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Lyapunov type inequalities for a
second order differential equation with a damping term

by S. H. Saker (Riyadh and Mansoura)

Abstract. For a second order differential equation with a damping term, we establish
some new inequalities of Lyapunov type. These inequalities give implicit lower bounds on
the distance between zeros of a nontrivial solution and also lower bounds for the spacing
between zeros of a solution and/or its derivative. We also obtain a lower bound for the
first eigenvalue of a boundary value problem. The main results are proved by applying
the Hölder inequality and some generalizations of Opial and Wirtinger type inequalities.
The results yield conditions for disfocality and disconjugacy. An example is considered to
illustrate the main results.

1. Introduction. In this paper, we will establish some inequalities of
Lyapunov type for the second-order differential equation with a damping
term

(1.1) (r(t)(x′(t))γ)′ + p(t)(x′(t))γ + q(t)(x(t))γ = 0, t ∈ I,
where I is a nontrivial interval of reals, γ ≥ 1 is a ratio of odd positive inte-
gers and p, q, r : I → R are continuous measurable functions with r(t) > 0.
Lyapunov type inequalities yield implicit lower bounds on the distance be-
tween consecutive zeros of a nontrivial solution x and also lower bounds for
the distance between zeros of a solution x(t) and/or its derivative x′. The
best known result of this type for the special case of (1.1) (when γ = 1,
r(t) = 1 and p(t) = 0) is due to Lyapunov [16]: If x(t) is a solution of the
differential equation

(1.2) x′′(t) + q(t)x(t) = 0

with x(a) = x(b) = 0 (a < b) and x(t) 6= 0 for t ∈ (a, b), then

(1.3)
b�

a

q+(t) dt >
4

b− a
,

2010 Mathematics Subject Classification: 34K11, 34C10, 34K10.
Key words and phrases: disfocality, nonoscillation, half-linear differential equations with
a damping term, Opial’s inequality, Wirtinger’s inequality.

DOI: 10.4064/ap103-1-4 [37] c© Instytut Matematyczny PAN, 2012



38 S. H. Saker

where q is a real-valued continuous function on a nontrivial interval of reals
and q+(t) = max{q(t), 0}. Since the appearance of this inequality various
proofs and generalizations or improvements have appeared in the literature
for different types of equations. We refer the reader to the papers [3, 9,
10, 18–21, 23–26, 30, 14] and the references cited therein. We also refer the
survey [28] of the most basic results on Lyapunov type inequalities and their
generalizations.

In this paper, we are concerned with the following three problems:

(i) obtain lower bounds for the spacing β − α where x is a solution of
(1.1) satisfying x(α) = x′(β) = 0, or x′(α) = x(β) = 0,

(ii) obtain lower bounds for the spacing of zeros of a solution of (1.1),
(iii) obtain a lower bound for the first eigenvalue of the boundary value

problem

−((x′(t))γ)′ + p(t)(x′(t))γ + q(t)xγ(t) = λxγ(t), x(0) = x(π) = 0.

By a solution of (1.1) on the interval J ⊆ I, we mean a nontrivial real-valued
function x ∈ C1(J) which has the property that r(t)(x′(t))γ ∈ C1(J) and
satisfies equation (1.1) on J . We assume that (1.1) possesses such a nontrivial
solution.

A nontrivial solution x(t) of (1.1) is said to be oscillatory if it has arbi-
trarily large zeros. Equation (1.1) is said to be disconjugate on the interval
[a, b] if there is no nontrivial solution of (1.1) with two zeros in [a, b], and it
is said to be nonoscillatory on I if there exists c ∈ I such that this equation
is disconjugate on [c, d] for every d > c. We say that (1.1) is right disfocal
(resp. left disfocal) on [α, β] if the solution x(t) of (1.1) with x′(α) = 0 (resp.
x′(β) = 0) has no zeros in [α, β].

For oscillation and nonoscillation results for half-linear differential equa-
tions, we refer to the book [27].

Our motivation for this paper comes from the papers of Hartman and
Wintner [13], Fink and Mary [11], Ha [12], Pachpatte [22] and Lee et al.
[15]. Some of their results are presented in the following:

Hartman and Wintner [13] proved that if x is a solution of the equation

(1.4) x′′ + p(t)x′(t) + q(t)x(t) = 0, a ≤ t ≤ b,

such that x(a) = x(b) = 0, where p, q ∈ C([0,∞),R), then

(1.5)
b�

a

(t−a)(b−t)q+(t) dt+max
{ b�

a

(t−a)|p(t)| dt,
b�

a

(b−t)|p(t)| dt
}
> b−a.

Fink and Mary [11] proved that if x is a solution of (1.4) with no zeros in
(a, b) and such that x(a) = x(b) = 0, then
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(1.6) (b− a)
b�

a

q+(s) ds− 4 exp
(
−1

2

b�

a

|p(s)| ds
)
> 0.

Ha [12] proved that if x is a solution of the equation

(1.7) x′′ + λx′(t) + q(t)x(t) = 0, 0 ≤ t ≤ π,
with no zeros in (0, π) and such that x(0) = x(π) = 0, then

(1.8)
π�

0

|q(s)| ds >

{
2
√
λ cot

√
λ

2 π if 0 < λ < 1,√
λ| sin

√
λπ| if λ > 1.

