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Hamilton–Jacobi functional differential equations
with unbounded delay

by Adam Nadolski (Gdańsk)

Abstract. The Cauchy problem for nonlinear functional differential equations on the
Haar pyramid is considered. The phase space for generalized solutions is constructed. An
existence theorem is proved by using the method of successive approximations. The theory
of characteristics and integral inequalities are used. Examples of phase spaces are given.

1. Introduction. For any metric spaces U andW we denote by C(U,W )
the class of all continuous functions defined on U and taking values in W .
Let L([0, a],R+) be the set of summable functions α : [0, a]→ R+ = [0,∞).
Vectorial inequalities will be understood to hold componentwise.

Let H denote the Haar pyramid

H = {(t, x) = (t, x1, . . . , xn) ∈ R1+n : t ∈ [0, a], −b+ h(t) ≤ x ≤ b− h(t)}
and

E = (−∞, 0]× [−b, b] ⊂ R1+n,

where b = (b1, . . . , bn) ∈ Rn+, and h = (h1, . . . , hn) ∈ C([0, a],Rn+), a > 0.
We assume that h is nondecreasing, h(0) = 0 and b > h(a).

Let Y be a space of initial functions w : E → R. We assume that Y is a
linear space with a norm ‖ · ‖Y and that (Y, ‖ · ‖Y ) is a Banach space. For
0 < t ≤ a we put Ht = H ∩ ([0, t]× Rn). Let ‖ · ‖t be the supremum norm
in C(Ht,R) or C(Ht,Rn). For each t, 0 < t ≤ a, we consider a space Xt of
functions z : E ∪Ht → R. We assume that Xt is a linear space with a norm
‖ · ‖Xt .

Write X = Xa and ‖ · ‖X = ‖ · ‖Xa and assume that V : X → C(H,R)
is a given operator. Let Ω = H × R × Rn and assume that f : Ω → R
and ϕ : E → R are given functions. We consider the functional differential
equation

∂tz(t, x) = f(t, x, (V z)(t, x), ∂xz(t, x))(1)
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with the initial condition

z(t, x) = ϕ(t, x) on E(2)

where ∂xz = (∂x1z, . . . , ∂xnz).
Write I[x] = {t ∈ [0, a] : (t, x) ∈ H} for x ∈ [−b, b]. We will consider

generalized solutions of problem (1), (2). A function v : E ∪ Hc → R,
0 < c ≤ a, is a solution of (1), (2) provided

(i) v|Hc is continuous and ∂xv(t, x) exists for (t, x) ∈ Hc,

(ii) v(·, x) : I[x]→ R is absolutely continuous for every x ∈ [−b, b],
(iii) for every x ∈ [−b, b] the function v satisfies equation (1) for almost

all t ∈ I[x] and condition (2) holds.

Two different types of results on nonlinear first order partial differential
or functional differential equations appear in the literature. The first type
theorems deal with initial or initial boundary problems which are local with
respect to x, while those of the second type are global with respect to the
spatial variable. We are interested in results of the first type.

Numerous papers have been published concerning nonlinear first order
partial differential or functional differential equations on the Haar pyramid.
The following questions were considered: differential inequalities, uniqueness
and continuous dependence for initial value problems ([2, 6, 11, 16]), differ-
ence inequalities and approximate solutions ([10, 14]), existence of classical
or generalized solutions ([5, 6, 15, 17]). The papers [1, 3, 4, 18] initiated the
investigations of functional differential inequalities generated by initial value
problems on the Haar pyramid. Existence results for functional differential
equations of the Volterra type with initial conditions can be found in [9].
The monograph [8] contains an exposition of recent developments in hyper-
bolic functional differential equations. All these problems have the following
property: the initial set in the Cauchy problem is bounded.

It is the purpose of this paper to examine Hamilton–Jacobi functional
differential equations with unbounded delay. We give sufficient conditions for
the existence of generalized solutions of initial value problems. The set of
axioms for phase spaces given here seems to be in final form for generalized
or classical solutions.

Note that the theory of ordinary functional differential equations with
unbounded delay has been described extensively in the monographs [7, 12].
Functional differential problems for quasi-linear hyperbolic systems with
unbounded delay were considered in [13].

The paper is organized as follows. The set of axioms for phase spaces is
formulated in Section 2. The notion of characteristics for problem (1), (2)
and their properties are given in the next section. Then the Cauchy problem
is transformed into a system of integral functional equations. This system is
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solved in Sections 5 and 6 by the method of successive approximations. The
main existence result and a theorem on continuous dependence of solutions
on initial functions is presented in the last section of the paper.

2. Function spaces. Let CI(Ht,R), 0 < t ≤ a, be the set of all continu-
ous functions w : Ht → R such that the derivatives (∂x1w, . . . , ∂xnw) = ∂xw
exist and ∂xw ∈ C(Ht,Rn). For w ∈ CI(Ht,R) we put

‖w‖It = ‖w‖t + max{‖∂xw(τ, y)‖ : (τ, y) ∈ Ht}.
We denote by CI+L(Ht, R), 0 < t ≤ a, the set of all w ∈ CI(Ht,R) such
that

Lip ∂xw|Ht
= sup

{‖∂xw(τ, y)− ∂xw(τ, y)‖
‖y − y‖ : (τ, y), (τ, y) ∈ Ht, y 6= y

}
<∞.

