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Differences of generalized weighted composition operators
between growth spaces

by Weifeng Yang (Xiangtan) and Xiangling Zhu (Meizhou)

Abstract. Let ϕ and ψ be analytic self-maps of D. Using the pseudo-hyperbolic
distance ρ(ϕ,ψ), we completely characterize the boundedness and compactness of the
difference of generalized weighted composition operators between growth spaces.

1. Introduction. Let D = {z : |z| < 1} be the unit disk in the complex
plane and H(D) be the space of all analytic functions on D. For α > 0, the
space A−α consists of analytic functions f ∈ H(D) such that

‖f‖A−α = sup
z∈D

(1− |z|2)α|f(z)| <∞.(1.1)

Growth spaces are Banach spaces with the norm ‖ · ‖A−α , also called the
weighted Banach spaces of analytic functions.

For a ∈ D, let σa be the Möbius transformation of D defined by σa(z) =
(a− z)/(1− az). For w, z ∈ D, the pseudo-hyperbolic distance ρ(w, z) be-
tween z and w is given by ρ(w, z) = |σw(z)|.

For w, z ∈ D, let γ : [0, 1] → D be a smooth curve connecting z and w.
Then the hyperbolic length of γ is given by

l(γ) =

1�

0

|γ′(t)| dt
1− |γ(t)|2

.

The hyperbolic distance between z and w, denoted by β(w, z), is defined as
the infimum of l(γ), where γ are smooth curves connecting z and w. It is
known that

β(w, z) = l(γg) =
1

2
ln

1 + ρ(w, z)

1− ρ(w, z)
,

where γg is the geodesic connecting z and w.
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Let S(D) be the set of analytic self-maps of D. For ϕ ∈ S(D) and
u ∈ H(D), we denote by uCϕ the weighted composition operator, which
is defined by

(uCϕf)(z) = u(z)f(ϕ(z)), z ∈ D.

When u(z) ≡ 1, uCϕ becomes the composition operator Cϕ. When ϕ(z) = z,
uCϕ becomes the multiplication operator Mu.

During the past few decades much effort has been devoted to the research
on such operators on different Banach spaces of analytic functions. The
general idea is to describe the operator-theoretic behavior of uCϕ, such as
boundendness and compactness, in terms of the function-theoretic properties
of the symbols ϕ and u. For a comprehensive overview of the field, we refer
to the books [S, CM].

Let n be a nonnegative integer, ϕ ∈ S(D) and u ∈ H(D). The generalized
weighted composition operator Dn

ϕ,u is defined by

Dn
ϕ,uf = uf (n) ◦ ϕ, f ∈ H(D),(1.2)

where f (n) is the nth derivative of f and f (0) = f . The operator Dn
ϕ,u can

be regarded as a product of a composition operator Cϕ, a multiplication
operator Mu and the nth differentiation operator Dn. When u ≡ 1, we
denote the corresponding generalized weighted composition operator by Dn

ϕ.
The generalized weighted composition operator Dn

ϕ,u was probably studied
for the first time in [Z1], and later in [Z2, Z3, Z4, S1, O, S2, JS, S3, SSB,
YY, Sh1, Sh2, YwZ, Y, Z]. For some related operators in the setting of the
unit ball see, for example, [S5, S4].

The study of the differences of two composition operators was started on
Hardy spaces (see, for example, [B, SS]). The primary motivation for this
is to understand the topological structure of C(H2), the set of composition
operators on the Hardy space H2. After that, such related problems have
been studied on several spaces of holomorphic functions by many authors:
see, for example, [MOZ, M, N, HO, BLW, LW, W, DO, JS, Sa, SJ, L, YkZ]
and the references therein. J. Moorhouse’s results in [M] suggested that,
on the standard weighted Bergman spaces, there might be some connection
between the difference operator Cϕ − Cψ and the corresponding weighted
composition operators σCϕ and σCψ, where and henceforth

σ(z) =
ϕ(z)− ψ(z)

1− ϕ(z)ψ(z)
.

In [Sa], E. Saukko confirmed this connection.

In this paper, we investigate the boundedness and compactness of the dif-
ferences of generalized weighted composition operators between A−α
and A−β. Moreover, we find that the difference operator Dn

ϕ−Dn
ψ is closely
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linked with the corresponding generalized weighted composition operators
Dn
ϕ,σ and Dn

ψ,σ in the setting of growth spaces (see Corollaries 3.4 and 4.4).

Throughout this note, constants are denoted by C, they are positive and
may differ from one occurrence to another. The notation a � b means that
there is a positive constant C such that a ≤ Cb. Moreover, if both a � b
and b � a hold, then one writes a � b.

2. Prerequisites. In this section, we give some auxiliary results which
will be used in proving the main results of the paper. They are incorporated
in the lemmas which follow.

From the proofs of Propositions 7 and 8 in [Zh], we can directly deduce
the following lemma.

Lemma 2.1. For every positive integer n, we have f ∈ A−α if and only
if f (n) ∈ A−(α+n), and the following asymptotic relationship holds:

‖f‖A−α �
n−1∑
k=0

|f (k)(0)|+ sup
z∈D

(1− |z|2)α+n|f (n)(z)|.