Pachpatte [22] considered the equation

(1.9) (r(t)|x′(t)|α−1x′(t))′ + p(t)x′(t) + q(t)x(t) = 0, a ≤ t ≤ b,
where α > 1 and p(t), q(t) and r(t) are real measurable functions with
r(t) > 0, and proved the following: If x(a) = x(b) = 0 and M = max{|x(t)| :
a ≤ t ≤ b}, then

(1.10)
1

Mα−1

( b�
a

r−1/α(t) dt
)α( b�

a

|q(t)− p′(t)/2| dt
)
≥ 2α+1.

Lee et al. [15] considered the equation

(1.11)

(|x′(t)|α−2x′(t))′ + p(t)|x′(t)|α−2x′(t) + q(t)|x(t)|α−2x(t) = 0, a ≤ t ≤ b,
and extended the results of Fink and Mary as follows: If x is a solution of
(1.11) with no zeros in (a, b) and such that x(a) = x(b) = 0, then

(1.12)
(b− a)α/β

b�

a

q+(s) ds− 4 exp
(
−
b�

a

|p(s)| ds
)
> 0,

(b− a)
b�

a

q+(s) ds+ 4
b�

a

|p(s)| ds > 4,

 when α ≥ 2,

and

(1.13)

(b− a)α/β
b�

a

q+(s) ds− 2γ exp
(
−
b�

a

|p(s)| ds
)
> 0

(b− a)
b�

a

q+(s) ds+ 2α
b�

a

|p(s)| ds > 2α

 when 1 < α ≤ 2,

where 1/α+ 1/β = 1. In [29] the authors also considered the Emden–Fowler
type equation
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(1.14)

(|x′(t)|α−2x′(t))′ + g(t)|x′(t)|α−2x′(t) + f(t)|x(t)|β−2x(t) = 0, a ≤ t ≤ b,
and applied the results obtained for a Hamiltonian system to establish new
Lyapunov type inequalities similar to (1.12) and (1.13). The results in the
above mentioned papers are established by using elementary analysis, inte-
gration of the equation, Hölder’s inequality and Jensen’s inequality.

In this paper, we will employ a technique that depends on the appli-
cation of some generalizations of Opial’s inequality, Wirtinger’s inequality
and Hölder’s inequality to prove several results related to problems (i)–(iii)
above. In particular, we obtain some new results different from the results
obtained by Hartman and Wintner [13], Fink and Mary [11], Ha [12], Pach-
patte [22], Lee et al. [15] and Tiryaki et al. [29]. Of particular interest is the
case when q is oscillatory. We remark that our technique is completely dif-
ferent from the techniques used in the above mentioned papers. An example
is considered to illustrate the main results.

2. Main results. The Opial [17] inequality

(2.1)
b�

a

|x(t)| |x′(t)| dt ≤ b− a
4

b�

a

|x′(t)|2 dt, x(a) = x(b) = 0,

with the best constant (b−a)/4 is one of the most important and fundamen-
tal integral inequalities in the analysis of qualitative properties of solutions
of differential equations. Since its discovery an enormous amount of work has
been done, and many papers which deal with new proofs, various general-
izations, extensions and discrete analogues have appeared. For more details
we refer the reader to the book [1]. In this section, we will employ some
generalizations of Opial’s inequality to establish our main results.

First, we will apply an inequality due to Beesack and Das [4] which states
that if x is absolutely continuous on [c, d] with x(c) = 0 and x′(t) does not
change sign in (c, d), then

(2.2)
d�

c

B(t)|x(t)|m|x′(t)|n dt ≤ K(m,n)
d�

c

A(t)|x′(t)|m+n dt,

where m, n are real numbers with mn > 0 and m+n > 1, A and B are non-
negative, measurable functions on (c, d) such that

	t
cA
−1/(m+n−1)(s) ds <∞

and

(2.3) K(m,n)

:=
(

n

n+m

) n
n+m [ d�

c

B
n+m
m (t)A−

n
m (t)

( t�
c

(
A

−1
m+n−1 (s) ds

)m+n−1
dt
] m
m+n

.
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If we replace x(c) = 0 by x(d) = 0, then (2.2) holds with

(2.4) K(m,n)

:=
(

n

n+m

) n
n+m [ d�

c

B
n+m
m (t)A−

n
m (t)

( d�
t

(
A

−1
m+n−1 (s) ds

)m+n−1
dt
] m
m+n

.

In the following, we will assume that there exists a nontrivial subinterval
J ⊆ I with endpoints α < β such that

(2.5)
t�

α

(
1
r(s)

)1/γ

ds <∞ and
β�

α

|q(t)| dt <∞.

For simplicity, we introduce the following notations:

K1(γ, p, r) =
(

γ

γ + 1

) γ
γ+1
[ β�
α

pγ+1(t)
rγ(t)

( t�

α

r−1/γ(s) ds
)γ
dt

] 1
1+γ

,(2.6)

K1(γ,Q, r) = (γ + 1)
γ
γ+1

[ β�
α

Q
1+γ
γ (t)

r
1
γ (t)

( t�

α

r−1/γ(s) ds
)γ
dt

] γ
γ+1

,(2.7)

K2(γ, p, r) =
(

γ

γ + 1

) γ
γ+1
[ β�
α

pγ+1(t)
rγ(t)

( β�
t

r−1/γ(s) ds
)γ
dt

] 1
1+γ

,(2.8)

K2(γ,Q, r) = (γ + 1)
γ
γ+1

[ β�
α

Q
1+γ
γ (t)

r
1
γ (t)

( β�
t

r−1/γ(s) ds
)γ
dt

] γ
γ+1

.(2.9)

Now, we are ready to state and prove the main results.