For w ∈ CI+L(Ht,R) we put

‖w‖I+Lt = ‖w‖It + Lip∂xw|Ht.
Assumption H[X]. Suppose that (Y, ‖ · ‖Y ) and (Xt, ‖ · ‖Xt), 0 < t ≤ a,

are Banach spaces and

1) if z : E ∪Ht → R and z|E ∈ Y , z|Ht ∈ C(Ht,R) then z ∈ Xt and

‖z‖Xt ≤ ‖z|E‖Y + ‖z|Ht‖t,
2) if w ∈ Y then |w(0, x)| ≤ ‖w‖Y for x ∈ [−b, b],
3) the linear subspaces XI

t ⊂ Xt, 0 < t ≤ a, and Y I ⊂ Y are such that

(i) XI
t endowed with the norm ‖ · ‖XI

t
and Y I endowed with the

norm ‖ · ‖Y I are Banach spaces,
(ii) if z : E ∪Ht → R and z|E ∈ Y I , z|Ht ∈ CI(Ht,R) then z ∈ XI

t

and
‖z‖XI

t
≤ ‖z|E‖Y I + ‖z|Ht‖It ,

(iii) if w ∈ Y I then ∂xw(0, x) exists for x ∈ [−b, b] and |w(0, x)| +
‖∂xw(0, x)‖ ≤ ‖w‖Y I for x ∈ [−b, b],

4) the linear subspaces XI+L
t ⊂ XI

t , 0 < t ≤ a, and Y I+L ⊂ Y Iare such
that

(i) XI+L
t endowed with the norm ‖ · ‖XI+L

t
and Y I+L endowed with

the norm ‖ · ‖Y I+L are Banach spaces,
(ii) if z : E ∪ Ht → R and z|E ∈ Y I+L, z|Ht ∈ CI+L(Ht, R) then

z ∈ XI+L
t and

‖z‖XI+L
t
≤ ‖z|E‖Y I+L + ‖z|Ht‖I+Lt .
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Suppose that ϕ ∈ Y I+L and 0 < c ≤ a, d = (d0, d1, d2) ∈ R3
+, λ =

(λ0, λ1), λ0, λ1 ∈ L([0, c],R+). We denote by CI+Lϕ.c [d, λ] the class of all
functions z : E ∪Hc → R such that

(i) z(t, x) = ϕ(t, x) on E,

(ii) z|Hc is continuous and |z(t, x)| ≤ d0 on Hc,

(iii) ∂xz(t, x) exists for (t, x) ∈ Hc and ‖∂xz(t, x)‖ ≤ d1 on Hc,
(iv) for (t, x), (t, x), (t, x) ∈ Hc we have

|z(t, x)− z(t, x)| ≤
∣∣∣
t�

t

λ0(ξ) dξ
∣∣∣,

‖∂xz(t, x)− ∂xz(t, x)‖ ≤
∣∣∣
t�

t

λ1(ξ) dξ
∣∣∣+ d2‖x− x‖.

Let s = (s0, s1) ∈ R2
+ and µ ∈ L([0, c],R+). We denote by CLc [s, µ] the

class of all functions v : Hc → Rn such that

(i) v ∈ C(Hc,Rn) and ‖v(t, x)‖ ≤ s0 on Hc,

(ii) for (t, x), (t, x) ∈ Hc we have

‖v(t, x)− v(t, x)‖ ≤
∣∣∣
t�

t

µ(ξ) dξ
∣∣∣+ s1‖x− x‖.

Under suitable assumptions on the given functions we will prove that there
exists a solution v of problem (1), (2) such that v ∈ CI+L

ϕ.c [d, λ] and u ∈
CLc [s, µ], where u = ∂xv|Hc.

Now we formulate assumptions on the operator V.

Assumption H[V ]. Suppose that V : X → C(H,R) and

1) there is L0 ∈ R+ such that for z, z ∈ X we have

‖V z − V z‖t ≤ L0‖z − z‖Xt,
2) if z ∈ XI

t , 0 < t ≤ a, then V z ∈ CI(Ht,R) and there is L ∈ R+ such
that for z, z ∈ XI

t we have

‖V z − V z‖It ≤ L‖z − z‖XI
t
,

3) if z ∈ CI+L(Ht,R), 0 < t ≤ a, then V z ∈ CI+L(Ht,R) and there are
M,C ∈ R+ independent of z such that

‖V z‖I+Lt ≤M‖z‖XI+L
t

+ C.

Remark 2.1. If Assumption H[V ] is satisfied then the operator V sat-
isfies the following Volterra condition: if (t, x) ∈ H, z, z ∈ X and z(τ, y) =
z(τ, y) for (τ, y) ∈ E ∪Ht then (V z)(t, x) = (V z)(t, x).
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Lemma 2.2. Suppose that Assumption H[V ] is satisfied and θ ∈ X is
given by θ(τ, y) = 0 for (τ, y) ∈ E ∪H.

If z ∈ X, 0 < t ≤ a, then

‖V z‖t ≤ L0‖z‖Xt + A, where A ≥ ‖V θ‖t.
If z ∈ XI

t , 0 < t ≤ a, then

‖V z‖It ≤ L‖z‖XL
t

+B, where B ≥ ‖V θ‖It .
We omit the proof of the lemma.
Now we give examples of spaces of initial functions.

Example 2.3. Let γ : (−∞, 0]→(0,∞) be a given function with γ(0)=1.
Let Y be the space of all continuous functions w : E → R such that

‖w‖Y = sup
{ |w(t, x)|

γ(t)
: (t, x) ∈ E

}
<∞.

Denote by Y I the class of all w ∈ Y such that (∂x1w, . . . , ∂xnw) = ∂xw
exists on E, ∂xw ∈ C(E,Rn) and

‖∂xw‖Y = sup
{‖∂xw(t, x)‖

γ(t)
: (t, x) ∈ E

}
<∞.

For w ∈ Y I we put
‖w‖Y I = ‖w‖Y + ‖∂xw‖Y .

Let Y I+L be the space of all w ∈ Y I which satisfy Lip [∂xw]γ <∞, where

Lip [∂xw]γ = sup
{‖∂xw(t, x)− ∂xw(t, x)‖

γ(t)‖x− x‖ : (t, x), (t, x) ∈ E, x 6= x

}
.

We define the norm in Y I+L by

‖w‖Y I+L = ‖w‖Y L + Lip [∂xw]γ.

Example 2.4. Fix p ≥ 1. Denote by Ỹ the class of all functions w ∈
C(E,R) such that for x ∈ [−b, b] we have

0�

−∞
|w(τ, x)|p dτ <∞.

Write
‖w‖Ỹ = max{|w(0, x)| : x ∈ [−b, b]}

+ sup
{( 0�

−∞
|w(τ, x)|p dτ

)1/p
: x ∈ [−b, b]

}
.

