Correspondence between diffeomorphism groups and singular foliations

by Tomasz Rybicki (Kraków)

Abstract. It is well-known that any isotopically connected diffeomorphism group G of a manifold determines a unique singular foliation \mathcal{F}_G. A one-to-one correspondence between the class of singular foliations and a subclass of diffeomorphism groups is established. As an illustration of this correspondence it is shown that the commutator subgroup $[G, G]$ of an isotopically connected, factorizable and non-fixing C^r diffeomorphism group G is simple iff the foliation $\mathcal{F}_{[G, G]}$ defined by $[G, G]$ admits no proper minimal sets. In particular, the compactly supported e-component of the leaf preserving C^∞ diffeomorphism group of a regular foliation \mathcal{F} is simple iff \mathcal{F} has no proper minimal sets.

1. Introduction. Throughout by a foliation we mean a singular foliation (Sussmann [17], Stefan [15]), and by a regular foliation we mean a foliation whose leaves have the same dimension. Introducing the notion of foliations, Sussmann and Stefan emphasized that they play a role of collections of “accessible” sets. Alternatively, they regarded foliations as integrable smooth distributions. Another point of view is to treat foliations as by-products of non-transitive geometric structures (cf. [2], [20] and examples in [10]). In Molino’s approach some types of singular foliations constitute collections of closures of leaves of certain regular foliations ([7], [21]). In this note we regard foliations as a special type of diffeomorphism groups.

Given a C^∞ smooth paracompact boundaryless manifold M, $\text{Diff}^r(M)_0$ (resp. $\text{Diff}^r_c(M)_0$), where $1 \leq r \leq \infty$, is the subgroup of the group of all C^r diffeomorphisms $\text{Diff}^r(M)$ on M consisting of diffeomorphisms that can be joined to the identity through a C^r isotopy (resp. compactly supported C^r isotopy) on M. A diffeomorphism group $G \leq \text{Diff}^r(M)$ is called isotopically connected if any element f of G can be joined to id$_M$ through a C^r isotopy in G. That is, there is a mapping $\mathbb{R} \times M \ni (t, x) \mapsto f_t(x) \in M$ of class C^r
with \(f_t \in G \) for all \(t \) and such that \(f_0 = \text{id} \) and \(f_1 = f \). It is well-known that any isotopically connected group \(G \leq \text{Diff}^r(M) \) defines a unique foliation of class \(C^r \), designated by \(F_G \) (see Sect. 2).

Our first aim is to establish a correspondence between the class \(F^r(M) \) of all \(C^r \) foliations on \(M \) and a subclass of diffeomorphism groups on \(M \), and, by using it, to interpret some results and some open problems concerning non-transitive diffeomorphism groups. The second aim is to prove new results (Theorems 1.1 and 1.2) illustrating this correspondence.

A group \(G \leq \text{Diff}^r(M) \) is called factorizable if for every open cover \(U \) and every \(g \in G \) there are \(g_1, \ldots, g_r \in G \) with \(g = g_1 \ldots g_r \) and such that \(g_i \in G_{U_i}, \ i = 1, \ldots, r \), for some \(U_1, \ldots, U_r \in U \). Here for \(U \subset M \) and \(G \leq \text{Diff}^r(M) \), \(G_U \) stands for the identity component of the group of all diffeomorphisms from \(G \) compactly supported in \(U \). Next, \(G \) is said to be non-fixing if \(G(x) \neq \{x\} \) for every \(x \in X \).

Theorem 1.1. Assume that \(G \leq \text{Diff}^r_c(M)_0 \), \(1 \leq r \leq \infty \), is an isotopically connected, non-fixing and factorizable group of diffeomorphisms of a smooth manifold \(M \). Then the commutator group \([G,G] \) is simple if and only if the corresponding foliation \(F_{[G,G]} \) admits no proper (i.e. not equal to \(M \)) minimal set.