Lemma 2.2. For every nonnegative integer n, if z, w ∈ D and f ∈ A−α,
then

|(1− |z|2)α+nf (n)(z)− (1− |w|2)α+nf (n)(w)| ≤ C‖f‖A−αρ(w, z).(2.1)

Proof. Let γ = γ(t) (0 ≤ t ≤ 1) be the geodesic connecting w and z.
Then β(w, z) = l(γ) and

(1− |z|2)α+nf (n)(z)− (1− |w|2)α+nf (n)(w)

=

1�

0

d
(
(1− |γ(t)|2)α+nf (n)(γ(t))

)
=

1�

0

(1− |γ(t)|2)α+n df (n)(γ(t)) +

1�

0

f (n)(γ(t)) d(1− |γ(t)|2)α+n.

By Lemma 2.1 we have∣∣∣ 1�
0

(1− |γ(t)|2)α+n df (n)(γ(t))
∣∣∣

≤
1�

0

(1− |γ(t)|2)α+n|γ′(t)f (n+1)(γ(t))| dt

≤ C‖f‖A−α
1�

0

(1− |γ(t)|2)−1|γ′(t)| dt ≤ C‖f‖A−αβ(w, z)
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and∣∣∣ 1�
0

f (n)(γ(t)) d(1− |γ(t)|2)α+n
∣∣∣

≤
1�

0

(α+ n)(1− |γ(t)|2)α+n−1
∣∣f (n)(γ(t))

(
γ(t)γ′(t) + γ(t)γ′(t)

)∣∣ dt
≤ C‖f‖A−α

1�

0

(1− |γ(t)|2)−1|Re[(γ(t)γ′(t)]| dt ≤ C‖f‖A−αβ(w, z).

Thus,

|(1− |z|2)α+nf (n)(z)− (1− |w|2)α+nf (n)(w)| ≤ C‖f‖A−αβ(w, z).(2.2)

On the other hand, if ρ(w, z) ≤ 1/2, from the monotonicity of the func-
tion 1

2x ln 1+x
1−x in [0, 1), we have

β(w, z) =
1

2
ln

1 + ρ(w, z)

1− ρ(w, z)
≤ (ln 3)ρ(w, z).(2.3)

If ρ(w, z) > 1/2, then

(2.4) |(1− |z|2)α+nf (n)(z)− (1− |w|2)α+nf (n)(w)|
≤ 2C‖f‖A−α ≤ C‖f‖A−αρ(w, z).

From (2.2)–(2.4), we obtain inequality (2.1).

Remark 2.3. From the proof of Lemma 2.2, in fact, it follows that for
all f ∈ A−α and z, w ∈ Dr, we have

|(1− |z|2)α+nf (n)(z)− (1− |w|2)α+nf (n)(w)| ≤ CA−αr (f)ρ(w, z)(2.5)

where Dr = {z ∈ D : |z| ≤ r < 1} and

A−αr (f) = max
{

sup
z∈Dr

(1− |z|2)α+n|f (n)(z)|, sup
z∈Dr

(1− |z|2)α+n+1|f (n+1)(z)|
}
.

The following criterion for compactness follows from standard arguments
similar to those outlined in [CM, Proposition 3.11]. We omit the details.

Lemma 2.4. Let n be a nonnegative integer, α, β > 0, ϕ,ψ ∈ S(D) and
u, v ∈ H(D). Then Dn

ϕ,u − Dn
ψ,v : A−α → A−β is compact if and only if

Dn
ϕ,u−Dn

ψ,v : A−α → A−β is bounded and for any bounded sequence (fk)k∈N
in A−α which converges to zero uniformly on compact subsets of D, we have
‖(Dn

ϕ,u −Dn
ψ,v)fk‖A−β → 0 as k →∞.

3. The boundedness of Dn
ϕ,u − Dn

ψ,v. In order to characterize the

boundedness of Dn
ϕ,u −Dn

ψ,v : A−α → A−β, we will use the following three
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conditions in this section:

sup
z∈D
|Mϕ

u (z)|ρ(ϕ(z), ψ(z)) <∞;(3.1)

sup
z∈D
|Mψ

v (z)|ρ(ϕ(z), ψ(z)) <∞;(3.2)

sup
z∈D
|Mϕ

u (z)−Mψ
v (z)| <∞;(3.3)

here and henceforth

Mϕ
u (z) =

(1− |z|2)βu(z)

(1− |ϕ(z)|2)α+n
, Mψ

v (z) =
(1− |z|2)βv(z)

(1− |ψ(z)|2)α+n
.

Theorem 3.1. Let n be a positive integer, α, β > 0, ϕ,ψ ∈ S(D) and
u, v ∈ H(D). Then the following statements are equivalent:

(a) Dn
ϕ,u −Dn

ψ,v : A−α → A−β is bounded;

(b) (3.1) and (3.3) hold;

(c) (3.2) and (3.3) hold.

Proof. (a)⇒(b). For some positive number r < 1, fix a point w in D such
that |ϕ(w)| ≥ r, and let

lw(z) =
1

τ(α+ n)ϕ(w)
n

1− |ϕ(w)|2

(1− ϕ(w)z)α+1
,

fw(z) =
lw(z)

λn + 1
(σϕ(w)(z) + λn/ϕ(w)),

where τ(α) = 1, τ(α+ n) = (α+ n)τ(α+ n− 1) and

λ0 = 0, λn =

n−1∑
i=0

(n− i)!τ(α+ i)

τ(α+ n)
.