Denote by Y the closure of Ỹ with the above norm.
Let Y I ⊂ Y be the set of all w ∈ Y such that the derivative ∂xw(t, x)

exists on E and
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(i) ∂xw is continuous on {0} × [−b, b],
(ii) for x ∈ [−b, b] we have

‖∂xw‖p = sup
{( 0�

−∞
‖∂xw(τ, x)‖p dτ

)1/p
: x ∈ [−b, b]

}
<∞.

Write

‖w‖Y I = ‖w‖Y + ‖∂xw‖p + max{‖∂xw(0, x)‖ : x ∈ [−b, b]}.
Let Y I+L be the set of all w ∈ Y I such that Lip [∂xw]p <∞, where

Lip [∂xw]p

= sup
{

( � 0
−∞ ‖∂xw(τ, x)− ∂xw(τ, x‖p dτ)1/p

‖x− x‖−1 : (t, x), (t, x) ∈ E, x 6= x

}
.

We define the norm in Y I+L by

‖w‖Y I+L = ‖w‖Y I + Lip [∂xw]p.

Example 2.5. Let Ỹ be the space of all functions w ∈ C(E,R) which
are bounded and

‖w‖∗ = sup
{ −n�

−(n+1)

|w(τ, x)| dτ : x ∈ [−b, b], n ∈ N
}
<∞,

where N is the set of natural numbers. For w ∈ Ỹ we put

‖w‖Ỹ = ‖w‖∗ + max{|w(0, x)| : x ∈ [−b, b]}.
Let Y be the closure of Ỹ with the above norm.

Denote by Y I the class of all w ∈ Y such that the derivative ∂xw exists
on E, ∂xw is continuous for almost all t ∈ (−∞, 0) and

‖∂xw‖∗ = sup
{ −n�

−(n+1)

‖∂xw(τ, x)‖ dτ : x ∈ [−b, b], n ∈ N
}
<∞.

For w ∈ Ỹ I we put

‖w‖Y I = ‖w‖Y + ‖∂xw‖∗ + max{‖∂xw(0, x)‖ : x ∈ [−b, b]}.
Let Y I+L be the space of all w ∈ Y I such that Lip [∂xw]∗ <∞, where

Lip [∂xw]∗ = sup
{ � −n−(n+1) ‖∂xw(τ, x)− ∂xw(τ, x)‖ dτ

‖x− x‖ :x, x ∈ [−b, b], n∈N
}
.

We define the norm in Y I+L by

‖w‖Y I+L = ‖w‖Y I + Lip [∂xw]∗.

It is easy to find suitable spaces Xt, 0 < t ≤ a, corresponding to the
above sets of initial functions.
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3. Characteristics of nonlinear equations. We start with the as-
sumptions on f .

Assumption H[∂qf ]. Suppose that the function f : Ω → R of the vari-
ables (t, x, p, q), q = (q1, . . . , qn), is such that

1) the derivative (∂q1f, . . . , ∂qnf) = ∂qf exists on Ω and ∂qf(·, x, p, q) :
I[x]→ Rn is measurable for (x, p, q) ∈ [−b, b]× R× Rn,

2) there is γ = (γ1, . . . , γn) ∈ L([0, a],Rn+) such that

|∂qif(t, x, p, q)| ≤ γi(t) on Ω for 1 ≤ i ≤ n,
3) there is β ∈ L([0, a],R+) such that

‖∂qf(t, x, p, q)− ∂qf(t, x, p, q)‖ ≤ β(t)[‖x− x‖+ |p− p|+ ‖q − q‖]
on Ω,

4) for t ∈ [0, a] we have

h(t) =
t�

0

γ(ξ) dξ.

Now we define the notion of characteristics for equation (1). Suppose
that ϕ ∈ Y I+L and z ∈ CI+Lϕ.c [d, λ], u ∈ CLc [s, µ]. We consider the Cauchy
problem

η′(τ) = −∂qf(τ, η(τ), (V z)(τ, η(τ)), u(τ, η(τ))), η(t) = x,(3)

where (t, x) ∈ Hc. Let

g[z, u](·, t, x) = (g1[z, u](·, t, x), . . . , gn[z, u](·, t, x))

be a Carathéodory solution of problem (3). The function g[z, u] is the char-
acteristic of equation (1) corresponding to [z, u].

Lemma 3.1. Suppose that Assumptions H[X], H[V ], H[∂qf ] are satisfied
and

ϕ,ϕ ∈ Y I+L, z ∈ CI+Lϕ.c [d, λ], z ∈ CI+Lϕ.c [d, λ], u, u ∈ CLc [s, µ],

where 0 < c ≤ a. Then the characteristics g[z, u](·, t, x) and g[z, u](·, t, x)
are defined on intervals [0, κ(t, x)] and [0, κ(t, x)] such that for ξ = κ(t, x),
ξ = κ(t, x) we have

(ξ, g[z, u](ξ, t, x)) ∈ ∂Hc, (ξ, g[z, u](ξ, t, x)) ∈ ∂Hc,

where ∂Hc is the boundary of Hc. Moreover the solutions are unique and we
have the estimates

‖g[z, u](τ, t, x)− g[z, u](τ, t, x)‖ ≤ β?(τ, t)
[
‖x− x‖+

∣∣∣
t�

t

‖γ(ξ)‖ dξ
∣∣∣
]

(4)
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for τ ∈ [0,min{κ(t, x), κ(t, x)}] and

(5) ‖g[z, u](τ, t, x)− g[z, u](τ, t, x)‖

≤ β?(τ, t)
∣∣∣
τ�

t

β(ξ)[L0‖z − z‖Xξ + ‖u− u‖ξ] dξ
∣∣∣

for τ ∈ [0,min{κ(t, x), κ(t, x)}], where

(6) β?(τ, t) = exp
[
d
∣∣∣
t�

τ

β(ξ) dξ
∣∣∣
]
, d = 1 +B + s1 + L(‖ϕ‖Y I + d0 + d1).