Theorem 1. Suppose that x is a nontrivial solution of (1.1) and x′(t)
does not change sign in (α, β). If x(α) = x′(β) = 0, then

(2.10) K1(γ, p, r) +K1(γ,Q, r) ≥ 1,

where Q(t) =
	β
t |q(s)| ds. If x′(α) = x(β) = 0, then

(2.11) K2(γ, p, r) +K2(γ,Q, r) ≥ 1,

where Q(t) =
	t
α |q(s)| ds.

Proof. We prove (2.10). Multiplying (1.1) by x and integrating by parts,
we have

β�

α

(r(t)(x′(t))γ)′x(t) dt = r(t)(x′(t))γx(t)|βα −
β�

α

r(t)(x′(t))γ+1 dt

= −
β�

α

|p(t)|(x′(t))γx(t) dt−
β�

α

|q(t)|(x(t))γ+1 dt.
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Using the assumptions that x(α) = x′(β) = 0 and Q(t) =
	β
t |q(s)| ds, we get

β�

α

r(t)(x′(t))γ+1 dt ≤
∣∣∣ β�
α

p(t)(x′(t))γx(t) dt
∣∣∣+
∣∣∣ β�
α

q(t)(x(t))γ+1 dt
∣∣∣

≤
β�

α

|p(t)| |x′(t)|γ |x(t)| dt+
β�

α

|q(t)| |x(t)|γ+1 dt.

Using the fact that Q(t) =
	β
t |q(s)| ds, we have

β�

α

r(t)(x′(t))γ+1 dt ≤
β�

α

|p(t)| |x′(t)|γ |x(t)| dt−
β�

α

Q′(t)|x(t)|γ+1 dt.

Integrating by parts in the last term, we get
β�

α

r(t)|x′(t)|γ+1 dt ≤ (γ + 1)
β�

α

Q(t)|x(t)|γ |x′(t)| dt(2.12)

+
β�

α

|p(t)| |x′(t)|γ |x(t)| dt.

Applying the inequality (2.2) with B(t) = Q(t), A(t) = r(t), m = γ and
n = 1, we have

(2.13) (γ + 1)
β�

α

|Q(t)| |x(t)|γ |x′(t)| dt ≤ K1(γ,Q, r)
β�

α

r(t)|x′(t)|γ+1 dt,

where K1(γ,Q, r) is as in (2.7). Again applying (2.2) with B(t) = |p(t)|,
A(t) = r(t), n = γ and m = 1, we get

(2.14)
β�

α

|p(t)| |x(t)| |x′(t)|γ dt ≤ K1(γ, p, r)
β�

α

r(t)|x′(t)|γ+1 dt,

where K1(γ, p, r) is as in (2.6). Then, from (2.12)–(2.14) we have
β�

α

r(t)|x′(t)|γ+1 dt ≤ K1(γ,Q, r)
β�

α

r(t)|x′(t)|γ+1 dt

+K1(γ, p, r)
β�

α

r(t)|x′(t)|γ+1 dt.

Dividing both sides by
	β
α r(t)|x

′(t)|γ+1 dt, we obtain

K1(γ, p, r) +K1(γ,Q, r) ≥ 1,

which is the desired inequality (2.10). The proof of (2.11) is similar using
integration by parts and (2.2), and (2.4) instead of (2.3).
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By using the maximum of Q and |p| on [α, β], we will now derive a new
formula for the spacing between a zero of a solution of (1.1) and a zero of
its derivative by employing (2.2) and the Calvert inequality (see [8])

(2.15)
d�

c

|x(t)|m|x′(t)| dt ≤ 1
m+ 1

( d�
c

λ−1/m(t) dt
)m d�

c

λ(t)|x′(t)|m+1 dt,

where x(c) = 0 or x(d) = 0 and λ(t) > 0. For simplicity, we set

K1(γ, r) :=
(

γ

γ + 1

) γ
γ+1
[ β�
α

1
rγ(t)

( t�

α

r−1/γ(s) ds
)γ
dt

] 1
1+γ

,(2.16)

K2(γ, r) :=
(

γ

γ + 1

) γ
γ+1
[ β�
α

1
rγ(t)

( β�
t

r−1/γ(s) ds
)γ
dt

] 1
1+γ

.(2.17)

Theorem 2. Suppose that x is a nontrivial solution of (1.1) and x′(t)
does not change sign in (α, β). If x(α) = x′(β) = 0, then

(2.18) (γ + 1) max
α≤t≤β

Q(t)
( β�
α

r−1/γ(t) dt
)γ

+K1(γ, r) max
α≤t≤β

|p(t)| ≥ 1,

where Q(t) =
	β
t |q(s)| ds and K1(γ, r) is as in (2.16). If x′(α) = x(β) = 0,

then

(2.19) (γ + 1) max
α≤t≤β

Q(t)
( β�
α

r−1/γ(t) dt
)γ

+K2(γ, r) max
α≤t≤β

|p(t)| ≥ 1,

where Q(t) =
	t
α |q(s)| ds and K2(γ, r) is as in (2.17).

