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Smooth points of a semialgebraic set

by JACEK StAsIiCA (Krakéw)

Abstract. It is proved that the set of smooth points of a semialgebraic set is semi-
algebraic.

1. Introduction. The semialgebraicity of the smooth points of a semi-
algebraic set plays an important role in semialgebraic geometry. In [E1]
S. Lojasiewicz proved that for locally semialgebraic sets the notions of a
Nash smooth point and of an analytic point coincide. Moreover if I" C R"
is an analytic submanifold, then for the germ I, of I" at a € I" we have the
equivalence:

I, is Nash < I}, is semialgebraic.

Hence the semialgebraicity of the smooth points can be obtained follow-
ing Y.ojasiewicz’s method for the analogous theorem for semianalytic sets.
The aim of this paper is to give a straightforward proof of the semialge-
braicity of the smooth points of a semialgebraic set based on the properties
of asymptotic analytic solutions proved in [S].

Recall that a subset of R" is semialgebraic if it is described by polyno-
mials on R™. Thus, the class of semialgebraic subsets of R" is the algebra of
subsets of R™ which is generated by the family of sets { P > 0}, where P is a
polynomial. Equivalently, £ C R" is semialgebraic if there are polynomials
P;and P;j,i=1,...,p, j =1,...,q, such that

P
E=|J{z|P(z)=0,Pj(z)>0,j=1,...,q}.
i=1
Let G be an open subset of R”. We say that an analytic function f :
G — R is a Nash function at a € G if W(x, f(x)) = 0 in a neighborhood
of a for a polynomial W # 0 in R;"ng. A Nash function on G is an analytic

function on G which is Nash at each point of G.
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2. Auxiliary results

LEMMA 1. Let E be a semialgebraic subset of R™. If int E = (), then
some nonzero polynomial on R™ vanishes on E.

Proof. We have E = J{_; B; with B; = {P; = 0} n[;{P;; > 0} for
some polynomials P; and F;;. We can assume that each B; is nonempty.
Then P; # 0, since otherwise B; would be open. Hence P; - ... - P, is the
required polynomial. m

LEMMA 2. FEvery semialgebraic set E C R" is contained in an algebraic
set V.C R"™ of the same dimension.

Proof. Let 7, : R" — L, be the natural projections onto L, :Rij},._“xakﬂ,
where a = (aq,...,0541), 1 <ag < ... < agy1 <n, and k = dim E. Then

each 7, (FE) is semialgebraic of dimension at most k. Hence 7, (E) C{P,=0}
for a nonzero polynomial P, . Therefore E C V = [ {Pasoma = 0}. Moreover
dim V' = k, since otherwise V would contain a semialgebraic leaf I" (1) of
dimension k + 1 and so there would exist an « such that int7,(I") # 0,
which would imply P, =0. u

We say that a point a € E is a smooth point of dimension k of E if it has
a neighborhood in E which is an analytic submanifold of dimension k. By
definition the dimension of F is equal to the maximum of the dimensions of
its smooth points.

Note that every polynomial on R™ of degree r» > 0 is monic of degree r
with respect to each of its variables in some coordinate system.

LEMMA 3. Let E C R? be a semialgebraic set of dimension < k < n.
Then in some linear coordinate system, E is contained in a Weierstrass set

(*) {Pk-l-l(ua :Ek+1) == Pn(ua IEn) = 0}7
where u = (x1,...,2) and P; is a monic polynomial on Rﬁﬁ for j =
k+1,...,n. (Such a coordinate system will be called a regular system for E.)

Proof. By the previous lemma it suffices to give the proof for an algebraic
set V' DO E of dimension k. Let P, D ... D Prr1 D Px denote the rings of
polynomials on R . =~ . ... ,Rﬁ:;}ﬁ . RE (after suitable identifications).
Denote by R; the ring of restrictions of the polynomials from P; to V. Let
I = {P € P, | Py = 0}. Changing coordinate systems in R",... R*
successively we find in I N P; monic polynomials with respect to x;. This
means in particular that w; = i)y is integral over R;_ 1. Evidently R; =
R;_1[wj]; it follows that wy,, ..., wiy are integral over Ry, which means that
there exist monic polynomials P; € Pyz;], j = n,...,k+1, with Pj, =0.m

(1) A semialgebraic leaf is any analytic submanifold which is a semialgebraic set.
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Let us recall two theorems (for proofs see [S]) useful for the proof of the
main theorem.

THEOREM 1. Let Q(z,t) be a complex polynomial on Rgil, monic in t.