In early 1970's Thurston and Mather proved that the group \(\text{Diff}^r_c(M)_0 \), where \(1 \leq r \leq \infty \), \(r \neq \dim(M) + 1 \), is perfect and simple (see [18], [6], [1]). Next, similar results were proved for classical diffeomorphism groups of class \(C^\infty \) ([1], [13]). For the significance of these simplicity theorems, see, e.g., [1], [13] and references therein.

Let \((M_i, F_i), \ i = 1, 2\), be foliated manifolds. A map \(f : M_1 \to M_2 \) is called foliation preserving if \(f(L_x) = L_{f(x)} \) for any \(x \in M_1 \), where \(L_x \) is the leaf meeting \(x \). Next, if \((M_1, F_1) = (M_2, F_2)\) then \(f \) is leaf preserving if \(f(L_x) = L_x \) for all \(x \in M_1 \). Throughout, \(\text{Diff}^r(M,F) \) will stand for the group of all leaf preserving \(C^r \) diffeomorphisms of a foliated manifold \((M,F)\). Define \(\text{Diff}^r(M,F)_0 \) and \(\text{Diff}^r_c(M,F)_0 \) analogously. Observe that a perfectness theorem for the compactly supported identity component \(\text{Diff}^\infty_c(M,F)_0 \), which is a non-transitive counterpart of Thurston's theorem, has been proved by the author [9] and by Tsuboi [19]. Next, the author [10], following Mather [6, II], showed that \(\text{Diff}^r_c(M,F)_0 \) is perfect provided \(1 \leq r \leq \dim F \). Observe that, in general, the group \(\text{Diff}^r_c(M,F)_0 \) is not simple for obvious reasons.

Theorem 1.2. Let \((M,F)\) be a foliation on a \(C^\infty \) smooth manifold \(M \) with no leaves of dimension 0. Then the commutator subgroup

\[\mathcal{D} = [\text{Diff}^r_c(M,F)_0, \text{Diff}^r_c(M,F)_0] \]

is simple if and only if \(F_\mathcal{D} \) does not have any proper minimal set. In par-
ticular, if \(F \) is regular, and \(1 \leq r \leq \dim F \) or \(r = \infty \), then \(\text{Diff}^r_c(M, F)_0 \) is simple if and only if \(F \) has no proper minimal sets.

In the proof of Theorem 1.1 in Sect. 3 some ideas from Ling \[5\] are in use.

2. Foliations correspond to a subclass of the class of diffeomorphism groups. Let \(1 \leq r \leq \infty \) and let \(L \) be a subset of a \(C^r \) manifold \(M \) endowed with a \(C^r \) differentiable structure which makes it an immersed submanifold. Then \(L \) is weakly imbedded if for any locally connected topological space \(N \) and a continuous map \(f : N \to M \) satisfying \(f(N) \subset L \), the map \(f : N \to L \) is continuous as well. It follows that in this case such a differentiable structure is unique. A foliation of class \(C^r \) is a partition \(F \) of \(M \) into weakly imbedded submanifolds, called leaves, such that the following condition holds. If \(x \) belongs to a \(k \)-dimensional leaf, then there is a local chart \((U, \varphi) \) of class \(C^r \) with \(\varphi(x) = 0 \), and \(\varphi(U) = V \times W \), where \(V \) is open in \(\mathbb{R}^k \), and \(W \) is open in \(\mathbb{R}^{n-k} \), such that if \(L \in F \) then \(\varphi(L \cap U) = V \times l \), where \(l = \{w \in W : \varphi^{-1}(0, w) \in L\} \). A foliation is called regular if all leaves have the same dimension.

Sussmann \[17\] and Stefan \[15\], \[16\] regarded foliations as collections of accessible sets in the following sense.