Proof. The existence and uniqueness of the solution of (3) follows from
classical theorems. Note that the right-hand side of the differential system
satisfies the Carathéodory assumptions, and the Lipschitz condition

‖∂qf(τ, y, (V z)(τ, y), u(τ, y))− ∂qf(τ, y, (V z)(τ, y), u(τ, y))‖ ≤ β̃(τ)‖y − y‖
holds on Hc, where

β̃(τ) = β(τ)[1 +B + L‖z‖XI
t

+ s1].

If we transform problem (3) into an integral equation, then by Assumptions
H[V ] and H[∂qf ] we have the integral inequality

‖g[z, u](τ, t, x)− g[z, u](τ, t, x)‖ ≤ ‖x− x‖+
∣∣∣
t�

t

‖γ(ξ)‖ dξ
∣∣∣

+ d
∣∣∣
t�

τ

β(ξ)‖g[z, u](ξ, t, x)− g[z, u](x, t, x)‖ dξ
∣∣∣

for τ ∈ [0,min{κ(t, x), κ(t, x)]. Now we obtain (4) by the Gronwall inequal-
ity.

Analogously by Assumptions H[V ] and H[∂qf ] we get

‖g[z, u](τ, t, x)− g[z, u](τ, t, x)‖ ≤
∣∣∣
τ�

t

β(ξ)[L0‖z − z‖Xξ + ‖u− u‖ξ] dξ
∣∣∣

+ d
∣∣∣
τ�

t

β(ξ)‖g[z, u](ξ, t, x)− g[z, u](ξ, t, x)‖ dξ
∣∣∣

for τ ∈ [0,min{κ(t, x), κ(t, x)]. Thus (5) follows from the Gronwall inequal-
ity. This proves Lemma 3.1.

4. Functional integral operators. Now we formulate further assump-
tions on f and ϕ.

Assumption H[f, ϕ]. Suppose that Assumption H[∂qf ] is satisfied and

1) there is α ∈ L([0, a],R+) such that |f(t, x, p, q)| ≤ α(t) on Ω,
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2) the derivatives (∂x1f, . . . , ∂xnf) = ∂xf and ∂pf exist on Ω and for
every (x, p, q) ∈ [−b, b]× R× Rn the functions

∂xf(·, x, p, q) : I[x]→ Rn, ∂pf(·, x, p, q) : I[x]→ R

are measurable,
3) there is γ̃ ∈ L([0, a],R+) such that

‖∂xf(t, x, p, q)‖ ≤ γ̃(t), |∂pf(t, x, p, q)| ≤ γ̃(t)

on Ω and the expressions

‖∂xf(t, x, p, q)− ∂xf(t, x, p, q)‖, |∂pf(t, x, p, q)− ∂pf(t, x, p, q)|
are bounded from above by

β(t)[‖x− x‖+ |p− p|+ ‖q − q‖],
4) the function ϕ(0, ·) : [−b, b]→R is continuous, the derivative ∂xϕ(0, ·)

= (∂x1ϕ(0, ·), . . . ∂xnϕ(0, ·)) exists on [−b, b] and

|ϕ(0, x)| ≤ r0, ‖∂xϕ(0, x)‖ ≤ r1,

‖∂xϕ(0, x)− ∂xϕ(0, x)‖ ≤ r2‖x− x‖,
for x, x ∈ [−b, b].

Remark 4.1. For simplicity of notations, we have assumed the same
estimate for ∂xf and ∂pf. We have also assumed the Lipschitz condition for
∂qf , ∂xf , ∂pf with the same constant.

Now we find a system of integral functional equations which are gener-
ated by (1), (2). Write

P [z, u](τ, t, x)

= (τ, g[z, u](τ, t, x), (V z)(τ, g[z, u](τ, t, x)), u(τ, g[z, u](τ, t, x))).

Given ϕ ∈ Y I+L, z ∈ CI+Lϕ.c [d, λ], u ∈ CLc [s, µ], we define

F [z, u](t, x) = ϕ(0, g[z, u](0, t, x)) +
t�

0

f(P [z, u](τ, t, x)) dτ(7)

−
n∑

k=1

t�

0

∂qkf(P [z, u](τ, t, x))uk(τ, g[z, u](τ, t, x)) dτ

and

(8) Gi[z, u](t, x) = ∂xiϕ(0, g[z, u](0, t, x)) +
t�

0

∂xif(P [z, u](τ, t, x)) dτ

+
t�

0

∂pf(P [z, u](τ, t, x))∂xi(V z)(τ, g[z, u](τ, t, x)) dτ, i = 1, . . . , n.
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Moreover we put

G[z, u] = (G1[z, u], . . . , Gn[z, u]).

We will consider the following system of functional integral equations:

z = F [z, u], u = G[z, u], z = ϕ on E(9)

and

g[z, u](τ, t, x) = x+
t�

τ

∂qf(P [z, u](ξ, t, x)) dξ.(10)

The above system is obtained in the following way. We introduce first an ad-
ditional unknown function u = (u1, . . . , un) = ∂xz in (1). Then we consider
the following linearization of (1) with respect to u:

∂tz(t, x) = f(U) +
n∑

j=1

∂qjf(U)(∂xjz(t, x)− uj(t, x)),(11)

where U = (t, x, (V z)(t, x), u(t, x)). By (1) we get the differential equations
for the unknown function u:

∂tui(t, x) = ∂xif(U) + ∂pf(U)∂xi(V z)(t, x)(12)

+
n∑

j=1

∂qjf(U)∂xjui(t, x), 1 ≤ i ≤ n.

We assume the following initial condition for u:

u(0, x) = ∂xϕ(0, x) for x ∈ [−b, b].(13)

Note that the quasi-linear system (11), (12) has the following property: the
differential equations of the characteristics for (11) and (12) are the same and
they have the form (3). Considering (11) and (12) along the characteristic
g[z, u](·, t, x), we obtain

d

dτ
z(τ, g[z, u](τ, t, x))=f(P [z, u](τ, t, x))(14)

−
n∑

j=1

∂qjf(P [z, u](τ, t, x))uj(τ, g[z, u](τ, t, x)),

and

(15)
d

dτ
ui(τ, g[z, u](τ, t, x)) = ∂xif(P [z, u](τ, t, x))

+ ∂pf(P [z, u](τ, t, x))∂xi(V z)(τ, g[z, u](τ, t, x)), 1 ≤ i ≤ n.
By integrating (14), (15) on [0, t] with respect to τ and using the initial
conditions (2), (13) we get (9), (10).