Proof. We prove (2.18). Multiplying (1.1) by x and integrating by parts
and proceeding as in the proof of Theorem 1 we get

β�

α

r(t)|x′(t)|γ+1 dt ≤
β�

α

|p(t)| |x′(t)|γ |x(t)| dt(2.20)

+ (γ + 1)
β�

α

Q(t)|x(t)|γ |x′(t)| dt

≤ max
α≤t≤β

|p(t)|
β�

α

|x′(t)|γ |x(t)| dt

+ (γ + 1) max
α≤t≤β

Q(t)
β�

α

|x(t)|γ |x′(t)| dt.
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Applying (2.15) with λ(t) = r(t) and m = γ, we have

(2.21) (γ + 1) max
α≤t≤β

Q(t)
β�

α

|x(t)|γ |x′(t)| dt

≤ (γ + 1) max
α≤t≤β

Q(t)
( β�
α

r−1/γ(t) dt
)γ β�

α

r(t)|x′(t)|γ+1 dt.

Applying (2.2) with B(t) = 1, A(t) = r(t) and m = 1 and n = γ, we get

(2.22)

max
α≤t≤β

|p(t)|
β�

α

|x(t)| |x′(t)|γ dt ≤ K1(γ, r) max
α≤t≤β

|p(t)|
β�

α

r(t)|x′(t)|γ+1 dt,

where K1(γ, r) is as in (2.16). Then from (2.20)–(2.22) we have

(γ + 1) max
α≤t≤β

|Q(t)|
( β�
α

r−1/γ(t) dt
)γ

+K1(γ, r) max
α≤t≤β

|p(t)| ≥ 1,

which is the desired inequality (2.18). The proof of (2.19) when x′(α) =
x(β) = 0 is similar by using integration by parts and (2.15).

We now apply an inequality due to Boyd [5] and the Hölder inequality
to obtain results similar to Theorem 1. The Boyd inequality states that if
x ∈ C1[a, b] with x(a) = 0 (or x(b) = 0), then

(2.23)
b�

a

|x(t)|ν |x′(t)|η dt ≤ N(ν, η, s)(b− a)ν
( b�
a

|x′(t)|s dt
) ν+η

s
,

where ν > 0, s > 1, 0 ≤ η < s,

(2.24) N(ν, η, s) :=
(s− η)νν

(s− 1)(ν + η)(I(ν, η, s))ν
σν+η−s,

σ :=
{
ν(s− 1) + (s− η)

(s− 1)(ν + η)

}1/s

,

I(ν, η, s) :=
1�

0

{
1 +

s(η − 1)
s− η

t

}−(ν+η+sν)/sν

[1 + (η − 1)t]t1/ν−1 dt.

The inequality (2.23) has an immediate application, when η = s, to the case
where x(a) = 0 (or x(b) = 0). In this case (2.23) becomes

(2.25)
b�

a

|x(t)|ν |x′(t)|η dt ≤ L(ν, η)(b− a)ν
( b�
a

|x′(t)|η dt
) ν+η

η
,
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where

(2.26) L(ν, η) :=
ηνη

ν + η

(
ν

ν + η

)ν/η( Γ
(η+1

η + 1
ν

)
Γ
(η+1

η

)
Γ
(

1
ν

))ν ,
and Γ is the Gamma function. For simplicity, we define

M(γ) := (γ + 1)(β − α)γN
γ
γ+1

(
γ + 1,

γ + 1
γ

, γ + 1
)
,

M1(γ) := (β − α)L
γ
γ+1

(
γ + 1
γ

, γ + 1
)
.

Theorem 3. Assume that r(t) is a nonincreasing function on [α, β].
Suppose that x is a nontrivial solution of (1.1) and x′(t) does not change
sign in (α, β). If x(α) = x′(β) = 0, then

(2.27) M(γ)
( β�
α

Qγ+1(t) dt
) 1
γ+1 +M1(γ)

( β�
α

|p(t)|γ+1 dt
) 1
γ+1 ≥ r(β),

where Q(t) =
	β
t |q(s)| ds. If x′(α) = x(β) = 0, then

(2.28) M(γ)
( β�
α

Qγ+1(t) dt
) 1
γ+1 +M1(γ)

( β�
α

|p(t)|γ+1 dt
) 1
γ+1 ≥ r(β),

where Q(t) =
	t
α |q(s)| ds.

Proof. Proceeding as in the proof of Theorem 1 and using x(α) =
x′(β) = 0, we get

β�

α

r(t)|x′(t)|γ+1 dt ≤
β�

α

|p(t)| |x′(t)|γ |x(t)| dt(2.29)

+ (γ + 1)
β�

α

Q(t)|x(t)|γ |x′(t)| dt.

Applying the Hölder inequality with exponents γ + 1 and (γ + 1)/γ, we see
that

β�

α

Q(t)|x(t)|γ |x′(t)| dt ≤
( β�
α

Qγ+1(t) dt
) 1
γ+1(2.30)

×
( β�
α

|x(t)|γ+1|x′(t)|
γ+1
γ dt

) γ
γ+1

.

Applying the Boyd inequality (2.23) with ν = (γ + 1), η = (γ + 1)/γ and
s = γ + 1, we obtain
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(2.31)
β�

α

|x(t)|γ+1|x′(t)|
γ+1
γ dt

≤ N
(
γ + 1,

γ + 1
γ

, γ + 1
)

(β − α)γ+1
( b�
a

|x′(t)|γ+1 dt
) γ+1

γ
.

Substituting (2.31) into (2.30) and using the fact that r(t) is nonincreasing,
we have

(2.32) (γ + 1)
β�

α

Q(t)|x(t)|γ |x′(t)| dt

≤ M(γ)
r(β)

( β�
α

Qγ+1(t) dt
) 1
γ+1
( β�
α

r(t)|x′(t)|γ+1 dt
)
.