Definition 2.1. A smooth mapping \(\varphi \) of an open subset of \(\mathbb{R} \times M \) into \(M \) is said to be a \(C^r \) arrow, \(1 \leq r \leq \infty \), if

1. \(\varphi(t, \cdot) = \varphi_t \) is a local \(C^r \) diffeomorphism for each \(t \), possibly with empty domain,
2. \(\varphi_0 = \text{id} \) on its domain,
3. \(\text{dom}(\varphi_t) \subset \text{dom}(\varphi_s) \) whenever \(0 \leq s < t \).

Given an arbitrary set \(A \) of arrows, let \(A^* \) be the family of local diffeomorphisms \(\psi \) such that \(\psi = \varphi(t, \cdot) \) for some \(\varphi \in A \), \(t \in \mathbb{R} \). Next, \(\hat{A} \) denotes the set consisting of all local diffeomorphisms which are finite compositions of elements from \(A^* \) or \((A^*)^{-1} = \{\psi^{-1} : \psi \in A^*\} \), and of the identity. Then the orbits of \(\hat{A} \) are called accessible sets of \(A \).

For \(x \in M \) let \(A(x), \hat{A}(x) \) be the vector subspaces of \(T_x M \) generated by

\[\{\dot{\varphi}(t, y) : \varphi \in A, \varphi_t(y) = x\}, \quad \{d_y \psi(v) : \psi \in \hat{A}, \psi(y) = x, v \in A(y)\}, \]

respectively. Then we have \([15]\)

Theorem 2.2. Let \(A \) be an arbitrary set of \(C^r \) arrows on \(M \). Then

1. every accessible set of \(A \) admits a (unique) \(C^r \) differentiable structure of a connected weakly imbedded submanifold of \(M \);
2. the collection of accessible sets defines a foliation \(F \); and
3. \(\mathcal{D}(F) := \{\hat{A}(x)\} \) is the tangent distribution of \(F \).
Let \(G \leq \text{Diff}^r(M) \) be an isotopically connected group of diffeomorphisms. Let \(\mathcal{A}_G \) be the set of restrictions of isotopies \(\mathbb{R} \times M \ni (t, x) \mapsto f_t(x) \in M \) in \(G \) to open subsets of \(\mathbb{R} \times M \). Then we denote by \(\mathcal{F}_G \) the foliation defined by the set \(\mathcal{A}_G \) of arrows. Observe that \(\mathcal{A}_G = \mathcal{A}_G \), and consequently \(\mathcal{A}_G(x) = \mathcal{A}_G(x) \).

Remark 2.3. (1) Of course, any subgroup \(G \leq \text{Diff}^r(M) \) determines a unique foliation. Namely, \(G \) has a unique maximal subgroup \(G_0 \) which is isotopically connected.

(2) Denote by \(G_c \) the subgroup of all compactly supported elements of \(G \). Then \(G_c \) need not be isotopically connected even if \(G \) is. In fact, let \(G = \text{Diff}^r(\mathbb{R}^n)_0, 1 \leq r \leq \infty \). Then every \(f \in G_c \) is isotopic to the identity but the isotopy need not be in \(G_c \). That is, \(G_c \) is not isotopically connected.

Observe that the \(C^0 \) case is exceptional: due to Alexander’s trick for \(r = 0 \) (see, e.g., [3, p. 70]), \(G_c \) is isotopically connected.

Likewise, let \(C = \mathbb{R} \times \mathbb{S}^1 \) be the annulus and let \(G = \text{Diff}^r(C)_0 \). Then we have the twisting number epimorphism \(T : G_c \to \mathbb{Z} \). It is easily seen that \(f \in G_c \) can be joined to \(\text{id} \) by a compactly supported isotopy iff \(T(f) = 0 \). Consequently, \(G_c \) is not isotopically connected.

