω)

⊂
⋃

a,b∈Q−

⋃
ε>0

(
({w < a < u− ε < b < g} ∩Ω)

∪ ({w < a < g − ε < b < u}) ∩Ω
)
.

Hence, it suffices to prove that (ddcw)n = 0 on {w < a < u−ε < b < g}∩Ω;
the proof for {w < a < g − ε < b < u} is similar. Let {uj} ⊂ E0(Ω) ∩ C(Ω)

with uj ↘ u on Ω and {gj} ⊂ E0(Ω̃)∩ C(Ω̃) be such that gj ↘ g on Ω̃. Put

wj := (sup{ϕ ∈ PSH−(Ω̃) : ϕ ≤ gj on Ω̃ \Ω and ϕ ≤ min(uj , gj) on Ω})∗.

Them wj ∈ E(Ω̃). We have wj ↘ w as j ↗∞ and {w<a} =
⋃∞
k=1{wk <a}.

Hence, it suffices to show that (ddcw)n = 0 on {wk < a < u−ε < b < g}∩Ω.
By Corollary 9.2 in [BT] it is easy to see that

(ddcwj)
n = 0 on {wj < min(uj , gj)} ∩Ω.

Moreover, {wk < a < u− ε < b < g}∩Ω ⊂ {wj < min(uj , gj)}∩Ω for every
j ≥ k. Hence,

(ddcwj)
n = 0 on {wk < a < u− ε < b < g} ∩Ω

for every j ≥ k. Therefore,
max(g − b, 0)(ddcwj)n = 0 on {wk < a < u− ε < b} ∩Ω

for every j ≥ k. Hence,
max(u−ε−a, 0)max(g− b, 0)(ddcwj)n = 0 on {wk < a}∩{u < b+ε}∩Ω
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for every j ≥ k. This is equivalent to[
(max(u− ε− a, 0) + max(g − b, 0))2 −max(u− ε− a, 0)2

−max(g − b, 0)2
]
(ddcwj)

n = 0

on {wk < a} ∩ {u < b+ ε} ∩Ω for every j ≥ k. Therefore, by Corollary 3.3
in [Ce3] we get[

(max(u− ε− a, 0) + max(g − b, 0))2 −max(u− ε− a, 0)2

−max(g − b, 0)2
]
(ddcw)n = 0

on {wk < a} ∩ {u < b+ ε} ∩Ω. Thus Lemma 4.2 in [KH] implies that

(ddcw)n = 0 on {w < a < u− ε < b < g} ∩Ω.

Now we prove that (ddcw)n ≤ (ddcu)n on {w = min(u, g)} ∩ Ω. Indeed,
since {w = min(u, g)} ⊂ {w = g} ∪ {w = u} so it suffices to prove that
(ddcw)n ≤ (ddcu)n on {w = g} ∪ {w = u}. Let K be a compact set in
{w = g}. Since K b {w + 1/j > g} for every j so by Theorem 4.1 in [KH]
we have �

K

(ddcw)n = lim
j→∞

�

K

(ddcmax(w + 1/j, g))n

≤
�

K

(ddcmax(w, g))n =
�

K

(ddcg)n.

Hence, (ddcw)n ≤ (ddcg)n = 0 ≤ (ddcu)n on {w = g}. Similarly, (ddcw)n ≤
(ddcu)n on {w = u}. Therefore, (ddcw)n ≤ (ddcu)n on Ω.

Remark 3.3. From the above proof we have the following. Assume that
Ω is a bounded hyperconvex domain in Cn, µ is a nonnegative measure
in Ω, and u, v ∈ E(Ω) are such that (ddcu)n ≤ 1Aµ, (ddcv)n ≤ 1Bµ, where
A ∩B = ∅ and

w := (sup{ϕ ∈ PSH−(Ω) : ϕ ≤ min(u, v) on Ω})∗ ∈ E(Ω).

Then (ddcw)n ≤ 1A∪Bµ.

Now we are in a position to state the main result of the paper. Note
that in our result, in contrast to [CeZe], the assumption that Ω b Ω̃ is not
necessary. At the same time, compared with Theorem 1.1 in [CH], we obtain
a better relation between the Monge–Ampère measures of a subextension
and the given function.

Theorem 3.4. Let Ω ⊂ Ω̃ be bounded hyperconvex domains in Cn and
let f ∈ E(Ω) and g ∈ E(Ω̃) ∩MPSH(Ω̃) with f ≥ g on Ω. Then for every
u ∈ F(Ω, f) with

	
Ω(dd

cu)n < ∞ there exists ũ ∈ F(Ω̃, g) such that ũ ≤ u

on Ω and (ddcũ)n = 1Ω(dd
cu)n on Ω̃.
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Proof. By Proposition 3.1 it suffices to construct a function v ∈ F(Ω̃, g)
such that v ≤ u on Ω and (ddcv)n ≤ 1Ω(dd

cu)n on Ω̃.
First, we prove that there exists w ∈ F(Ω̃, g) such that w ≤ u on Ω.