The proof of the existence of a solution of (9), (10) will be based on the
following method of successive approximations. We define z(m) : E∪Hc → R
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and u(m) : Hc → Rn in the following way. We put first

z(0)(t, x) =
{
ϕ(t, x) on E,
ϕ(0, x) on Hc,

(16)

u(0)(t, x) = ∂xϕ(0, x) on Hc.(17)

If z(m) : E ∪Hc → R and u(m) : Hc → Rn are known, then

(i) u(m+1) is a solution of the equation

u = G(m)[u],(18)

where G(m) = (G(m)
1 , . . . , G

(m)
n ) = G[z(m), u],

(ii) z(m+1) is given by

z(m+1)(t, x) =
{
ϕ(t, x) on E,
F [z(m), u(m+1)](t, x) on Hc.

(19)

The problem of the existence of the sequence {z(m)}, {u(m)} is the main
difficulty in our method.

5. Existence of the sequence of successive approximations. In
this section we prove that the sequences {z(m)} and {u(m)} are defined on
E ∪Hc and Hc respectively provided c ∈ (0, a] is sufficiently small.

Theorem 5.1. If Assumptions H[X], H[V ], H[f, ϕ] are satisfied and ϕ ∈
Y I+L then there are constants (d0, d1, d2) = d ∈ R3

+, (s0, s1) = s ∈ R2
+,

c ∈ (0, a] and functions µ, λ = (λ0, λ1), µ, λ0, λ1 ∈ L([0, c],R+) such that
for any m ≥ 0 we have

(Im) there exist z(m) : E ∪Hc → R and u(m) : Hc → Rn and

z(m) ∈ CI+Lϕ.c [d, λ], u(m) ∈ CLc [s, µ],

(IIm) ∂xz(m)(t, x) = u(m)(t, x) on Hc.

Proof. The proof is divided into a sequence of steps.

I. We begin by defining some functions and constants. Write

P = 1 +B + L(‖ϕ‖Y I + d0 + d1),

P̃ = C +M(‖ϕ‖Y I+L + d0 + d1 + d2),

Γ (t) = β?(0, t)
{
r2 + Pd

t�

0

β(ξ) dξ + P̃

t�

0

γ̃(ξ) dξ
}
,

Γ̃ (t) = β?(0, t)
{
r1 +

t�

0

[P γ̃(ξ) + 2s1‖γ(ξ)‖+ s0dβ(ξ)] dξ
}
,
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where β? is given by (6). Suppose that the constants d = (d0, d1, d2), s =
(s0, s1), c ∈ (0, a] and the functions λ = (λ0, λ1), µ satisfy the conditions

s0 = d1 ≥ r1 + P

c�

0

γ̃(ξ) dξ, s1 = d2 ≥ Γ (c),(20)

µ(t) = λ1(t) = Γ (c)‖γ(t)‖+ P γ̃(t),(21)

d0 ≥ r0 +
c�

0

[α(ξ) + s0‖γ(ξ)‖] dξ,(22)

λ0(t) = Γ̃ (c)‖γ(t)‖+ α(t).(23)

Note that if we assume that s0 = d1 > r1, s1 = d2 > r2 and d0 > r0 then
there is c ∈ (0, a] such that conditions (20), (22) are satisfied.

II. We prove (Im) and (IIm) by induction. It follows from (16), (17)
that (I0) and (II0) are satisfied. Supposing now that (Im) and (IIm) hold
for given m ≥ 0, we will prove that there exists u(m+1) : Hc → Rn and
u(m+1) ∈ CLc [s, µ]. We claim that

G(m) : CLc [s, µ]→ CLc [s, µ].(24)

It follows from Assumptions H[V ] and H[f, ϕ] that

‖G(m)[u](t, x)‖ ≤ r1 + P

t�

0

γ̃(ξ) dξ ≤ s0 on Hc.(25)

Assumptions H[V ] and H[X] imply the estimates

‖∂x(V z(m))(τ, y)− ∂x(V z(m)(τ, y)‖ ≤ P̃‖y − y‖,
‖∂x(V z(m))(τ, y)‖ ≤ B + L(‖ϕ‖Y I + d0 + d1),

for (τ, y), (τ, y) ∈ Hc. It follows from Assumptions H[f, ϕ] and H[V ] that the
terms

t�

0

‖∂xf(P [z(m), u](ξ, t, x))− ∂xf(P [z(m), u](ξ, t, x))‖ dξ,

t�

0

|∂pf(P [z(m), u](ξ, t, x))− ∂pf(P [z(m), u](ξ, t, x))| dξ

can be estimated by

d

t�

0

β(ξ)‖g[z(m), u](ξ, t, x)− g[z(m), u](ξ, t, x)‖ dξ.
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The above inequalities and Lemma 3.1 imply

‖G(m)[u](t, x)−G(m)[u](t, x)‖ ≤ P
∣∣∣
t�

t

γ̃(ξ) dξ
∣∣∣(26)

+Γ (c)
[
‖x− x‖+

∣∣∣
t�

t

‖γ(ξ)‖ dξ
∣∣∣
]

on Hc. Conditions (25), (26) and (20)–(23) imply (24).

III. Now we prove thatG(m) is a contraction on CLc [s, µ]. If u, u ∈ CLc [s, µ]
then by Assumptions H[f, ϕ] and H[V ] we get

‖G(m)[u](t, x)−G(m)[u](t, x)‖ ≤ (Γ (c) + P )
t�

0

β(ξ)‖u− u‖ξ dξ(27)

for (t, x) ∈ Hc. For u ∈ CLc [s, µ] we put

‖u‖? = max
{
‖u‖t exp

[
−2(Γ (c) + P )

t�

0

β(τ) dτ
]

: t ∈ [0, c]
}
.