Denote by \(\mathfrak{G}^r(M) \) (resp. \(\mathfrak{G}^r_c(M) \)), \(1 \leq r \leq \infty \), the collection of isotopically connected (resp. isotopically connected through compactly supported isotopies) groups of \(C^r \) diffeomorphisms of \(M \). Next, \(\mathfrak{F}^r(M) \) will stand for the set of all foliations of class \(C^r \) on \(M \). Then each \(G \in \mathfrak{G}^r(M) \) determines a unique foliation from \(\mathfrak{F}^r(M) \), denoted by \(\mathcal{F}_G \). That is, we have the mapping \(\beta_M : \mathfrak{G}^r(M) \ni G \mapsto \mathcal{F}_G \in \mathfrak{F}^r(M) \). Conversely, to any foliation \(\mathcal{F} \in \mathfrak{F}^r(M) \) we assign \(G_{\mathcal{F}} := \text{Diff}^r_c(M, \mathcal{F})_0 \) and we get the mapping \(\alpha_M : \mathfrak{F}^r(M) \ni \mathcal{F} \mapsto G_{\mathcal{F}} \in \mathfrak{G}^r_c(M) \). The following is obvious.

Proposition 2.4. One has \(\beta_M \circ \alpha_M = \text{id}_{\mathfrak{F}^r(M)} \). In particular

\[
\alpha_M : \mathfrak{F}^r(M) \ni \mathcal{F} \mapsto G_{\mathcal{F}} \in \mathfrak{G}^r_c(M)
\]

is an injection identifying the class of \(C^r \) foliations with a subclass of \(C^r \) diffeomorphism groups.

Observe that usually \((\alpha_M \circ \beta_M)(G) \in \mathfrak{G}^r_c(M) \) is not a subgroup of \(G \) even if \(G \in \mathfrak{G}^r_c(M) \). For instance, take the group of Hamiltonian diffeomorphisms of a Poisson manifold (see [20]). See also examples in [11].

Remark 2.5. Note that we can also define \(\alpha'_M : \mathfrak{F}^r(M) \ni \mathcal{F} \mapsto G'_{\mathcal{F}} \in \mathfrak{G}^r(M) \), where \(G'_{\mathcal{F}} := \text{Diff}^r(M, \mathcal{F})_0 \in \mathfrak{G}^r(M) \), and we get another identification of the class of \(C^r \) foliations with a subclass of \(C^r \) diffeomorphism groups. However we prefer \(\alpha_M \) to \(\alpha'_M \) because of Proposition 2.11 below.

For \(\mathcal{F}_1, \mathcal{F}_2 \in \mathfrak{F}^r(M) \) we say that \(\mathcal{F}_1 \) is a subfoliation of \(\mathcal{F}_2 \) if each leaf of \(\mathcal{F}_1 \) is contained in a leaf of \(\mathcal{F}_2 \). We then write \(\mathcal{F}_1 \prec \mathcal{F}_2 \). By a flag structure
we mean a finite sequence \(\mathcal{F}_1 \prec \cdots \prec \mathcal{F}_k \) of foliations of \(M \). Next, by the intersection of \(\mathcal{F}_1, \mathcal{F}_2 \) we mean the partition \(\mathcal{F}_1 \cap \mathcal{F}_2 := \{ L_1 \cap L_2 : L_i \in \mathcal{F}_i, i = 1, 2 \} \) of \(M \). Clearly, if \(\mathcal{F}_1 \cap \mathcal{F}_2 \) is a foliation then \(\mathcal{F}_1 \cap \mathcal{F}_2 \prec \mathcal{F}_i, i = 1, 2 \).

It is a rare phenomenon that \(\mathcal{F}_1 \cap \mathcal{F}_2 \) is a regular foliation if \(\mathcal{F}_1, \mathcal{F}_2 \) are regular. In the category of (singular) foliations this may happen more often.

PROPOSITION 2.6.