Then there exists m > 0 such that if f,g are complex, continuous roots:
Qx, f(z)) = Q(x,g(x)) = 0 in a neighborhood of a € R™, then the following
implication holds:

in a neighborhood of a.

THEOREM 2. Let Q be a real polynomial on jol, monic in t, and let

L > 0. Then there exists N € N such that the following implication holds:
if Q(z,9(x)) = O(|lz — a|V) as © — a, with some real-analytic function 1
defined in a neighborhood of a € R"™, then there exists a Nash function ¢
defined in a neighborhood of a € R™ such that Q(x,o(z)) =0 and ¢ — ¢ =
O(|z — a|*) as x — a.

3. Main result. We say that a submanifold I" C R" is topographic if it
is the graph of an analytic mapping of an open subset of R* into R*~*.

THEOREM 3. Let E C REHL | =n — k, be a semialgebraic set contained

(RO

in the Weierstrass set (). Then the set
A={x € E|UNE is a k-topographic submanifold for some nbd U of =}

is semialgebraic.

Proof. For a € RE, b € R, and 6, > 0 set Uys. = B(a,d) x B(b,e),
where B(a,d) = {u | |[u—a|<d}, B(b,e) ={v | |v—0b|<e}. Let (a,b) € E.
The set Egpse = ENUgpse is the graph of some continuous function B(a, ) —
R if and only if ENUys. C F and for u € B(a,d) we have (u,v) € ENUups-
for exactly one v. Thus the set

F ={(a,b,d,¢) | Egse is the graph of

some continuous function on B(a,d)}

is semialgebraic.

Take m from Theorem 1, the same for all polynomials P;, and N > m
from Theorem 2 also the same for all polynomials P;, and L = m. For
c= {ca}‘a|§ ~, where ¢, € Rt and o € N¥, we define the polynomial mapping
Pe i u— 32, cau®. In what follows we write (co,d) = c. For a € RE,
¢, C, N, > 0 we define the following subset of Rfjj}:

Waeons = {(u,v) | u € B(a,d) and |v — P.(u—a)| < Clu —a|}.
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It is enough to show that

(#x)  A={(a,b) e Rt | (a,b,0,e) € F and
Eapse C Wyp,e)ons With some 9, €, d,C}

because the last set is semialgebraic. Let (a,b) € I'. Obviously for some
sufficiently small §,e > 0 we have (a,b,d,e) € F and the set Egs. is the
graph of some Nash function ¢; taking ¢’ such that x — P(b7c/)(:1: —a) is the
Nth Taylor polynomial for ¢ we have Eqpse = ¢ C Wy, »)ons with some C
when 9 is sufficiently small.

Now, assume that the condition (xx) holds. Then Egs. is the graph
of some continuous function 1 : B(a,d) — R.. Hence Q(u,(u)) = 0 on
B(a,d), where Q = (Pgy1,...,P,). The graph of v is contained in the set
Waeens- Thus ¥(u) — Pe(u —a) = O(|u — a|V). Therefore Q(u, P.(u—a)) =
O(|lu — a|™). By Theorem 2 there exists an analytic function ¢ defined in
a neighborhood of a such that Q(u,p(u)) = 0 and ¢(u) — P.(u — a) =
O(Ju — a|™). Hence ¢ — 1 = O(Ju — a|™) and according to Theorem 1 we
have ¢ =% in a neighborhood of a. =

THEOREM 4. Let E C R™ be a semialgebraic set. Then the set E®) of
its smooth points of dimension k is semialgebraic as well.

Proof. 1t is enough to prove the theorem for k£ = dim F, because we can
proceed by induction.
For each isomorphism ¢ : R” — R™ we define

where eq, ..., e, is a canonical basis of R"”. We say that a sequence ¢1,..., o,
of linear isomorphisms of R™ is complete if A(¢1),...,A(¢r) generate
A""FR™. One can easily prove that:

(1) there exists a complete sequence,

(2) any sequence that is sufficiently close (in the natural topology) to a
complete one is complete,

(3) if ¢1,..., ¢, is a complete sequence and the set E is smooth of di-
mension k at a then ¢, (F) is k-topographic at ¢, (a) for some v.

We find a complete sequence @1, ..., @, such that each ; is a regular
system for E. According to Theorem 3 the set R, of points at which ¢, (FE)
is k-topographic is a semialgebraic set. Hence

EW = Jo, ' (R)

is semialgebraic as a finite sum of semialgebraic sets. =
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