Hence, by (27) we get

‖G(m)[u]−G(m)[u]‖t

≤ (Γ (c) + P )‖u− u‖?
t�

0

β(ξ) exp
[
2(Γ (c) + P )

ξ�

0

β(τ) dτ
]
dξ

≤ 1
2
‖u− u‖? exp

[
2(Γ (c) + P )

t�

0

β(τ) dτ
]
, t ∈ [0, a],

and consequently

‖G(m)[u]−G(m)[u]‖? ≤
1
2
‖u− u‖?.

By the Banach fixed point theorem it follows that there is exactly one
u(m+1) ∈ CLc [s, µ] satisfying (18).

IV. Now we prove that the function z(m+1) : E ∪Hc → R given by (19)
satisfies (IIm+1). Put

∆(t, x, x) = z(m+1)(t, x)− z(m+1)(t, x)−
n∑

j=1

u
(m+1)
j (t, x)(xj − xj)

for (t, x), (t, x) ∈ Hc. We prove that there exists C̃ ∈ R+ such that

|∆(t, x, x)| ≤ C̃‖x− x‖2 for (t, x), (t, x) ∈ Hc.(28)
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It follows from (19) and (Im+1) that

∆(t, x, x) = F [z(m), u(m+1)](t, x)− F [z(m), u(m+1)](t, x)(29)

−
n∑

j=1

G
(m)
j [u(m+1)](t, x)(xj − xj).

Write

g(m)(τ, t, x) = g[z(m), u(m+1)](τ, t, x),

P (m)(τ, t, x) = P [z(m), u(m+1)](τ, t, x),

Q(m)(ξ, τ, t, x, x) = ξP (m)(τ, t, x) + (1− ξ)P (m)(τ, t, x), ξ ∈ [0, 1].

Moreover we put

Φ(m)(t, x, x) = ϕ(0, g(m)(0, t, x))− ϕ(0, g(m)(0, t, x))

−
n∑

j=1

∂xjϕ(0, g(m)(0, t, x))(xj − xj),

Π(m)(t, x, x) =
t�

0

[f(P (m)(τ, t, x))− f(P (m)(τ, t, x))] dτ.

It follows from (7) and (29) that

∆(t, x, x) = Φ(m)(t, x, x) +Π(m)(t, x, x)

−
n∑

j=1

t�

0

∂qjf(P (m)(τ, t, x))u(m+1)
j (τ, g(m)(τ, t, x)) dτ

+
n∑

j=1

t�

0

∂qjf(P (m)(τ, t, x))u(m+1)
j (τ, g(m)(τ, t, x)) dτ

−
n∑

j=1

t�

0

∂xjf(P (m)(τ, t, x)) dτ (xj − xj)

−
n∑

j=1

t�

0

∂pf(P (m)(τ, t, x))∂xj(V z
(m))(τ, g(m)(τ, t, x)) dτ(xj − xj).

By the Hadamard mean value theorem we have

Π(m)(t, x, x)

=
t�

0

n∑

j=1

1�

0

∂xjf(Q(m)(ξ, τ, t, x, x)) dξ (g(m)
j (τ, t, x)− g(m)

i (τ, t, x)) dτ
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+
t�

0

1�

0

∂pf(Q(m)(ξ, τ, t, x, x)) dξ

× [(V z(m))(τ, g(m)(τ, t, x))− (V z(m))(τ, g(m)(τ, t, x))] dτ

+
t�

0

n∑

j=1

1�

0

∂qjf(Q(m)(ξ, τ, t, x, x)) dξ

× [u(m+1)
j (τ, g(m)(τ, t, x))− u(m+1)

j (τ, g(m)(τ, t, x))] dτ.

Write
Λ(m) = (Λ(m)

1 , . . . , Λ(m)
n ),

where

Λ
(m)
j (τ, t, x, x) =

t�

τ

[∂qjf(P (m)(ξ, t, x))−∂qjf(P (m)(ξ, t, x))] dξ, 1 ≤ j ≤ n.

Then

g(m)(τ, t, x)− g(m)(τ, t, x)− (x− x) = Λ(m)(τ, t, x, x).

V. To simplify the formulation of the next properties of the function ∆
we define

(30) ∆(t, x, x) = Φ
(m)

(t, x, x)

+
t�

0

n∑

j=1

t�

0

[∂xjf(Q(m)(ξ, τ, t, x, x))− ∂xjf(P (m)(τ, t, x))] dξ

× [g(m)
j (τ, t, x)− g(m)

j (τ, t, x)] dτ

+
t�

0

1�

0

[∂pf(Q(m)(ξ, τ, t, x, x))− ∂pf(P (m)(τ, t, x))] dξ

× [(V z(m))(τ, g(m)(τ, t, x))− (V z(m))(τ, g(m)(τ, t, x))] dτ

+
t�

0

n∑

j=1

1�

0

[∂qjf(Q(m)(ξ, τ, t, x, x))− ∂qjf(P (m)(τ, t, x))] dξ

× [u(m+1)
j (τ, g(m)(τ, t, x))− u(m+1)

j (τ, g(m)(τ, t, x))] dτ

+
t�

0

∂pf(P (m)(τ, t, x))Θ(m)(τ, t, x, x) dτ,

where
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Φ
(m)

(t, x, x) = ϕ(0, g(m)(0, t, x))− ϕ(0, g(m)(0, t, x))

−
n∑

j=1

∂xjϕ(0, g(m)(0, t, x))[g(m)
j (0, t, x)− g(m)

j (0, t, x)],

Θ(m)(τ, t, x, x) = (V z(m))(τ, g(m)(τ, t, x))− (V z(m))(τ, g(m)(τ, t, x))

−
n∑

j=1

∂xj (V z
(m))(τ, g(m)(τ, t, x))[g(m)

j (τ, t, x)−g(m)
j (τ, t, x)].