It is easy to check that lw(z), fw(z) ∈ A−α; moreover,

l(n)w (z) =
1− |ϕ(w)|2

(1− ϕ(w)z)α+n+1

and

f (n)w (z) =

n−1∑
i=0

l
(i)
w (z)(σϕ(w)(z)+λn/ϕ(w))(n−i)

λn + 1
+
l
(n)
w (z)(σϕ(w)(z)+λn/ϕ(w))

λn + 1

=
n−1∑
i=0

l
(i)
w (z)

λn + 1
(σϕ(w)(z))

(n−i) +
(1− |ϕ(w)|2)(σϕ(w)(z) + λn/ϕ(w))

(λn + 1)(1− ϕ(w)z)α+n+1
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=
n−1∑
i=0

1− |ϕ(w)|2

(1− ϕ(w)z)α+i+1

(α+ 1) · · · (α+ i)

(λn + 1)τ(α+ n)ϕ(w)
n−i (σϕ(w)(z))

(n−i)

+
1− |ϕ(w)|2

(λn + 1)(1− ϕ(w)z)α+n+1
(σϕ(w)(z) + λn/ϕ(w))

=
n−1∑
i=0

1− |ϕ(w)|2

(1− ϕ(w)z)n+α+2

(n− i)!(|ϕ(w)|2 − 1)τ(α+ i)

(λn + 1)τ(α+ n)ϕ(w)

+
1− |ϕ(w)|2

(λn + 1)(1− ϕ(w)z)α+n+1

|ϕ(w)|2 − ϕ(w)z + λn(1− ϕ(w)z)

(1− ϕ(w)z)ϕ(w)

=
(1− |ϕ(w)|2)

[
λn(|ϕ(w)|2 − 1) + |ϕ(w)|2 − ϕ(w)z + λn(1− ϕ(w)z)

]
ϕ(w)(λn + 1)(1− ϕ(w)z)α+n+2

=
(1− |ϕ(w)|2)(|ϕ(w)|2 − ϕ(w)z)

ϕ(w)(1− ϕ(w)z)α+n+2
=

(1− |ϕ(w)|2)
(1− ϕ(w)z)α+n+1

σϕ(w)(z),

and then

l(n)w (ϕ(w)) =
1

(1− |ϕ(w)|2)α+n
, l(n)w (ψ(w)) =

1− |ϕ(w)|2

(1− ϕ(w)ψ(w))α+n+1
,

f (n)w (ϕ(w)) = 0, f (n)w (ψ(w)) =
(1− |ϕ(w)|2)σϕ(w)(ψ(w))

(1− ϕ(w)ψ(w))α+n+1
.

Since the operator Dn
ϕ,u−Dn

ψ,v : A−α → A−β is bounded, by Lemma 2.2 we
have

∞ > ‖(Dn
ϕ,u −Dn

ψ,v)lw‖A−β(3.4)

= sup
z∈D

(1− |z|2)β|l(n)w (ϕ(z))u(z)− l(n)w (ψ(z))v(z)|

≥ (1− |w|2)β|l(n)w (ϕ(w))u(w)− l(n)w (ψ(w))v(w)|

=

∣∣∣∣Mϕ
u (w)−Mψ

v (w)
(1− |ψ(w)|2)α+n(1− |ϕ(w)|2)

(1− ϕ(w)ψ(w))α+n+1

∣∣∣∣
and

∞ > ‖(Dn
ϕ,u −Dn

ψ,v)fw‖A−β(3.5)

= sup
z∈D

(1− |z|2)β|f (n)w (ϕ(z))u(z)− f (n)w (ψ(z))v(z)|

≥ (1− |w|2)β|f (n)w (ϕ(w))u(w)− f (n)w (ψ(w))v(w)|

= (1− |w|2)β |v(w)|(1− |ϕ(w)|2)ρ(ϕ(w), ψ(w))

|1− ϕ(w)ψ(w)|α+n+1

=

∣∣∣∣Mψ
v (w)

(1− |ψ(w)|2)α+n(1− |ϕ(w)|2)ρ(ϕ(w), ψ(w))

(1− ϕ(w)ψ(w))α+n+1

∣∣∣∣.
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Since the pseudo-hyperbolic metric is bounded by one, multiplying (3.4) by
ρ(ϕ(w), ψ(w)) and applying (3.5), we obtain

sup
w∈D, |ϕ(w)|≥r

Mϕ
u (w)ρ(ϕ(w), ψ(w)) <∞.(3.6)

If |ϕ(w)| < r, using the test function

kw(z) =
(z − ψ(w))n+1

(n+ 1)!
,

we see that

∞ > ‖(Dn
ϕ,u −Dn

ψ,v)kw‖A−β
≥ (1− |w|2)β|k(n)w (ϕ(w))u(w)− k(n)w (ψ(w))v(w)|
= (1− |w|2)β

∣∣u(w)(ϕ(w)− ψ(w))
∣∣,

therefore,

(1− |w|2)β
∣∣u(w)(ϕ(w)− ψ(w))

∣∣
(1− |ϕ(w)|2)α+n

∣∣1− ϕ(w)ψ(w)
∣∣ ≤ C‖(Dn

ϕ,u −Dn
ψ,v)kw‖A−β .(3.7)

From (3.6) and (3.7), we get (3.1).
Using another triple of test functions which come from lw(z), fw(z) and

kw(z) by exchanging ϕ and ψ, we get (3.2).
Next, we prove (3.3). For |ϕ(w)| ≥ r, by (3.4), we also have

∞ > ‖(Dn
ϕ,u −Dn

ψ,v)lw‖A−β(3.8)

≥
∣∣∣∣Mϕ

u (w)−Mψ
v (w)

(1− |ψ(w)|2)α+n(1− |ϕ(w)|2)
(1− ϕ(w)ψ(w))α+n+1

∣∣∣∣
=

∣∣∣∣Mϕ
u (w)−Mψ

v (w)

+Mψ
v (w)

(
1− (1− |ψ(w)|2)α+n(1− |ϕ(w)|2)

(1− ϕ(w)ψ(w))α+n+1

)∣∣∣∣
≥ |Mϕ

u (w)−Mψ
v (w)| − |Mψ

v (w)|
× |l(n)w (ϕ(w))(1− |ϕ(w)|2)α+n − l(n)w (ψ(w))(1− |ψ(w)|2)α+n|.