Applying the Hölder inequality to the term
	β
α |p(t)| |x

′(t)|γ |x(t)| dt, we see
that

β�

α

|p(t)| |x′(t)|γ |x(t)| dt ≤
( β�
α

|p(t)|γ+1 dt
) 1
γ+1(2.33)

×
( β�
α

|x(t)|
γ+1
γ |x′(t)|γ+1 dt

) γ
γ+1

.

Applying the Boyd inequality (2.25) with ν = (γ + 1)/γ and η = γ + 1, we
get

β�

α

|x(t)|
γ+1
γ |x′(t)|γ+1 dt ≤ L

(
γ + 1
γ

, γ + 1
)

(2.34)

× (β − α)
γ+1
γ

( β�
α

|x′(t)|γ+1 dt
) γ+1

γ
.

Substituting (2.34) into (2.33) and using the fact that r(t) is nonincreasing,
we have

(2.35)
β�

α

|p(t)| |x′(t)|γ |x(t)| dt ≤ M1(γ)
r(β)

( β�
α

|p(t)|γ+1 dt
) 1
γ+1

β�

α

r(t)|x′(t)|γ+1 dt.

Substituting (2.32) and (2.35) into (2.29) and cancelling
	β
α r(t)|x

′(t)|γ+1 dt
yields

M(γ)
r(β)

( β�
α

Qγ+1(t) dt
) 1
γ+1 +

M1(γ)
r(β)

( β�
α

|p(t)|γ+1 dt
) 1
γ+1 ≥ 1,
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which is the desired inequality (2.27). A similar argument yields (2.28) when
x′(α) = x(β) = 0.

Remark 1. Theorems 1–3 yield sufficient conditions for disfocality of
(1.1), i.e., sufficient conditions so that there does not exist a nontrivial so-
lution x satisfying either x(α) = x′(β) = 0 or x′(α) = x(β) = 0.

In the following, we employ new Opial and Wirtinger type inequalities
to determine the lower bound for the distance between consecutive zeros of
solutions of (1.1). Note that the inequality (2.23) has an immediate appli-
cation to the case where x(a) = x(b) = 0. Choose c = (a + b)/2 and apply
(2.23) to [a, c] and [c, b] and then add to obtain

(2.36)
b�

a

|x(t)|ν |x′(t)|η dt ≤ N(ν, η, s)
(
b− a

2

)ν( b�
a

|x′(t)|s dt
) ν+η

s
,

where N(ν, η, s) is defined as in (2.24). Note that application of (2.36) allows
the use of an arbitrary anti-derivative Q in the above arguments. We define

M∗(γ) := (γ + 1)
(
b− a

2

)γ
N

γ
γ+1

(
γ + 1,

γ + 1
γ

, γ + 1
)
,

M∗1 (γ) :=
b− a

2
N

γ
γ+1

(
γ + 1
γ

, γ + 1, γ + 1
)
.

The following theorems give the lower bound for the distance between zeros
of the solution of (1.1).

Theorem 4. Assume that r(t) is a nonincreasing function and Q′(t) =
|q(t)| on [a, b]. Suppose that x is a nontrivial solution of (1.1) and x′(t) does
not change sign in (a, b). If x(a) = x(b) = 0, then

(2.37) M∗(γ)
( b�
a

Q
γ+1
γ (t) dt

) γ
γ+1 +M∗1 (γ)

( b�
a

|p(t)|γ+1 dt
) 1
γ+1 ≥ r(b).

Proof. As in the proof of Theorem 1, by multiplying (1.1) by x(t) and
integrating by parts, and using x(a) = x(b) = 0, we have

b�

a

r(t)|x′(t)|γ+1 dt ≤
b�

a

|p(t)| |x′(t)|γ |x(t)| dt(2.38)

+ (γ + 1)
b�

a

Q(t)|x(t)|γ |x′(t)| dt.

Applying the Hölder inequality and (2.36) to (2.38) and proceeding as in
the proof of Theorem 3, we have
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b�

a

r(t)|x′(t)|γ+1 dt ≤ M∗(γ)
r(b)

( b�
a

Q
γ+1
γ (t) dt

) γ
γ+1

b�

a

r(t)|x′(t)|γ+1 dt

+
M∗1 (γ)
r(b)

( b�
a

|p(t)|γ+1 dt
) 1
γ+1

b�

a

r(t)|x′(t)|γ+1 dt.

From this inequality, after cancelling
	b
a r(t)|x

′(t)|γ+1 dt, we get (2.37).

We note that the inequality (2.36) can be applied only when s > η ≥ 0.
So Theorem 4 cannot be applied when γ = 1. In the following, we make use
of the inequality (2.25) which can be applied when η = s. The inequality
(2.25) has an immediate application to the case when x(a) = x(b) = 0. In
this case (2.25) becomes

(2.39)
b�

a

|x(t)|ν |x′(t)|η dt ≤ L(ν, η)
(
b− a

2

)ν( b�
a

|x′(t)|η dt
) ν+η

η
,

where L(ν, η) is as in (2.26).

Theorem 5. Assume that r(t) is a nonincreasing function and Q′(t) =
|q(t)| on [a, b]. Suppose that x is a nontrivial solution of (1.1) and x′(t) does
not change sign in (a, b). If x(a) = x(b) = 0, then

(2.40) (γ + 1)N(γ)
( b�
a

Q
γ+1
γ (t) dt

) γ
γ+1 +N∗(γ)

( b�
a

|p(t)|
1

γ+1 dt
)γ+1

≥ r(b),

where

N(γ) :=
(
b− a

2

)γ
L

1
γ+1 (γ(γ + 1), γ + 1),

N∗(γ) :=
b− a

2
L

γ
γ+1

(
γ + 1
γ

, γ + 1
)
.

