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Extension theorems of Sakai type for
separately holomorphic and meromorphic functions

by Peter Pflug and Viêt Anh Nguyên (Oldenburg)

Abstract. We first exhibit counterexamples to some open questions related to a
theorem of Sakai. Then we establish an extension theorem of Sakai type for separately
holomorphic/meromorphic functions.

1. Introduction. We first fix some notations and terminology. Through-
out the paper, E denotes the unit disc of C, and for any set S ⊂ Cn, intS
(or equivalently intCn S) denotes the interior of S. For any domain D ⊂ Cn,
we say that the subset S ⊂ D does not separate domains in D if for every
domain U ⊂ D, the set U \ S is connected. Moreover, O(D) (resp. M(D))
will denote the space of holomorphic (resp. meromorphic) functions on D.
Finally, if S is a subset of D × G, where D ⊂ Cp, G ⊂ Cq are some open
sets, then for a ∈ D (resp. b ∈ G), the fiber S(a, ·) (resp. S(·, b)) is the set
{w ∈ G : (a,w) ∈ S} (resp. {z ∈ D : (z, b) ∈ S}).

In 1957 E. Sakai [9] claimed to have proved the following result.

Theorem. Let S ⊂ E × E be a relatively closed set such that intS = ∅
and S does not separate domains in E × E. Let A (resp. B) be the set of
all a ∈ E (resp. b ∈ E) such that intC S(a, ·) = ∅ (resp. intC S(·, b) = ∅).
Put X := X(A,B;E,E) = (A × E) ∪ (E × B). Then for every function
f : X \ S → C which is separately meromorphic on X, there exists an
f̂ ∈ M(E × E) such that f̂ = f on X \ S.

Unfortunately, it turns out, as reported in [4], that the proof of E. Sakai
contains an essential gap. In the latter paper M. Jarnicki and the first author
gave a correct proof of this theorem.

E. Sakai also claimed in [9] that the following question (the n-dimensional
version of the Theorem) can be answered positively but he did not give any
proof.
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Question 1. For any n ≥ 3, let S ⊂ En be a relatively closed set such
that intS = ∅ and S does not separate domains. Let f : En \ S → C be
such that for any j ∈ {1, . . . , n} and for any (a′, a′′) ∈ Ej−1 × En−j with
intC S(a′, ·, a′′) = ∅, the function f(a′, ·, a′′) extends meromorphically to E.
Does f always extend meromorphically to En?

In connection with the Theorem and Question 1, M. Jarnicki and the
first author [4] posed two more questions:

Question 2. Let A be a subset of En (n ≥ 2) which is plurithin at
0 ∈ En (see Section 2 below for the definition). For an arbitrary open neigh-
borhood U of 0, does there exist a non-empty relatively open subset C of a
real hypersurface in U such that C ⊂ U \ A?

Question 3. Let D ⊂ Cp, G ⊂ Cq (p, q ≥ 2) be pseudoconvex domains
and let S ⊂ D ×G be a relatively closed set such that intS = ∅ and S does
not separate domains in D × G. Let A (resp. B) be the set of all a ∈ D
(resp. b ∈ G) such that intCq S(a, ·) = ∅ (resp. intCp S(·, b) = ∅). Put X :=
X(A,B;D,G) = (A × G) ∪ (D × B) and let f : X \ S → C be separately
meromorphic on X. Does there always exist a function f̂ ∈ M(D×G) such
that f̂ = f on X \ S?

This note has two purposes. The first one is to give counterexamples to
the three open questions above. The second one is to describe the maximal
domain to which the function f in Questions 1 and 3 can be meromorphically
extended.

The paper is organized as follows. We begin Section 2 by collecting some
background of pluripotential theory and introducing some notations. This
is necessary to state the results afterwards.

Section 3 provides three counterexamples to the three open questions
above.

The subsequent sections are devoted to the proof of a result in the posi-
tive direction. More precisely, we describe qualitatively the maximal domain
of meromorphic extension of the function f in Questions 1 and 3. Section 4
develops auxiliary tools that will be used in Section 5 to prove the positive
result.

Acknowledgments. The paper was written while the second author
was visiting the Carl von Ossietzky Universität Oldenburg, being supported
by the Alexander von Humboldt Foundation. He wishes to express his grat-
itude to these organisations.