From Lemma 2.2 and (3.2), we see that

|Mψ
v (w)| · |l(n)w (ϕ(w))(1− |ϕ(w)|2)α+n − l(n)w (ψ(w))(1− |ψ(w)|2)α+n|

≤ C‖lw‖A−α |Mψ
v (w)|ρ(ϕ(w), ψ(w)) <∞,

which by (3.8) implies that |Mϕ
u (w) − Mψ

v (w)| < ∞ for all w ∈ D with
|ϕ(w)| ≥ r.

If |ϕ(w)| < r and |ψ(w)| ≥ 1+r
2 , then ρ(ϕ(w), ψ(w)) ≥ 1−r

2(1+r) . From (3.1)

and (3.2), we can deduce directly that |Mϕ
u (w)−Mψ

v (w)| <∞ in this case.
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For |ϕ(w)| < r and |ψ(w)| < 1+r
2 , using the test function h(z) = zn/n!,

we see that

∞ > ‖(Dn
ϕ,u −Dn

ψ,v)h‖A−β(3.9)

≥ (1− |w|2)β|h(n)(ϕ(w))u(w)− h(n)(ψ(w))v(w)|
= (1− |w|2)β|u(w)− v(w)|
=
∣∣(Mϕ

u (w)−Mψ
v (w))(1− |ϕ(w)|2)α+n

+Mψ
v (w)[(1− |ϕ(w)|2)α+n − (1− |ψ(w)|2)α+n]

∣∣
≥ |Mϕ

u (w)−Mψ
v (w)|(1− |ϕ(w)|2)α+n

− |Mψ
v (w)[(1− |ϕ(w)|2)α+n − (1− |ψ(w)|2)α+n]|.

In view of the boundedness of the derivative of the real function g(x) =
(1− x2)α+n in [0, 1], we have

|(1− |ϕ(w)|2)α+n − (1− |ψ(w)|2)α+n|
≤ C||ϕ(w)| − |ψ(w)|| ≤ Cρ(ϕ(w), ψ(w)),

and hence

|Mψ
v (w)[(1− |ϕ(w)|2)α+n − (1− |ψ(w)|2)α+n]| ≤ C|Mψ

v (w)|ρ(ϕ(w), ψ(w)),

from which, together with (3.2) and (3.9), we obtain |Mϕ
g (w)−Mψ

h (w)| <∞
in this case.

Thus we conclude that |Mϕ
u (w) −Mψ

v (w)| < ∞ for all w ∈ D, which
implies (3.3).

(b)⇒(c). Noticing that |Mψ
v (z)| ≤ |Mϕ

u (z)|+ |Mψ
v (z)−Mϕ

u (z)|, we have

|Mψ
v (z)|ρ(ϕ(z), ψ(z))

≤ |Mϕ
u (z)

∣∣ρ(ϕ(z), ψ(z)) + |Mψ
v (z)−Mϕ

u (z)|ρ(ϕ(z), ψ(z)),

which implies (3.2).

(c)⇒(a). For any f ∈ A−α, by Lemmas 2.1 and 2.2, we have

‖(Dn
ϕ,u −Dn

ψ,v)f‖A−β = sup
z∈D

(1− |z|2)β|(Dn
ϕ,u −Dn

ψ,v)f(z)|

= sup
z∈D

(1− |z|2)β|f (n)(ϕ(z))u(z)− f (n)(ψ(z))v(z)|

= sup
z∈D
|Mϕ

u (z)f (n)(ϕ(z))(1−|ϕ(z)|2)α+n−Mψ
v (z)f (n)(ψ(z))(1−|ψ(z)|2)α+n|

≤ sup
z∈D
|Mϕ

u (z)−Mψ
v (z)| |f (n)(ϕ(z))(1− |ϕ(z)|2)α+n|

+ sup
z∈D
|Mψ

v (z)| |f (n)(ϕ(z))(1− |ϕ(z)|2)α+n − f (n)(ψ(z))(1− |ψ(z)|2)α+n|

≤ C‖f‖A−α sup
z∈D
|Mϕ

u (z)−Mψ
v (z)|+ C‖f‖A−α sup

z∈D
|Mψ

v (z)|ρ(ϕ(z), ψ(z)).
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Therefore conditions (3.2)–(3.3) imply that Dn
ϕ,u − Dn

ψ,v : A−α → A−β is
bounded.

From Theorem 3.1 withv(z)=0,we obtain a characterization of bounded-
ness of generalized weighted composition operators between growth spaces.

Corollary 3.2. Let n be a positive integer, α, β > 0, ϕ ∈ S(D) and
u ∈ H(D). Then Dn

ϕ,u : A−α → A−β is bounded if and only if

sup
z∈D
|Mϕ

u (z)| <∞.