1. If the distribution \(\mathcal{D}(\mathcal{F}_1 \cap \mathcal{F}_2) \) is of class \(C^r \) \([15]\) then \(\mathcal{F}_1 \cap \mathcal{F}_2 \) is a foliation.
2. If \(G_1, G_2 \in \mathfrak{S}^r(M) \) have the intersection \(G = G_1 \cap G_2 \) isotopically connected then \(\mathcal{F}_G = \mathcal{F}_{G_1} \cap \mathcal{F}_{G_2} \).
3. For \(\mathcal{F}_1, \mathcal{F}_2 \in \mathfrak{S}^r(M) \), if \(\mathcal{F}_1 \cap \mathcal{F}_2 \) is a foliation then there is \(G \in \mathfrak{S}^r(M) \) such that \(G \leq \mathcal{F}_{G_1} \cap \mathcal{F}_{G_2} \) and \(\mathcal{F}_G = \mathcal{F}_1 \cap \mathcal{F}_2 \).
4. For \(\mathcal{F}_1, \mathcal{F}_2 \in \mathfrak{S}^r(M) \), if \(\mathcal{F}_1 \cap \mathcal{F}_2 \) is connected then \(\mathcal{F}_1 \cap \mathcal{F}_2 \) is a foliation.

Proof. (1) In fact, the distribution of \(\mathcal{F}_1 \cap \mathcal{F}_2 \) is then integrable.

(2) Denote by \(\mathcal{I}G \) the set of all isotopies in \(G \). Clearly, \(\mathcal{I}(G_1 \cap G_2) = \mathcal{I}G_1 \cap \mathcal{I}G_2 \) for arbitrary \(G_1, G_2 \in \mathfrak{S}^r(M) \). For \(x \in M \), set \(\mathcal{I}G(x) := \{ y \in M : (\exists f \in \mathcal{I}G)(\exists t \in I) y = f_t(x) \} \). By definition, \(L_x = \mathcal{I}G(x) \), where \(L_x \in \mathcal{F}_G \) is a leaf meeting \(x \). Therefore, since \(G_1, G_2, G \) are isotopically connected we have \(L_x = \mathcal{I}G(x) = \mathcal{I}G_1(x) \cap \mathcal{I}G_2(x) = L_{x_1}^1 \cap L_{x_2}^2 \), where \(L_{x_i}^i \in \mathcal{F}_{G_i}, i = 1, 2 \).

(3) Set \(\mathcal{F} = \mathcal{F}_1 \cap \mathcal{F}_2 \) and \(G = G_\mathcal{F} \). Use Prop. 2.4.

(4) In view of Prop. 2.4 we have \(\mathcal{F}_{G_\mathcal{F}_0} = \mathcal{F}_0 \) for all \(\mathcal{F}_0 \in \mathfrak{S}^r(M) \). Put \(G = G_{\mathcal{F}_1} \cap G_{\mathcal{F}_2} \). Therefore, in view of (2), \(\mathcal{F}_1 \cap \mathcal{F}_2 = \mathcal{F}_{G_{\mathcal{F}_1} \cap \mathcal{F}_{G_{\mathcal{F}_2}}} = \mathcal{F}_G \) is a foliation. \(\blacksquare \)

Let \(\mathcal{F}_1 \prec \cdots \prec \mathcal{F}_k \) be a flag structure on \(M \) and let \(x \in M \). If \(x \in L_i \in \mathcal{F}_i \) we write \(p_i(x) = \text{dim} L_i, \; p_i(x) = p_i(x) - p_{i-1}(x) \) \((i = 2, \ldots, k)\) and \(q_i(x) = m - p_i(x) \).

DEFINITION 2.7. A chart \((U, \varphi)\) of \(M \) with \(\varphi(0) = x \) is called a distinguished chart at \(x \) with respect to \(\mathcal{F}_1 \prec \cdots \prec \mathcal{F}_k \) if \(U = V_1 \times \cdots \times V_k \times W \) where \(V_1 \subset \mathbb{R}^{p_1(x)}, V_i \subset \mathbb{R}^{p_i(x)} \) \((i \geq 2)\) and \(W \subset \mathbb{R}^{q_k(x)} \) are open balls and for any \(L_i \in \mathcal{F}_i \) we have

\[
\varphi(U) \cap L_i = \varphi(V_1 \times \cdots \times V_i \times L_i),
\]

where \(L_i = \{ w \in V_{i+1} \times \cdots \times V_k \times W : \varphi(0, w) \in L_i \} \) for \(i = 1, \ldots, k \).