Indeed, since u ∈ F(Ω, f), there exists u0 ∈ F(Ω) such that u0 + f ≤ u ≤ f
on Ω. By Lemma 4.5 in [H2] there exist ũ0 ∈ F(Ω̃) such that ũ0 ≤ u0 on Ω.
Put w := ũ0 + g. Then w ∈ F(Ω̃, g). Moreover, since f ≥ g on Ω, we have
w ≤ u0 + f ≤ u on Ω.

Now, since u ∈ F(Ω, f), there exists {uj} ⊂ E0(Ω, f) such that uj ↘ u
as j ↗ ∞. Indeed, from the definition of F(Ω, f) there exists ψ ∈ F such
that

ψ + f ≤ u ≤ f
on Ω. Take a sequence {ψj} ⊂ E0(Ω) such that ψj ↘ ψ on Ω. Put uj =
max(ψj + f, u). Then uj ∈ E0(Ω, f) and uj ↘ u on Ω as j ↗∞, as desired.

Choose a sequence δj ↘ 0. Put gj = g − δj and

vj,k := (sup{ϕ ∈ PSH−(Ω̃) : ϕ ≤ gk on Ω̃ \Ω and ϕ ≤ min(uj , gk) on Ω})∗.

It is easy to see that w− δk ≤ vj,k on Ω̃, so vj,k ∈ E(Ω̃). Moreover, {vj,k}k≥1
is increasing as k ↗ ∞. Lemma 3.2 implies that (ddcvj,k)

n ≤ 1Ω(dd
cuj)

n

on Ω̃. Put vj = (limk→∞ vj,k)
∗. We have vj,k ↗ vj a.e. on Ω̃, hence by [Ce3]

we get (ddcvj)n ≤ 1Ω(dd
cuj)

n on Ω̃.
On the other hand, it is easy to see that vj ↘ v ∈ E(Ω̃) so again by [Ce3]

we get (ddcvj)
n → (ddcv)n weakly in Ω̃. Moreover, by Lemma 3.1 in [Ce1]

and Corollary 3.4 in [ÅCCH] it follows that 1Ω(ddcuj)n → 1Ω(dd
cu)n weakly

in Ω̃. Therefore,
(ddcv)n ≤ 1Ω(dd

cu)n on Ω̃.

Finally, since w ≤ v ≤ g on Ω̃, we have v ∈ F(Ω̃, g) and v ≤ u on Ω,
and the desired conclusion follows.

From the above theorem we have the following corollary which deals with
the weak∗-convergence of the sequence of the Monge–Ampère measures of
subextensions when the given sequence is convergent in Cn−1-capacity.

Corollary 3.5. Let Ω ⊂ Ω̃ be bounded hyperconvex domains in Cn,
and f ∈ E(Ω) and g ∈ E(Ω̃) ∩MPSH(Ω̃) be such that f ≥ g on Ω. Then
for every sequence uj , u0 ⊂ F(Ω, f) such that uj ≥ u0 for all j ≥ 1 and	
Ω(dd

cuj)
n < ∞,

	
Ω(dd

cu0)
n < ∞, and uj is convergent to u0 in Cn−1-

capacity on Ω, the subextensions ũj , ũ0 ⊂ F(Ω̃, g) of uj , u0 as in Theorem
3.4 are such that (ddcũj)n is weakly∗-convergent to (ddcũ0)

n as j →∞.

Proof. First we show that for every ϕ ∈ PSH−(Ω) ∩ L∞(Ω),

(3.3) lim
j→∞

�

Ω

ϕ(ddcuj)
n =

�

Ω

ϕ(ddcu0)
n.
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Indeed, from the hypothesis it follows that uj converges to u0 on Ω in mea-
sure with respect to the Lebesgue measure dVn on Cn. Hence, there exists
a subsequence of {uj}j≥1 that converges to u0 a.e. on Ω. Without loss of
generality we may assume that uj is convergent to u0 a.e. on Ω. Put vj :=
(sup{us : s ≥ j})∗. We have uj ≤ vj , and hence vj ∈ F(Ω, f) and vj ↘ u0
as j → ∞. Corollary 3.4 in [ÅCCH] implies that if ϕ ∈ PSH−(Ω) ∩ L∞(Ω)
then

lim
j→∞

�

Ω

ϕ(ddcvj)
n =

�

Ω

ϕ(ddcu0)
n.

Moreover, since u0 ≤ uj ≤ vj on Ω, Lemma 3.3 in [ÅCCH] yields
�

Ω

ϕ(ddcvj)
n ≥

�

Ω

ϕ(ddcuj)
n ≥

�

Ω

ϕ(ddcu0)
n.