Corollary 3.3. Let n be a positive integer, α, β > 0, ϕ,ψ ∈ S(D) and
u ∈ H(D). Then the following statements are equivalent:

(a) Dn
ϕ,u −Dn

ψ,u : A−α → A−β is bounded;

(b) sup
z∈D
|Mϕ

u (z)|ρ(ϕ(z), ψ(z))<∞ and sup
z∈D
|Mψ

u (z)|ρ(ϕ(z), ψ(z))<∞;

(c) sup
z∈D
|Mϕ

u (z)|ρ(ϕ(z), ψ(z)) <∞ and sup
z∈D
|Mϕ

u (z)−Mψ
u (z)| <∞;

(d) sup
z∈D
|Mψ

u (z)|ρ(ϕ(z), ψ(z)) <∞ and sup
z∈D
|Mϕ

u (z)−Mψ
u (z)| <∞.

Proof. From Theorem 3.1 with u = v, we can directly see that the con-
ditions (a), (c) and (d) are equivalent. It is enough to prove (b)⇒(c).

So assume that (b) holds. For some positive number r < 1, it is easy to
see that

sup
ρ(ϕ(z),ψ(z))≥r, z∈D

|Mϕ
u (z)−Mψ

u (z)| <∞.

If ρ(ϕ(z), ψ(z)) < r, since for all z, w ∈ D the pseudo-hyperbolic metric
obeys the inequality [DO, Lemma 3.1]

1− ρ(w, z)

1 + ρ(w, z)
≤ 1− |z|2

1− |w|2
≤ 1 + ρ(w, z)

1− ρ(w, z)
,(3.10)

utilizing the boundedness of the functions

1− (1−x1+x)α+n

x
and

(1+x1−x)α+n − 1

x
in [0, r] (where the values of these functions at zero are defined as the limits
from the right), we have

|Mϕ
u (z)−Mψ

u (z)|

=
(1− |z|2)β|u(z)|
(1− |ϕ(z)|2)α+n

∣∣∣∣1− (1− |ϕ(z)|2

1− |ψ(z)|2

)α+n∣∣∣∣ ≤ (1− |z|2)β|u(z)|
(1− |ϕ(z)|2)α+n

× max

{(
1 + ρ(ϕ(z), ψ(z))

1− ρ(ϕ(z), ψ(z))

)α+n
− 1, 1−

(
1− ρ(ϕ(z), ψ(z))

1 + ρ(ϕ(z), ψ(z))

)α+n}
≤ C (1− |z|2)β|u(z)|

(1− |ϕ(z)|2)α+n
ρ(ϕ(z), ψ(z)) = C|Mϕ

u (z)|ρ(ϕ(z), ψ(z)) <∞.
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Therefore,

sup
z∈D
|Mϕ

u (z)−Mψ
u (z)| <∞.

From Corollaries 3.2 and 3.3, we obtain the following result.

Corollary 3.4. Let n be a positive integer, α, β > 0, ϕ,ψ ∈ S(D).
Then Dn

ϕ − Dn
ψ : A−α → A−β is bounded if and only if both σDn

ϕ = Dn
ϕ,σ

and σDn
ψ = Dn

ψ,σ are bounded.

Example 3.5. The bounedness of Dn
ϕ,u −Dn

ψ,v : A−α → A−β does not

imply that both Dn
ϕ,u : A−α → A−β and Dn

ψ,v : A−α → A−β are bounded.
In fact, let

u(z) = v(z) =
(2s− s2(1− z))α+n

(1− z)β−α−n+1
,

ϕ(z) = 1 + s(z − 1), ψ(z) = ϕ(z) + t(z − 1)b,

where 0 < s < 1, b ≥ 3 + n + α, t is real and |t| is small enough that
ψ ∈ S(D).

Since for every z ∈ D, ϕ(z) lies in the tangent disk {z : |1 − z|2 ≤
s(1− |z|2)/(1− s)} with center at 1− s and radius s, we have

s

1− s
(1− |ϕ(z)|2) ≥ |1− ϕ(z)|2(3.11)

for all z ∈ D. Therefore

|1− ϕ(z)ψ(z)| = |1− |ϕ(z)|2 − tϕ(z)(z − 1)b|
≥ 1− |ϕ(z)|2 − |t| |z − 1|b ≥ s(1− s)|1− z|2 − |t| |z − 1|b

≥ [s(1− s)− 2b−2|t|] |1− z|2 ≥ δ|1− z|2,

where δ is a positive constant for |t| small enough, and then

ρ(ϕ(z), ψ(z)) =

∣∣∣∣ ϕ(z)− ψ(z)

1− ϕ(z)ψ(z)

∣∣∣∣ ≤ C|1− z|b−2.(3.12)

From (3.11) and (3.12), we have

sup
z∈D
|Mϕ

u (z)|ρ(ϕ(z), ψ(z)) = sup
z∈D

(1− |z|2)β|u(z)|
(1− |ϕ(z)|2)α+n

ρ(ϕ(z), ψ(z))(3.13)

≤ C sup
z∈D

(1− |z|2)β|u(z)|
|1− ϕ(z)|2(α+n)

ρ(ϕ(z), ψ(z))
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≤ C sup
z∈D

(1− |z|)β|1− z|b−2 |u(z)|
|1− ϕ(z)|2(α+n)

≤ C sup
z∈D
|1− z|β|1− z|b−2 1

|s(1− z)|2(α+n)

∣∣∣∣(2s− s2(1− z))α+n(1− z)β−α−n+1

∣∣∣∣
≤ C sup

z∈D
|1− z|b−α−n−3 <∞.