Observe that actually the above \(\varphi \) is an inverse chart; following \([16]\) we call it a chart for simplicity. Notice as well that in the above definition one need not assume that \(\mathcal{F}_i \) is a foliation but only that it is a partition into weakly imbedded submanifolds; that \(\mathcal{F}_i \) is a foliation then follows by definition.
Theorem 2.8. Let $G_1 \leq \cdots \leq G_k \leq \text{Diff}^r(M)$ be an increasing sequence of diffeomorphism groups of M. Then $\mathcal{F}_{G_1} \prec \cdots \prec \mathcal{F}_{G_k}$ admits a distinguished chart at any $x \in M$.

In fact, this is a straightforward consequence of Theorem 2 in [11].

Corollary 2.9. Let $G_1 \leq \cdots \leq G_k \leq \text{Diff}^r(M)$ and let (L, σ) be a leaf of \mathcal{F}_{G_k}. Then all G_i preserve L, and $\mathcal{F}_{G_1|L} \prec \cdots \prec \mathcal{F}_{G_{k-1}|L}$ is a flag structure on L. Moreover, a distinguished chart at x for $\mathcal{F}_{G_1|L} \prec \cdots \prec \mathcal{F}_{G_{k-1}|L}$ is the restriction to L of a distinguished chart at x for $\mathcal{F}_{G_1} \prec \cdots \prec \mathcal{F}_{G_k}$.

The following property of paracompact spaces is well-known.

Lemma 2.10. If X is a paracompact space and U is an open cover of X, then there exists an open cover V starwise finer than U, that is, for all $V \in V$ there is $U \in U$ such that $\text{star}(V) \subset U$. Here $\text{star}(V) := \bigcup \{V' \in V : V' \cap V \neq \emptyset \}$. In particular, for all $V_1, V_2 \in V$ with $V_1 \cap V_2 \neq \emptyset$ there is $U \in U$ such that $V_1 \cup V_2 \subset U$.

Proposition 2.11. If $\mathcal{F} \in \mathfrak{F}^r(M)$ then $G_\mathcal{F} = \alpha(\mathcal{F})$ is factorizable.

Proof. Let $\mathfrak{X}_c(M, \mathcal{F})$ be the Lie algebra of all compactly supported vector fields on M tangent to \mathcal{F}. Then there is a one-to-one correspondence between isotopies f_t in $G_\mathcal{F}$ and smooth paths X_t in $\mathfrak{X}_c(M, \mathcal{F})$ given by the equation

$$\frac{df_t}{dt} = X_t \circ f_t \quad \text{with} \quad f_0 = \text{id}.$$

Let $f = (f_t) \in \mathcal{I}G_\mathcal{F}$ and let X_t be the corresponding family in $\mathfrak{X}_c(M, \mathcal{F})$. By considering $f_{(p/m)t} f_{(p-1/m)t}^{-1}$, $p = 1, \ldots, m$, instead of f_t we may assume that f_t is close to the identity.

Let \mathcal{U} be an open cover of M. We choose a family of open sets, $(V_j)_{j=1}^s$, which is starwise finer than \mathcal{U}, and satisfies $\text{supp}(f_t) \subset V_1 \cup \cdots \cup V_s$ for each t. Let $(\lambda_j)_{j=1}^s$ be a partition of unity subordinate to (V_j), and let $Y_t^j = \lambda_j X_t$. We set

$$X_t^j = Y_t^1 + \cdots + Y_t^j, \quad j = 1, \ldots, s,$$

and $X_t^0 = 0$. Each of the smooth families X_t^j integrates to an isotopy g_t^j with support in $V_1 \cup \cdots \cup V_j$. We get the fragmentation