We define the function ∆̃ by

(31) ∆̃(t, x, x) =
n∑

j=1

∂xjϕ(0, g(m)(0, t, x))Λ(m)
j (0, t, x, x)

+
n∑

j=1

t�

0

∂xjf(P (m)(τ, t, x))Λ(m)
j (τ, t, x, x) dτ

+
n∑

j=1

t�

0

∂pf(P (m)(τ, t, x))∂xj(V z
(m))(τ, g(m)(τ, t, x))Λ(m)

j (τ, t, x, x) dτ

−
n∑

j=1

t�

0

[∂qjf(P (m)(τ, t, x))− ∂qjf(P (m)(τ, t, x))]u(m+1)
j (τ, g(m)(τ, t, x)) dτ.

Then ∆(t, x, x) = ∆(t, x) + ∆̃(t, x, x).

VI. Now we prove that

∆̃(t, x, x) = 0 for (t, x), (t, x) ∈ Hc.(32)

Write Ξ(m) = (Ξ(m)
1 , . . . , Ξ

(m)
n ), where

Ξ
(m)
j (ξ, t, x) = ∂xjϕ(0, g(m)(0, t, x))

+
ξ�

0

∂pf(P (m)(τ, t, x))∂xj (V z
(m))(τ, g(m)(τ, t, x)) dτ

+
ξ�

0

∂xjf(P (m)(τ, t, x)) dτ − u(m+1)
j (ξ, g(m)(ξ, t, x)), 1 ≤ j ≤ n.

It follows from (31) that

∆̃(t, x, x) =
n∑

j=1

t�

0

Ξ
(m)
j (ξ, t, x)[∂qjf(P (m)(ξ, t, x))− ∂qjf(P (m)(ξ, t, x))] dξ.

Since
g(m)(ξ, τ, g(m)(τ, t, x)) = g(m)(ξ, t, x)
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and u(m+1) satisfies equation (18) on Hc it follows that

Ξ(m)(ξ, t, x) = 0 for (t, x) ∈ Hc, ξ ∈ [0, t],

and consequently ∆̃(t, x, x) = 0. Thus we have proved that

∆(t, x, x) = ∆(t, x, x) for (t, x), (t, x) ∈ Hc.(33)

An easy computation shows that

|Φ(m)
(t, x, x)| ≤ r2‖g(m)(τ, t, x)− g(m)(τ, t, x)‖2

and

|(V z(m))(τ, g(m)(τ, t, x))− (V z(m))(τ, g(m)(τ, t, x))|
≤ [L(‖ϕ‖Y I + d0 + d1) +B]‖g(m)(τ, t, x)− g(m)(τ, t, x)‖.

Moreover we have

‖u(m+1)(τ, g(m)(τ, t, x))− u(m+1)(τ, g(m)(τ, t, x))‖
≤ s1‖g(m)(τ, t, x)− g(m)(τ, t, x)‖,

and

|Θ(m)(τ, t, x, x)|
≤ [M(‖ϕ‖Y I+L + d0 + d1 + d2) + C]‖g(m)(τ, t, x)− g(m)(τ, t, x)‖2.

The above estimates and (30), (33) and Lemma 3.1 imply (28) for some
C̃ ∈ R+ and consequently

∂xz
(m+1)(t, x) = u(m+1)(t, x) on Hc.

Thus condition (IIm+1) is proved.

VII. Now we prove that z(m+1) ∈ CI+Lϕ.c [d, λ]. Of course z(m+1) is contin-
uous on Hc and z(m+1) = ϕ on E. Moreover from (IIm+1) it follows that

‖∂xz(m+1)(t, x)‖ ≤ d1,

‖∂xz(m+1)(t, x)− ∂xz(m+1)(t, x)‖ ≤
∣∣∣
t�

t

λ1(ξ) dξ
∣∣∣+ d2‖x− x‖

on Hc. Our assumptions and (22), (23) also imply the estimates

|z(m+1)(t, x)| ≤ d0, |z(m+1)(t, x)− z(m+1)(t, x)| ≤
∣∣∣
t�

t

λ0(ξ) dξ
∣∣∣

on Hc, which completes the proof of (Im+1). Thus Theorem 5.1 follows by
induction.
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6. Convergence of the sequences {z(m)} and {u(m)}. Now we prove
that the sequences {z(m)} and {u(m)} are uniformly convergent on Hc if the
constant c is sufficiently small. Write

Γ (t) = Γ (t) + P max{1, L0},
and

Θ(t) = exp
[
Γ (c)

c�

0

β(ξ) dξ
]
{Lγ̃(t) + Γ (c)β(t)},(34)

Θ0(t) = L0[γ̃(t) + Γ̃ (c)β(t)] + s0β(t) max{1, L0},(35)

Θ̃(t) = Θ0(t) + C̃Θ(t), C̃ =
c�

0

[Γ̃ (c)β(ξ) + 2‖γ(ξ)‖] dξ.(36)

Theorem 6.1. Suppose that

1) Assumptions H[X], H[V ], H[f, ϕ] are satisfied and ϕ ∈ Y I+L,
2) the constants d = (d0, d1, d2) ∈ R3

+, s = (s0, s1) ∈ R2
+, c ∈ (0, a] and

the functions λ = (λ0, λ1), λ0, λ1, µ ∈ L([0, c],R+) satisfy the conditions
(20)–(23),

3) c ∈ (0, a] is a constant so small that
c�

0

[Θ(τ) + Θ̃(τ)] dτ < 1.(37)

Then the sequences {z(m)} and {u(m)} are uniformly convergent on Hc.