2. Background and statement of the results. We keep the main
notation from [4].
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Let N ∈ N, N ≥ 2, and let ∅ 6= Aj ⊂ Dj ⊂ Cnj , where Dj is a domain,
j = 1, . . . , N. We define an N -fold cross

X = X(A1, . . . , AN ;D1, . . . ,DN )

:=
N⋃

j=1

A1 × . . .×Aj−1 ×Dj × Aj+1 × . . .× AN ⊂ Cn1+...+nN = Cn.

For an open set Ω ⊂ Cn and A ⊂ Ω, put

hA,Ω := sup{u : u ∈ PSH(Ω), u ≤ 1 on Ω, u ≤ 0 on A},
where PSH(Ω) denotes the set of all plurisubharmonic functions on Ω. Put

ωA,Ω := lim
k→∞

h∗A∩Ωk,Ωk ,

where {Ωk}∞k=1 is a sequence of relatively compact open setsΩk ⊂ Ωk+1 ⊂ Ω
with

⋃∞
k=1Ωk=Ω (h∗ denotes the upper semicontinuous regularization of h).

We say that a subset ∅ 6= A ⊂ Cn is locally pluriregular if h∗A∩Ω,Ω(a) = 0 for
any a ∈ A and for any open neighborhood Ω of a. We say that A is plurithin
at a point a ∈ Cn if either a 6∈ A, or a ∈ A and lim supA\{a}3z→a u(z) < u(a)
for a suitable function u plurisubharmonic in a neighborhood of a. For a good
background of pluripotential theory, see the books [5] or [1].

For an N -fold cross X := X(A1, . . . , AN ;D1, . . . ,DN ) let

X̂ :=
{

(z1, . . . , zN ) ∈ D1 × . . .×DN :
N∑

j=1

ωAj ,Dj (zj) < 1
}
.

Suppose that Sj ⊂ (A1 × . . .×Aj−1)× (Aj+1 × . . .×AN ), j = 1, . . . , N.
Define the generalized N -fold cross

T = T(A1, . . . , AN ;D1, . . . ,DN ;S1, . . . , SN )

:=
N⋃

j=1

{(z′, zj, z′′) ∈ (A1 × . . .× Aj−1)×Dj × (Aj+1 × . . .×AN ) :

(z′, z′′) 6∈ Sj}.
Let M ⊂ T be a relatively closed set. We say that a function f : T \M

→ C is separately holomorphic and write f ∈ Os(T ) (resp. separately mero-
morphic and write f ∈ Ms(T )) if for any j ∈ {1, . . . , N} and (a′, a′′) ∈
(A1 × . . . × Aj−1) × (Aj+1 × . . . × AN ) \ Sj the function f(a′, ·, a′′) can be
holomorphically (resp. meromorphically) extended to Dj (1).

We are now ready to state the results. The following propositions give
negative answers to Questions 2, 3 and 1 respectively.

(1) Observe that we have changed a little the definition appearing in [2]–[4].
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Proposition A. For any n ≥ 2, there is an open dense subset A of En

which is plurithin at 0 and there exists no non-empty relatively open subset
C of a real hypersurface such that C ⊂ En \ A.

Proposition B. Let D ⊂ Cp, G ⊂ Cq (p, q ≥ 2) be bounded pseudo-
convex domains. Then there is a relatively closed set S ⊂ D × G with the
following properties:

(i) intS = ∅ and S does not separate domains;
(ii) let A (resp. B) be the set of all a ∈ D (resp. b ∈ G) such that

intCq S(a, ·) = ∅ (resp. intCp S(·, b) = ∅) and put X := X(A,B;D,G); then
there exists a function f : X \ S → C, separately holomorphic on X, such
that there is no function f̂ ∈M(D ×G) with f̂ = f on X \ S.

Proposition C. For all n ≥ 3, there is a relatively closed set S ⊂ En

with the following properties:

(i) intS = ∅ and S does not separate domains;
(ii) for 1 ≤ j ≤ n, let Sj denote the set of all (a′, a′′) ∈ Ej−1 × En−j

such that intC S(a′, ·, a′′) 6= ∅ and define the n-fold generalized cross T :=
T(E, . . . , E;E, . . . , E;S1, . . . , Sn); then there is a function f : T \ S → C
which is separately holomorphic on T and there is no function f̂ ∈ M(En)
such that f̂ = f on T \ S.