$$f_t = g_t^s \circ \cdots \circ g_t^1,$$

where $f_t^j = g_t^j \circ (g_t^{-1})^{-1}$, with the required inclusions

$$\text{supp}(f_t^j) = \text{supp}(g_t^j \circ (g_t^{-1})^{-1}) \subset \text{star}(V_j) \subset U_{i(j)}$$

which hold if f_t is sufficiently small. Thus the group of isotopies of $G_\mathcal{F}$ is factorizable. Consequently, $G_\mathcal{F}$ itself is factorizable. ■
Remark 2.12. The identification α_M enables us to consider several new properties of foliations from $\mathfrak{F}(M)$. For instance, one can say that a foliation \mathcal{F} is perfect if so is the corresponding diffeomorphism group $G_\mathcal{F} = \alpha_M(\mathcal{F})$. As mentioned before, it is known that $G_\mathcal{F} = \text{Diff}^r_c(M,\mathcal{F})_0$ is perfect provided \mathcal{F} is regular and $1 \leq r \leq \dim \mathcal{F}$ or $r = \infty$ (see [9], [19], [10]). It is not known whether $G_\mathcal{F}$ is perfect for singular foliations and a possible proof seems to be very difficult. In turn, possible perfectness of $G_\mathcal{F} = \text{Diff}^r_c(M,\mathcal{F})_0$ with r large is closely related to the simplicity of $\text{Diff}^{n+1}_c(M^n)_0$ (see [4]).

Likewise, one can consider uniformly perfect or bounded foliations by using the corresponding notions for groups (see [4] and references therein).

Finally consider the following important feature of subclasses of the class $\mathfrak{F}(M)$, depending also on M and r. A subclass \mathcal{R} of $\mathfrak{F}(M)$ is called faithful if the following holds: For all $\mathcal{F}_1, \mathcal{F}_2 \in \mathcal{R}$ and for any group isomorphism $\Phi : \alpha_M(\mathcal{F}_1) \cong \alpha_M(\mathcal{F}_2)$ there is a C^r foliated diffeomorphism $\varphi : (M,\mathcal{F}_1) \cong (M,\mathcal{F}_2)$ such that for all $f \in \alpha_M(\mathcal{F}_1)$, $\Phi(f) = \varphi \circ f \circ \varphi^{-1}$. From the reconstruction results of Rybicki [12] and Rubin [8] it is known that the class of regular foliations of class C^∞, $\mathfrak{F}^\infty_{\text{reg}}(M)$, is faithful.

3. Proofs of Theorems 1.1 and 1.2

Proof of Theorem 1.1. First observe that the fact that a foliation \mathcal{F} has no proper minimal set is equivalent to the statement that all leaves of \mathcal{F} are dense.

(\Rightarrow) Assume that $\emptyset \neq L \subset M$ is a proper closed saturated subset of M. Choose $x \in M \setminus L$. We will prove the following statement:

(*) there are a ball $U \subset M \setminus L$ with $x \in U$ and $g \in [G_U, G_U]$ such that $g(x) \neq x$.

Then we are done by setting $H := \{g \in [G, G] : g|_L = \text{id}_L\}$. To prove (*), choose balls U and V in M such that $x \in V \subset \overline{V} \subset U$. Take $f \in G$ such that $f(x) \neq x$. By assumption, for $\mathcal{U} = \{U, \overline{V}\}$ we may write $g = g_r \ldots g_1$, where all g_i are supported in elements of \mathcal{U}. Let $s := \min\{i \in \{1, \ldots, r\} : \text{supp}(g_i) \subset U \text{ and } g_i(x) \neq x\}$. Then $g_s \in G_U$ satisfies $g_s(x) \neq x$.

Now take an open W such that $x \in W \subset U$ and $g_s(x) \notin W$. Choose $f \in G_W$ with $f(x) \neq x$ by an argument similar to the above. It follows that $f(g_s(x)) = g_s(x) \neq g_s(f(x))$, and therefore $[f, g_s](x) \neq x$. Thus $g = [f, g_s]$ satisfies the claim.