Similarly, we have

(3.14) sup
z∈D
|Mψ

v (z)|ρ(ϕ(z), ψ(z)) = sup
z∈D

(1− |z|2)β|v(z)|
(1− |ψ(z)|2)α+n

ρ(ϕ(z), ψ(z))

≤ C sup
z∈D

(1− |z|2)β|v(z)|
|1− ψ(z)|2(α+n)

ρ(ϕ(z), ψ(z))

≤ C sup
z∈D

(1− |z|)β|1− z|b−2 |v(z)|
|1− ψ(z)|2(α+n)

≤ C sup
z∈D

|1− z|β|1− z|b−2

|s(1− z)(1 + (t/s)(z − 1)b−1)|2(α+n)

∣∣∣∣(2s− s2(1− z))α+n(1− z)β−α−n+1

∣∣∣∣
≤ C sup

z∈D
|1− z|b−α−n−3 <∞.

From Corollary 3.3, and by (3.13)–(3.14) we deduce that Dn
ϕ,u − Dn

ψ,v :

A−α → A−β is bounded.

On the other hand,

Mϕ
u (r) =

(1 + r)β

1− r
→∞,

Mψ
v (r) =

(1 + r)β(2s− s2(1− r))α+n

(1− r)[2(s+ t(r − 1)b−1) + (r − 1)(s+ t(r − 1)b−1)2]α+n
→∞

as r → 1−. This implies that, by Corollary 3.2, neither Dn
ϕ,u : A−α → A−β

nor Dn
ψ,v : A−α → A−β is bounded.

4. The compactness of Dn
ϕ,u−Dn

ψ,v. In order to characterize the com-

pactness of Dn
ϕ,u −Dn

ψ,v : A−α → A−β, we will use the following conditions
in this section:

lim
|ϕ(z)|→1

∣∣Mϕ
u (z)

∣∣ρ(ϕ(z), ψ(z)) = 0;(4.1)

lim
|ψ(z)|→1

|Mψ
v (z)|ρ(ϕ(z), ψ(z)) = 0;(4.2)

lim
min{|ϕ(z)|,|ψ(z)|}→1

|Mϕ
u (z)−Mψ

v (z)| = 0.(4.3)
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Theorem 4.1. Let n be a positive integer, α, β > 0, ϕ,ψ ∈ S(D) and
u, v ∈ H(D). Then Dn

ϕ,u − Dn
ψ,v : A−α → A−β is compact if and only if

Dn
ϕ,u −Dn

ψ,v : A−α → A−β is bounded and conditions (4.1)–(4.3) hold.

Proof. First, we prove sufficiency. Assume Dn
ϕ,u − Dn

ψ,v : A−α → A−β
is bounded. Then conditions (3.1)–(3.3) hold. Since (4.1)–(4.3) hold by as-
sumption, for each ε > 0 there exists 0 < r < 1 such that

|Mϕ
u (z)|ρ(ϕ(z), ψ(z)) < ε when |ϕ(z)| > r;(4.4)

|Mψ
v (z)|ρ(ϕ(z), ψ(z)) < ε when |ψ(z)| > r;(4.5)

|Mϕ
u (z)−Mψ

v (z)| < ε when |ϕ(z)|, |ψ(z)| > r.(4.6)

Let (fk)k∈N be a sequence in A−α such that ‖fk‖A−α ≤ 1 and which con-
verges to zero uniformly on compact subsets of D. In order to prove that
Dn
ϕ,u−Dn

ψ,v is compact, by recalling Lemma 2.4, we only need to show that
‖(Dn

ϕ,u −Dn
ψ,v)fk‖A−β → 0 as k →∞.

It is easy to see that

(4.7) ‖(Dn
ϕ,u −Dn

ψ,v)fk‖A−β = sup
z∈D

(1− |z|2)β|(Dn
ϕ,u −Dn

ψ,v)fk(z)|

= sup
z∈D

(1− |z|2)β|f (n)k (ϕ(z))u(z)− f (n)k (ψ(z))v(z)|

= sup
z∈D
|Mϕ

u (z)f
(n)
k (ϕ(z))(1−|ϕ(z)|2)α+n−Mψ

v (z)f
(n)
k (ψ(z))(1−|ψ(z)|2)α+n|.

We set

Mϕ
u (z)f

(n)
k (ϕ(z))(1− |ϕ(z)|2)α+n −Mψ

v (z)f
(n)
k (ψ(z))(1− |ψ(z)|2)α+n

= Ak(z) +Bk(z),

where

Ak(z) = (Mϕ
u (z)−Mψ

v (z))f
(n)
k (ϕ(z))(1− |ϕ(z)|2)α+n,

Bk(z) = Mψ
v (z)[f

(n)
k (ϕ(z))(1− |ϕ(z)|2)α+n − f (n)k (ψ(z))(1− |ψ(z)|2)α+n].

(i) If |ϕ(z)| ≤ r and |ψ(z)| ≤ r, by (3.3), we have |Ak(z)| < C|f (n)k (ϕ(z))|.
From Remark 2.3 and (3.2), we get

|Bk(z)| ≤ C|Mψ
v (z)|ρ(ϕ(z), ψ(z))A−αr (fk) ≤ CA−αr (fk).