Hence, we get

lim
j→∞

�

Ω

ϕ(ddcvj)
n = lim

j→∞

�

Ω

ϕ(ddcuj)
n =

�

Ω

ϕ(ddcu0)
n,

and (3.3) is proved.
Now, by Theorem 3.4 there exist subextensions ũj , ũ0 ∈ F(Ω̃, g) of uj , u0

such that ũj ≤ uj and ũ0 ≤ u0 on Ω and (ddcũj)
n = 1Ω(dd

cuj)
n and

(ddcũ0)
n = 1Ω(dd

cu0)
n. We prove that (ddcũj)

n is weakly∗-convergent to
(ddcũ0)

n. Indeed, assume that χ ∈ C∞0 (Ω̃). By Lemma 3.1 in [Ce1] there
exist ϕ1, ϕ2 ∈ E0(Ω̃) such that χ = ϕ1 − ϕ2. We have

lim
j→∞

�

Ω̃

χ(ddcũj)
n = lim

j→∞

�

Ω

ϕ1(dd
cuj)

n − lim
j→∞

�

Ω

ϕ2(dd
cuj)

n

=
�

Ω

ϕ1(dd
cu0)

n −
�

Ω

ϕ2(dd
cu0)

n =
�

Ω̃

χ(ddcũ0)
n,

and we get the required conclusion.

4. Applications. In this section we give an application of Theorem 3.4
to solving the Dirichlet problem in the class F(Ω, g), g ∈ MPSH(Ω)∩E(Ω),
without the assumption that the measure µ vanishes on all pluripolar sets.

Proposition 4.1. Let Ω be a bounded hyperconvex domain in Cn and
let µ be a nonnegative measure in Ω with µ(Ω) < ∞. Assume that g ∈
E(Ω) ∩ MPSH(Ω). Then there exists u ∈ F(Ω, g) with (ddcu)n = µ in Ω
if and only if for every hyperconvex domain U b Ω there exists uU ∈ E(U)
such that (ddcuU )n = µ on U .

Proof. Necessity follows from the local property of the class E(Ω). To
prove sufficiency, let {Ωj}j≥1 be hyperconvex domains in Ω such that Ωj b
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Ωj+1 b Ω and
⋃∞
j=1Ωj = Ω. Put Ω0 = ∅ and

ϕj := (sup{ϕ ∈ PSH−(Ωj+2) : ϕ ≤ uΩj+2 on Ωj+1})∗.
Since uΩj+2 ∈ E(Ωj+2), we have ϕj ∈ F(Ωj+2). Moreover,

(ddcϕj)
n ≥ 1Ωj\Ωj−1

µ.

Hence, by Theorem 4.14 in [ÅCCH] there exists ψj ∈ F(Ωj+2, g) such that
(ddcψj)

n = 1Ωj\Ωj−1
µ on Ωj+2. Therefore, by Theorem 3.4 there exists

wj ∈ F(Ω, g) such that wj ≤ ψj on Ωj+2 and (ddcwj)
n = 1Ωj+2(dd

cψj)
n =

1Ωj+21Ωj\Ωj−1
µ = 1Ωj\Ωj−1

µ on Ω.
Now, we claim that there exists a decreasing sequence {uj} ⊂ F(Ω, g)

with (ddcuj)
n = 1Ωjµ on Ω. Put u1 := w1. Assume by induction that we

have determined uj . We find uj+1 as follows. Put
vj+1 := (sup{ϕ ∈ PSH−(Ω) : ϕ ≤ min(uj , wj+1) on Ω})∗.

Note that uj + wj+1 ≤ vj+1 on Ω, so vj+1 ∈ F(Ω, g). By Remark 3.3 we
have (ddcvj+1)

n ≤ 1Ωj+1µ. Therefore, by the proof of Proposition 3.1 there
exists uj+1 ∈ F(Ω, g) such that uj+1 ≤ vj+1 ≤ uj and (ddcuj+1)

n = 1Ωj+1µ,
and the claim follows.

Put u := limj→∞ uj . Since

sup
j

�

Ω

(ddcuj)
n ≤ µ(Ω) <∞,

Proposition 2.3 in [CH] implies that u ∈ F(Ω, g). It is clear that (ddcu)n = µ
and the desired conclusion follows.

Corollary 4.2. Let Ω be a bounded hyperconvex domain in Cn and let
g ∈ E(Ω) ∩MPSH(Ω). Assume that u ∈ E(Ω) with

	
Ω(dd

cu)n < ∞. Then
there exists v ∈ F(Ω, g) such that (ddcv)n = (ddcu)n.

Proof. Apply the above proposition to the measure µ = (ddcu)n.
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