(\Leftarrow) First observe the following commutator formulae for all $f, g, h \in G$:

\begin{equation}
[f, g, h] = f[g, h]f^{-1}[f, h], \quad [f, gh] = [f, g][f, h]g^{-1}.
\end{equation}

Next, in view of a theorem of Ling [5] we know that $[G, G]$ is a perfect group,
that is,
\[(3.2) \quad [G, G] = [[G, G], [G, G]].\]

Suppose that \(H\) is a non-trivial normal subgroup of \([G, G]\). Let \(x \in M\) satisfy \(h(x) \neq x\) for some \(h \in H\). Fix a ball \(U_0\) such that \(h(U_0) \cap U_0 = \emptyset\). By the definition of \(\mathcal{F}_{[G, G]}\) and the assumption that each leaf \(L \in \mathcal{F}_{[G, G]}\) is dense, for every \(y \in M\) there are a ball \(U_y\) with \(y \in U_y\) and \(f_y \in [G, G]\) such that \(f_y(U_y) \subset U\). Let \(U = \{U_y\}_{y \in M}\).

By Lemma 2.10 we can find an open cover \(\mathcal{V}\) starwise finer than \(U\). We denote \(U^G = \{g(U) : U \in \mathcal{U}, g \in [G, G]\}\) and \(G^U = \prod_{U \in U^G} [G_U, G_U]\).

By assumption \(G\) is factorizable with respect to \(\mathcal{V}\). First we show that \([G, G] \subset G^U\), i.e. any \([g_1, g_2] \in [G, G]\) can be expressed as a product of elements of the form \([h_1, h_2]\), where \(h_1, h_2 \in G_U\) for some \(U \in U^G\). In view of (3.1) and (3.2) we may assume that \(g_1, g_2 \in [G, G]\). Now the relation \([G, G] \subset G^U\) is an immediate consequence of (3.1) and the fact that \(\mathcal{V}\) is starwise finer than \(U\).

Next we have to show that \(G^U \subset H\). It suffices to check that for every \(f, g \in G_U\) with \(U \in \mathcal{U}\) the bracket \([f, g]\) belongs to \(H\). This implies that for every \(f, g \in G_U\) with \(U \in U^G\) one has \([f, g] \in H\), since \(H\) is a normal subgroup in \([G, G]\).

We have fixed \(h \in H\) and \(U_0\) such that \(h(U_0) \cap U_0 = \emptyset\). If \(U \in \mathcal{U}\) and \(f, g \in G_U\), take \(k \in [G, G]\) such that \(k(U) \subset U_0\), and put \(\bar{f} = kfk^{-1}, \quad \bar{g} = kgk^{-1}\). It follows that \([hf^{-1}, g] = id\). Therefore, \([\bar{f}, \bar{g}] = [h, \bar{f}], \bar{g}] \in H\), and we also have \([f, g] \in H\). Thus \(G^U \subset H\), and consequently \([G, G] \leq H\), as required.

Proof of Theorem 1.2. By assumption and Prop. 2.11, \(\text{Diff}^r(M, \mathcal{F})_0\) is factorizable and non-fixing. Since \(\text{Diff}^r(M, \mathcal{F})_0\) is isotopically connected, the first assertion follows from Theorem 1.1. The second assertion is a consequence of \(\text{Diff}^r(M, \mathcal{F})_0\) being perfect (\([9]\) and \([19]\) for \(r = \infty\), and \([6]\) and \([10]\) for \(1 \leq r \leq \dim \mathcal{F}\)).

Acknowledgements. This research was partially supported by the Polish Ministry of Science and Higher Education.

References

Diffeomorphism groups and foliations

Tomasz Rybicki
Faculty of Applied Mathematics
AGH University of Science and Technology
Al. Mickiewicza 30
30-059 Kraków, Poland
E-mail: tomasz@agh.edu.pl

Received 3.1.2011
and in final form 9.2.2011

(2349)