Proof. As in the proof of Theorem 1, we have
b�

a

r(t)|x′(t)|γ+1 dt ≤ (γ + 1)
b�

a

Q(t)|x(t)|γ |x′(t)| dt(2.41)

+
β�

α

|p(t)| |x′(t)|γ |x(t)| dt.

Applying the Hölder inequality, we get
b�

a

Q(t)|x(t)|γ |x′(t)| dt ≤
( b�
a

Q
γ+1
γ (t) dt

) γ
γ+1(2.42)

×
( b�
a

|x(t)|γ(γ+1)|x′(t)|γ+1 dt
) 1
γ+1

.
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Applying the inequality (2.39) to the term

(2.43)
( b�
a

|x(t)|γ(γ+1)|x′(t)|γ+1 dt
) 1
γ+1

with ν = γ(γ + 1) and η = γ + 1, we see that

(2.44)
( b�
a

|x(t)|γ(γ+1)|x′(t)|γ+1 dt
) γ
γ+1

≤ L(γ(γ + 1), γ + 1)
(
b− a

2

)γ(γ+1)( b�
a

|x′(t)|γ+1 dt
)γ+1

.

Substituting (2.44) into (2.42) and using the fact that r(t) is nonincreasing,
we have

(2.45)
b�

a

|Q(t)| |x(t)|γ |x′(t)| dt

≤ L
1

γ+1 (γ(γ + 1), γ + 1)
r(b)

(
b− a

2

)γ( b�
a

Q
γ+1
γ (t) dt

) γ
γ+1

×
( b�
a

r(t)|x′(t)|γ+1 dt
)
.

Applying the Hölder inequality, we also get
β�

α

|p(t)| |x′(t)|γ |x(t)| dt ≤
( b�
a

|p(t)|
1

γ+1 dt
)γ+1

(2.46)

×
( b�
a

|x′(t)|γ+1|x(t)|
γ+1
γ dt

) γ
γ+1

.

Applying the inequality (2.39) to the term

(2.47)
( b�
a

|x′(t)|γ+1|x(t)|
γ+1
γ dt

) γ
γ+1

with η = γ + 1 and ν = (γ + 1)/γ, we see that

(2.48)
( b�
a

|x(t)|
γ+1
γ |x′(t)|γ+1 dt

) γ
γ+1

≤ L
(
γ + 1
γ

, γ + 1
)(

b− a
2

) γ+1
γ ( b�

a

|x′(t)|γ+1 dt
) γ+1

γ
.
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Substituting (2.48) into (2.46) and using the fact that r(t) is nonincreasing,
we have

(2.49)
b�

a

p(t)|x(t)|γ |x′(t)| dt

≤
L

γ
γ+1 (γ+1

γ , γ + 1)

r(b)
b− a

2

( b�
a

|p(t)|
1

γ+1 dt
)γ+1

×
( b�
a

r(t)|x′(t)|γ+1 dt
)
.

Substituting (2.45) and (2.49) into (2.41) and cancelling
	b
a r(t)|x

′(t)|γ+1 dt,
we get

1 ≤ (γ + 1)L
1

γ+1 (γ(γ + 1), γ + 1)
(
b− a

2

)γ( b�
a

Q
γ+1
γ (t) dt

) γ
γ+1

+ L
γ
γ+1

(
(γ + 1)
γ

, γ + 1
)
b− a

2

( b�
a

|p(t)|
1

γ+1 dt
)γ+1

,

which is the desired inequality (2.40).

As a special case when γ = 1, we have the following result for the equa-
tion

(2.50) x′′(t) + p(t)x′(t) + q(t)x(t) = 0, a ≤ t ≤ b.

Corollary 6. Assume that Q′(t) = |q(t)| on [a, b]. Suppose that x is
a nontrivial solution of (2.50) and x′(t) does not change sign in (a, b). If
x(a) = x(b) = 0, then

(2.51)
( b�
a

Q2(t) dt
)1/2

+
1
2

( b�
a

√
p(t) dt

)2
≥ π

2(b− a)
.

In the following, we establish a new formula for the spacing between
zeros of (1.1) by applying the Wirtinger type inequality (see [1])

(2.52)
d�

c

λ(t)|x(t)|γ+1 dt ≤ 1
2

( d�
c

(t(d− t))γ/2λ(t) dt
) d�
c

|x′(t)|γ+1 dt,

where x(c) = x(d) = 0, λ(t) > 0 is a continuous function on [c, d], and x(t)
is an absolutely continuous function on [c, d].

Theorem 7. Assume that r(t) is a nonincreasing function and Q′(t) =
|q(t)| on [a, b]. Suppose that x is a nontrivial solution of (1.1) and x′(t) does
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not change sign in (α, β). If x(a) = x(b) = 0, then

(2.53)
1
2

(γ + 1)
γ+1
γ

b�

a

(t(b− t))
γ
2Q

γ+1
γ (t) dt

+
(

1
2

) 1
γ+1( β�

α

(t(b− t))
γ
2 |p(t)|γ+1 dt

) 1
γ+1 ≥ r(b).