Proof. We first prove that

‖u(m+1) − u(m)‖t ≤
t�

0

Θ(ξ)[‖z(m) − z(m−1)‖ξ + ‖u(m) − u(m−1)‖ξ] dξ,(38)

‖z(m+1) − z(m)‖t ≤
t�

0

Θ̃(ξ)[‖z(m) − z(m−1)‖ξ + ‖u(m) − u(m−1)‖ξ] dξ,(39)

for t ∈ [0, c]. We conclude from Assumptions H[∂qf ], H[f, ϕ], H[V ] and from
Lemma 3.1 that

‖u(m+1) − u(m)‖t ≤ Γ (c)
t�

0

β(ξ)‖u(m+1) − u(m)‖ξ dξ

+
t�

0

[Γ (c)β(ξ) + Lγ̃(ξ)]‖z(m) − z(m−1)‖ξ dξ + L

t�

0

γ̃(ξ)‖u(m) − u(m−1)‖ξ dξ

for t ∈ [0, c]. Hence, using the Gronwall inequality and (34), we get (38).
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It follows from (19) and from Lemma 3.1 that

‖z(m+1) − z(m)‖t ≤
t�

0

Θ0(ξ)[‖z(m) − z(m−1)‖ξ + ‖u(m) − u(m−1)‖ξ] dξ

+
t�

0

[Γ̃ (c)β(ξ) + 2‖γ(ξ)‖]‖u(m+1)− u(m)‖ξ dξ, t ∈ [0, c].

Now, from (38) and (35), (36), we obtain (39). According to (38) and (39),
we have

‖z(m+1) − z(m)‖t + ‖u(m+1) − u(m)‖t

≤
t�

0

[Θ(ξ) + Θ̃(ξ)][‖z(m) − z(m−1)‖ξ + ‖u(m) − u(m−1)‖ξ] dξ

for t ∈ [0, c],m ≥ 1, and there exists δ ∈ (0, 1) such that

(40) ‖z(m+1) − z(m)‖t + ‖u(m+1) − u(m)‖t
≤ δ[‖z(m) − z(m−1)‖t + ‖u(m) − u(m−1)‖t].

From (16), (17) and from Theorem 5.1 it follows that there is C? ∈ R+ such
that

‖z(1) − z(0)‖t + ‖u(1) − u(0)‖t ≤ C?, t ∈ [0, c].

Then the uniform convergence of the sequences {z(m)} and {u(m)} on Hc

follows from (40).

7. Existence of solutions of initial value problems. Now we give
the main existence result for problem (1), (2).

Theorem 7.1. Suppose that

1) ϕ ∈ Y I+L and Assumptions H[X], H[V ], H[f, ϕ] are satisfied ,
2) conditions (20)–(23) and (37) hold.

Then there exists a solution v : E ∪Hc → R of problem (1), (2). Moreover
v ∈ CI+Lϕ.c [d, λ] and u ∈ CLc [s, µ], where u = ∂xv|Hc . If ϕ̃ ∈ Y I+L and
ṽ ∈ CI+ϕ̃.c[d, λ] is a solution of equation (1) with the initial condition

z(t, x) = ϕ̃(t, x) on E,

then there exists κ ∈ C([0, c],R+) such that

‖(v − ṽ)|Ht‖t + ‖(∂xv − ∂xṽ)|Ht‖t ≤ κ(t)‖ϕ− ϕ̃‖Y I , t ∈ [0, c].(41)

Proof. From Theorem 6.1 it follows that there exist functions v ∈
CI+Lϕ.c [d, λ] and u ∈ CLc [s, µ] such that {z(m)} converges uniformly to v and
{u(m)} converges uniformly to u on Hc. Moreover ∂xv exists on Hc and
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∂xv = u. Thus we get

(42) v(t, x) = ϕ(0, g[v, ∂xv](0, t, x)) +
t�

0

f(P [v, ∂xv](τ, t, x)) dτ

−
n∑

k=1

t�

0

∂gkf(P [v, ∂xv](τ, t, x))∂xkv(τ, g[v, ∂xv](τ, t, x)) dτ, (t, x) ∈ Hc,

and

g[v, ∂xv](τ, t, x) = x+
t�

τ

∂qf(P [v, ∂xv](τ, t, x)) dτ, (t, x) ∈ Hc.

For a given (t, x) ∈ Hc, put y = g[v, ∂xv](0, t, x) and

Q(τ, y)

= (τ, g[v, ∂xv](τ, 0, y), (V v)(τ, g[v, ∂xv](τ, 0, y)), ∂xv(τ, g[v, ∂xv](τ, 0, y))).

Then the statement (42) on Hc is equivalent to

(43) v(τ, g[v, ∂xv](τ, 0, y)) = ϕ(0, y) +
t�

0

f(Q(τ, y)) dτ

−
n∑

k=1

t�

0

∂qkf(Q(τ, y))∂xkv(τ, g[v, ∂xv](τ, 0, y)) dτ.

The relations

y = g[v, ∂xv](0, t, x) and x = g[v, ∂xv](t, 0, y)

are equivalent for (t, x) ∈ Hc, y ∈ [−b, b]. By differentiating (43) with respect
to t and by putting again x = g[v, ∂x](t, 0, y), we conclude that v satisfies
(1) for almost all t ∈ I[x] for fixed x ∈ [−b, b]. It is clear that v satisfies the
initial condition (2).

Now we prove (41). The functions (v, ∂xv) satisfy the system of integral
functional equations (9), (10) and (ṽ, ∂xṽ) is a solution of the corresponding
system with ϕ̃ instead of ϕ. Hence we conclude that there exist a function
λ ∈ L([0, c],R+) and a constant d ∈ R+ such that the function

Ψ(t) = ‖(v − ṽ)|Ht‖t + ‖(∂xv − ∂xṽ)|Ht‖t
satisfies the integral inequality

Ψ(t) ≤ d‖ϕ− ϕ̃‖Y I +
t�

0

λ(τ)Ψ(τ) dτ, t ∈ [0, c].

Using the Gronwall inequality we obtain (41) with

κ(t) = d exp
[ t�

0

Ψ(τ) dτ
]
.

This proves the theorem.
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Remark 7.2. If all the assumptions of Theorem 7.1 are satisfied and the
functions

f(·, x, p, q), ∂xf(·, x, p, q), ∂pf(·, x, p, q), ∂qf(·, x, p, q)
are continuous on I[x] for (x, p, q) ∈ [−b, b] × R × Rn then we get classical
solutions of equation (1).

Remark 7.3. The existence result presented in this paper is new also in
the case when the initial set is bounded. Differential equations with deviated
variables and differential integral equations can be obtained by specializing
the operator V .
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Reçu par la Rédaction le 31.7.2002 (1352)