(ii) If |ϕ(z)| ≤ r and |ψ(z)| > r, with the same argument as in case (i),

we obtain |Ak(z)| < C|f (n)k (ϕ(z))|. Applying Lemma 2.2 and (4.5) leads to

|Bk(z)| ≤ C‖fk‖A−α |Mψ
v (z)|ρ(ϕ(z), ψ(z)) ≤ Cε.

(iii) If |ϕ(z)| > r and |ψ(z)| > r, by Lemma 2.2 and (4.6), we have

|Ak(z)| < C|Mϕ
u (z)−Mψ

v (z)| ‖fk‖A−α < Cε.
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With the same argument as in case (ii), we get

|Bk(z)| ≤ C‖fk‖A−α |Mψ
v (z)|ρ(ϕ(z), ψ(z)) ≤ Cε.

(iv) If |ϕ(z)| > r and |ψ(z)| ≤ r, we reset

Mϕ
u (z)f

(n)
k (ϕ(z))(1− |ϕ(z)|2)α+n −Mψ

v (z)f
(n)
k (ψ(z))(1− |ψ(z)|2)α+n

= Ek(z) + Fk(z),

where

Ek(z) = −(Mψ
v (z)−Mϕ

u (z))f
(n)
k (ψ(z))(1− |ψ(z)|2)α+n,

Fk(z) = −Mϕ
u (z)

[
f
(n)
k (ψ(z))(1− |ψ(z)|2)α+n − f (n)k (ϕ(z))(1− |ϕ(z)|2)α+n

]
.

Using (3.3) again, we have |Ek(z)| < C|f (n)k (ψ(z))|. Applying Lemma 2.2
and (4.4), we obtain

|Fk(z)| ≤ C‖fk‖A−α |Mϕ
u (z)|ρ(ϕ(z), ψ(z)) ≤ Cε.

Therefore, from (4.7), we see that

(4.8) ‖(Dn
ϕ,u −Dn

ψ,v)fk‖A−β

≤ CA−αr (fk) + C sup
|ϕ(z)|≤r

|f (n)k (ϕ(z))|+ Cε+ C sup
|ψ(z)|≤r

|f (n)k (ψ(z))|.

Since {z ∈ D : |z| ≤ r} is compact, and since

A−αr (fk) = max
{

sup
z∈Dr

(1− |z|2)α+n|f (n)k (z)|, sup
z∈Dr

(1− |z|2)α+n+1|f (n+1)
k (z)|

}
< max

{
sup
z∈Dr
|f (n)k (z)|, sup

z∈Dr
|f (n+1)
k (z)|

}
,

inequality (4.8) implies that ‖(Dn
ϕ,u − Dn

ψ,v)fk‖A−β → 0. Consequently,
Dn
ϕ,u −Dn

ψ,v is compact by Lemma 2.4.

Next we assume that Dn
ϕ,u−Dn

ψ,v : A−α → A−β is compact. In that case

Dn
ϕ,u − Dn

ψ,v : A−α → A−β is bounded. Let {zk} be a sequence of points
in D such that |ϕ(zk)| → 1 as k →∞. Define

lk(z) =
1

τ(α+ n)ϕ(zk)
n

1− |ϕ(zk)|2

(1− ϕ(zk)z)α+1
,

fk(z) =
lw(z)

λn + 1
(σϕ(zk)(z) + λn/ϕ(zk)),

where λn and τ(α + n) are defined as in the proof of Theorem 3.1. From
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(3.4) and (3.5), we see that

(4.9) ‖(Dn
ϕ,u −Dn

ψ,v)lk‖A−β

≥
∣∣∣∣Mϕ

u (zk)ρ(ϕ(zk), ψ(zk))−
Mψ
v (zk)ρ(ϕ(zk), ψ(zk))(1− |ψ(zk)|2)α+n

(1− ϕ(zk)ψ(zk))α+n+1(1− |ϕ(zk)|2)−1

∣∣∣∣,
(4.10) ‖(Dn

ϕ,u−Dn
ψ,v)fk‖A−β ≥

∣∣∣∣Mψ
v (zk)ρ(ϕ(zk), ψ(zk))(1−|ψ(zk)|2)α+n

(1− ϕ(zk)ψ(zk))α+n+1(1− |ϕ(zk)|2)−1

∣∣∣∣.
Since Dn

ϕ,u−Dn
ψ,v is compact, by Lemma 2.4, ‖(Dn

ϕ,u−Dn
ψ,v)lk‖A−β → 0 and

‖(Dn
ϕ,u −Dn

ψ,v)fk‖A−β → 0 as k → ∞. From (4.9) and (4.10), we conclude
that (4.1) holds. Changing the test functions lk(z) and fk(z) by exchanging
ϕ and ψ, we can prove (4.2).