Proof. Proceeding as in the proof of Theorem 1 and using x(a)=x(b)=0,
we get

b�

a

r(t)|x′(t)|γ+1 dt ≤ (γ + 1)
b�

a

Q(t)|x(t)|γ |x′(t)| dt(2.54)

+
b�

a

|p(t)| |x′(t)|γ |x(t)| dt.

Applying the Hölder inequality to the two terms on the right hand side, we
see that

(2.55)
b�

a

r(t)|x′(t)|γ+1 dt

≤ (γ + 1)
( b�
a

|x′(t)|γ+1 dt
) 1
γ+1
( b�
a

Q
γ+1
γ (t)|x(t)|γ+1 dt

) γ
γ+1

+
( b�
a

|x′(t)|γ+1 dt
) γ
γ+1
( b�
a

|p(t)|γ+1|x(t)|γ+1 dt
) 1
γ+1

.

Applying the Wirtinger inequality (2.52) to (
	b
aQ

γ+1
γ (t)|x(t)|γ+1 dt)

γ
γ+1 , we

have

(2.56)
( b�
a

|Q(t)|
γ+1
γ |x(t)|γ+1 dt

) γ
γ+1

≤
(

1
2

( b�
a

(t(b− t))
γ
2Q

γ+1
γ (t) dt

) b�
a

|x′(t)|γ+1 dt

) γ
γ+1

=
(

1
2

) γ
γ+1( b�

a

(t(b− t))
γ
2Q

γ+1
γ (t) dt

) γ
γ+1
( b�
a

|x′(t)|γ+1 dt
) γ
γ+1

.

Again applying the Wirtinger inequality (2.52) to (
	b
a |p(t)|

γ+1|x(t)|γ+1dt)
1

γ+1 ,
we have
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( b�
a

|p(t)|γ+1|x(t)|γ+1 dt
) 1
γ+1 ≤

(
1
2

) 1
γ+1( b�

a

(t(b− t))
γ
2 |p(t)|γ+1 dt

) 1
γ+1

(2.57)

×
( b�
a

|x′(t)|γ+1 dt
) 1
γ+1

.

Substituting (2.56) and (2.57) into (2.55), we obtain

b�

a

r(t)|x′(t)|γ+1 dt ≤
(

1
2

) γ
γ+1

(γ + 1)
( b�
a

|x′(t)|γ+1
) 1
γ+1

×
( b�
a

(t(b− t))
γ
2Q

γ+1
γ (t) dt

) γ
γ+1
( b�
a

r(t)|x′(t)|γ+1
) γ
γ+1

+
( β�
α

|x′(t)|γ+1 dt
) γ
γ+1
( β�
α

|x′(t)|γ+1 dt
) 1
γ+1

×
(

1
2

) 1
γ+1( b�

a

(t(b− t))
γ
2 |p(t)|γ+1 dt

) 1
γ+1

≤ 1
r(b)

(
1
2

) γ
γ+1

(γ + 1)
( b�
a

(t(b− t))
γ
2Q

γ+1
γ (t) dt

) γ
γ+1 ·

b�

a

r(t)|x′(t)|γ+1 dt

+
1
r(b)

(
1
2

) 1
γ+1( b�

a

(t(b− t))
γ
2 |p(t)|γ+1 dt

) 1
γ+1 ·

b�

a

r(t)|x′(t)|γ+1 dt.

Cancelling
	b
a r(t)|x

′(t)|γ+1 dt, we get

r(b) ≤
(

1
2

) γ
γ+1

(γ + 1)
( b�
a

(t(b− t))
γ
2Q

γ+1
γ (t) dt

) γ
γ+1

+
(

1
2

) 1
γ+1( b�

a

(t(b− t))
γ
2 |p(t)|γ+1 dt

) 1
γ+1

,

which is the desired inequality (2.53).

Remark 2. One can apply the Wirtinger inequality

(2.58)
b�

a

λ(t)|x(t)|γ+1 dt ≤
( b�
a

(t−γ + (1− t)−γ)−1λ(t) dt
) b�
a

|x′(t)|γ+1 dt,

due to Brnetić and Pečarić [7] where x(t) ∈ C1[a, b], λ(t) > 0 is a continuous
function on [α, β], and x(a) = x(b) = 0, and follow the proof of Theorem 7
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to establish a new formula for the spacing between zeros of (1.1). The details
are left to the reader.

Remark 3. Theorems 4–6 yield sufficient conditions for disconjugacy
of (1.1), i.e., sufficient conditions so that there does not exist a nontrivial
solution x satisfying x(α) = x(β) = 0.

As an application, we will show how Opial and Wirtinger type in-
equalities may be used to find a lower bound for the first eigenvalue of
a boundary value problem. In particular, we will apply the Wirtinger
inequality

(2.59)
π�

0

(x′(t))k+1 dt ≥ 2Γ (k + 2)
πk+1Γ 2((k + 2)/2)

π�

0

xk+1(t) dt for k ≥ 1,

where x ∈ C1[0, π] and x(0) = x(π) = 0, due to Agarwal and Pang [2],
to establish a new explicit lower bound of the first eigenvalue λ0 of the
eigenvalue problem

(2.60) −((x′(t))γ)′ − p(t)(x′(t))γ + q(t)xγ(t) = λxγ(t), x(0) = x(π) = 0,

where γ ≥ 1 is an odd positive integer.