From (3.6), we have

‖(Dn
ϕ,u −Dn

ψ,v)lk‖A−β ≥ |Mϕ
u (zk)−Mψ

v (zk)|

−
∣∣Mψ

v (zk)
[
l
(n)
k (ϕ(zk))(1− |ϕ(zk)|2)α+n − l

(n)
k (ψ(zk))(1− |ψ(zk)|2)α+n

]∣∣.
Since ‖(Dn

ϕ,u −Dn
ψ,v)lk‖A−β → 0 as |ϕ(zk)| → 1, and since∣∣Mψ

v (zk)
[
l
(n)
k (ϕ(zk))(1− |ϕ(zk)|2)α − l

(n)
k (ψ(zk))(1− |ψ(zk)|2)α

]∣∣
≤ C‖lk‖A−α |Mψ

v (zk)|ρ(ϕ(zk), ψ(zk))→ 0

as |ψ(zk)| → 1 from Lemma 2.2 and (4.2), we get |Mϕ
u (zk) −Mψ

v (zk)
∣∣ → 0

as |ϕ(zk)| → 1 and |ψ(zk)| → 1. This implies (4.3).

From Theorem 4.1 with v(z) = 0, we obtain a characterization of com-
pactness of generalized weighted composition operators between growth
spaces.

Corollary 4.2. Let ϕ ∈ S(D), α, β > 0, u ∈ H(D). Then Dn
ϕ,u :

A−α → A−β is compact if and only if Dn
ϕ,u : A−α → A−β is bounded and

lim
|ϕ(z)|→1

|Mψ
u (z)| = 0.

Corollary 4.3. Let n be a positive integer, α, β > 0, ϕ,ψ ∈ S(D),
u ∈ H(D). Then Dn

ϕ,u − Dn
ψ,u : A−α → A−β is compact if and only if

Dn
ϕ,u −Dn

ψ,u : A−α → A−β is bounded and the following conditions hold:

lim
|ϕ(z)|→1

|Mϕ
u (z)|ρ(ϕ(z), ψ(z)) = 0, lim

|ψ(z)|→1
|Mψ

u (z)|ρ(ϕ(z), ψ(z)) = 0.

Proof. From Theorem 4.1 with u = v, necessity is obvious.

For the converse, from Theorem 4.1, in order to prove that Dn
ϕ,u−Dn

ψ,u :

A−α → A−β is compact, it is enough to show that

lim
min{|ϕ(z)|,|ψ(z)|}→1

|Mϕ
u (z)−Mψ

u (z)| = 0.(4.11)
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Suppose (4.11) does not hold; then there exist ε0 > 0 and a sequence of
points {zk} in D such that |ϕ(zk)| → 1 and |ψ(zk)| → 1 as k →∞ and

|Mϕ
u (zk)−Mψ

u (zk)| ≥ ε0.(4.12)

We claim that ρ(ϕ(zk), ψ(zk))→ 0 as k →∞.

In fact, if this is not the case, then there exists a subsequence {znk} of
{zk} such that ρ(ϕ(znk), ψ(znk))→ s > 0. On the other hand,

lim
k→∞

|Mϕ
u (znk)|ρ(ϕ(znk), ψ(znk)) = 0,

lim
k→∞

|Mψ
u (znk)|ρ(ϕ(znk), ψ(znk)) = 0.

Therefore

lim
k→∞

|Mϕ
u (znk)| = 0, lim

k→∞
|Mψ

u (znk)| = 0,

which contradicts (4.12).

Therefore we may assume that ρ(ϕ(zk), ψ(zk)) < r < 1 for all n. Using
similar arguments to those in the proof of Corollary 3.3, we have

|Mϕ
u (zk)−Mψ

u (zk)| ≤ C|Mϕ
u (zk)|ρ(ϕ(zk), ψ(zk))→ 0,

which contradicts (4.12) again. So we conclude that (4.11) holds.

From Corollaries 3.4, 4.2 and 4.3, we obtain the following result.

Corollary 4.4. Let n be a positive integer, α, β > 0, ϕ,ψ ∈ S(D).
Then Dn

ϕ − Dn
ψ : A−α → A−β is compact if and only if both σDn

ϕ = Dn
ϕ,σ

and σDn
ψ = Dn

ψ,σ are compact.

Example 4.5. The compactness of Dn
ϕ,u−Dn

ψ,v : A−α → A−β does not

imply that both Dn
ϕ,u : A−α → A−β and Dn

ψ,v : A−α → A−β are compact.
In fact, define ϕ(z) and ψ(z) as in Example 3.5, and

u(z) = v(z) =
(2s− s2(1− z))α+n

(1− z)β−α−n
.

Then

Mϕ
u (r) = (1 + r)β → 2β,

Mψ
v (r) =

(1 + r)β(2s− s2(1− r))α+n

[2(s+ t(r − 1)b−1) + (r − 1)(s+ t(r − 1)b−1)2]α+n
→ 2β

as r → 1−, i.e. ϕ(r) → 1. In view of ρ < 1, from this, we conclude by
Corollary 3.3 that Dn

ϕ,u −Dn
ψ,v : A−α → A−β is bounded, and that neither

Dn
ϕ,u : A−α → A−β nor Dn

ψ,v : A−α → A−β is compact by Corollary 4.2.

On the other hand, since ρ(ϕ(z), ψ(z))→ 0 as z → 1, we have

|Mϕ
u (z)|ρ(ϕ(z), ψ(z)), |Mψ

v (z)|ρ(ϕ(z), ψ(z)) ≤ Cρ(ϕ(z), ψ(z))→ 0
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as |ϕ(z)|, |ψ(z)| → 1, which implies that Dn
ϕ,u − Dn

ψ,v : A−α → A−β is
compact from Corollary 4.3.
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[S2] S. Stević, Weighted differentiation composition operators from the mixed-norm
space to the nth weighted-type space on the unit disk, Abstr. Appl. Anal. 2010,
art. ID 246287, 7 pp.
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