Theorem 8. Assume that λ0 is the first positive eigenvalue of (2.60)
and Q′(t) = q(t) + µ, where 0 < µ < λ0. Then

λ0 ≥ µ+
1

Ψ(γ)

[
1−

(
1
2

) γ
γ+1

(γ + 1)
( π�

0

(t(π − t))
γ
2Q

γ+1
γ (t) dt

) γ
γ+1(2.61)

−
(

1
2

) 1
γ+1( π�

0

(t(π − t))
γ
2 |p(t)|γ+1 dt

) 1
γ+1

]
,

where Ψ(γ) = πγ+1Γ 2((γ + 2)/2)/2Γ (γ + 2).

Proof. Let x(t) be the eigenfunction of (2.60) corresponding to λ0. Mul-
tiplying (2.60) by x(t) and proceeding as in the proof of Theorem 3 we
get

−
π�

0

p(t)(x′(t))γx(t) dt+
π�

0

q(t)xγ+1(t) dt

= λ0

π�

0

xγ+1(t) dt+
π�

0

((x′(t))γ)′x(t) dt.

This implies, after integrating by parts and using the fact that x(0) = x(π)
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= 0, that

(λ0 − µ)
π�

0

xγ+1(t) dt

=
π�

0

(x′(t))γ+1 dt+
π�

0

Q′(t)xγ+1(t) dt−
π�

0

p(t)(x′(t))γx(t) dt

=
π�

0

(x′(t))γ+1 dt− (γ + 1)
π�

0

Q(t)xγ(t)x′(t) dt−
π�

0

p(t)(x′(t))γx(t) dt

≥
π�

0

|x′(t)|γ+1 dt− (γ + 1)
π�

0

Q(t)|x(t)|γ |x′(t)| dt−
π�

0

|p(t)| |x′(t)|γx(t) dt.

Proceeding as in the proof of Theorem 6 by applying (2.52) to
π�

0

Q(t)|x(t)|γ |x′(t)| dt and
π�

0

|p(t)| |x′(t)|γx(t) dt,

we obtain

(λ0 − µ)
π�

0

|x(t)|γ+1 dt ≥
π�

0

(|x′(t)|)γ+1 dt

−
(

1
2

) γ
γ+1

(γ + 1)
( π�

0

(t(π − t))
γ
2Q

γ+1
γ (t) dt

) γ
γ+1 ·

π�

0

|x′(t)|γ+1 dt

−
(

1
2

) 1
γ+1( π�

0

(t(π − t))
γ
2 |p(t)|γ+1 dt

) 1
γ+1 ·

π�

0

|x′(t)|γ+1 dt.

Now, applying the Wirtinger inequality (2.59), we have

(λ0 − µ)Ψ(γ)
π�

0

(x′(t))γ+1 dt

≥
π�

0

(x′(t))γ+1 dt−
(

1
2

) γ
γ+1

(γ + 1)
( π�

0

(t(π − t))
γ
2Q

γ+1
γ (t) dt

) γ
γ+1

×
π�

0

(x′(t))γ+1 dt

−
(

1
2

) 1
γ+1( π�

0

(t(π − t))
γ
2 |p(t)|γ+1 dt

) 1
γ+1 ·

π�

0

|x′(t)|γ+1 dt.

This implies that
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(λ0 − µ)Ψ(γ) ≥ 1−
(

1
2

) γ
γ+1

(γ + 1)
( π�

0

(t(π − t))
γ
2Q

γ+1
γ (t) dt

) γ
γ+1

−
(

1
2

) 1
γ+1( π�

0

(t(π − t))
γ
2 |p(t)|γ+1 dt

) 1
γ+1

.

From this, (2.61) follows.

The following example illustrates the results.

Example 1. Consider the equation

(2.62) x′′(t) + (µ sin2(kt))x′(t) + (λ cos(kt))x(t) = 0, t ∈ I,
where p(t) = µ sin2(kt), q(t) = λ cos(kt) and λ, µ, k are positive constants.
Let x(t) be a solution of (2.62) with x(a) = x(b) = 0 where [a, b] ⊆ I. By
(2.51) we see that

(2.63)
π

2(b− a)
≤
√
λ

k

( b�
a

sin2(kt) dt
)1/2

+
µ

2

( b�
a

sin(kt) dt
)2
.

Applying the Cauchy–Schwarz inequality we see that( b�
a

sin(kt) dt
)2
≤ (b− a)

b�

a

sin2(kt) dt.

Substituting into (2.63), we see that

π

2(b− a)
≤
√
λ

k

( b�
a

sin2(kt) dt
)1/2

+
µ

2
(b− a)

b�

a

sin2(kt) dt

≤
√
λ

k

√
b− a+

µ

2
(b− a)2

=
(√

λ

k
+
µ

2
(b− a)3/2

)√
b− a.

This implies that

(2.64) (b− a)3
(√

λ

k
+
µ

2
(b− a)3/2

)2

≥ π2

4
.

The inequality (2.64) gives a lower bound for the spacing of zeros of (2.62).
If µ = 0, then (2.64) reduces to

(2.65) b− a ≥
(
π2

4λ

)1/3

k2/3,

which gives a lower bound for the spacing of zeros of the equation

(2.66) x′′(t) + (λ cos(kt))x(t) = 0.
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We note that the estimate for (2.66) that has been obtained by the usual
Lyapunov inequality for λ = 1 and a = 0 is

(2.67)
b�

0

(cos(kt))+ dt >
4
b
,

where + denotes the positive part of a function. This inequality gives a lower
bound of order

√
k for the spacing of zeros, which is different from the order

in (2.65). It is clear that the estimate (2.65) improves (2.67).
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