Problem. Are the answers to Questions 1 and 3 affirmative if the con-
dition on S is sharpened as follows: S does not separate lower-dimensional
domains?

Finally, we state a result in the positive direction.

Theorem D. For all j ∈ {1, . . . , N} (N ≥ 2), let Dj be a pseudoconvex
domain in Cnj and let S be a relatively closed set of D := D1×. . .×DN with
intS = ∅. For j ∈ {1, . . . , N}, let Sj denote the set of all (a′, a′′) ∈ (D1 ×
. . .×Dj−1)× (Dj+1 × . . .×DN ) such that intCnj S(a′, ·, a′′) 6= ∅ and define
the N -fold generalized cross T := T(D1, . . . ,DN ;D1, . . . ,DN ;S1, . . . , SN ).
Let f : T \ S → C be a function such that f ∈ Os(T ) (resp. f ∈ Ms(T )).

(i) Then there are an open dense set Ω of D and exactly one function
f̂ ∈ O(Ω) such that f̂ = f on (T ∩Ω) \ S.

(ii) In the case where N = 2, (i) can be strengthened as follows. Let Ωj be
a relatively compact pseudoconvex subdomain of Dj (j = 1, 2). Then there
are an open dense set Aj in Ωj and exactly one function f̂ ∈ O(X̂) (resp.
f̂ ∈ M(X̂)), where X := X(A1, A2;Ω1, Ω2), such that f̂ = f on (T ∩X̂)\S.

A remark is in order. In contrast with the other usual extension the-
orems (see [1]–[4] and the references therein), the domain of meromor-
phic/holomorphic extension of the function f in Theorem D depends on f.
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3. Three counterexamples. In what follows we will fix a function v ∈
SH(2E) such that v(0) = 0 and the complete polar set {z ∈ 2E : v = −∞}
is dense in 2E. For example one can choose v of the form

v(z) :=
∞∑

k=1

log (|z − qk|/4)
dk

−
∞∑

k=1

log (|qk|/4)
dk

,(3.1)

where (Q+ iQ) ∩ 2E∗ = {q1, q2, . . . , qk, . . .}, E∗ := E \ {0}, and {dk}∞k=1 is
any sequence of positive real numbers such that

∑∞
k=1

log (|qk|/4)
dk

is finite.
For any positive integer n ≥ 2, define a new function u ∈ PSH((2E)n)

and a subset A of En as follows:

(3.2)
u(z) :=

n∑

k=1

v(zk), z = (z1, . . . , zn) ∈ (2E)n,

A = An := {z ∈ En : u(z) < −1}.
Observe that A is an open dense subset of En because A contains the set
{z ∈ E : v = −∞} × . . .× {z ∈ E : v = −∞}, which is dense in En by our
construction (3.1) above.

Proposition 3.1. Let S be any closed set contained in the closed set
En \ A. Then S does not separate domains.

Taking this proposition for granted, we are now able to complete the
proof of Proposition A.

Proof of Proposition A. It is clear from (3.1) and (3.2) that the open
dense set A is plurithin at 0 ∈ En. By Proposition 3.1, the closed set En \A
does not separate domains. Therefore this set cannot contain any open sub-
set of a real hypersurface. Thus A has all the desired properties.

Proof of Proposition 3.1. One first observes that

S ⊂ En \ A = {z ∈ En : u(z) ≥ −1}.
For any four vectors a := (a1, . . . , an), b := (b1, . . . , bn), c := (c1, . . . , cn),
d := (d1, . . . , dn) in Rn with the property that ak < bk and ck < dk, k =
1, . . . , n, one defines an open cube in Cn by

∆ = ∆(a, b, c, d)

:= {z ∈ Cn : ak < Re zk < bk, ck < Im zk < dk, k = 1, . . . , n}.
It is clear that the intersection of two such cubes is either empty or a cube.

One first shows that for any cube ∆ ⊂ En the open set ∆\S is connected.
Indeed, pick two points z = (z1, . . . , zn) and w = (w1, . . . , wn) in ∆\S. Since
{z ∈ E : v(z) = −∞} is dense in E, we can choose z′ = (z′1, . . . , z

′
n) and

w′ = (w′1, . . . , w
′
n) in ∆ \ S such that
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(i) the segments γ1(t) := (1 − t)z + tz′ and γ3(t) := (1 − t)w + tw′,
0 ≤ t ≤ 1, are contained in ∆ \ S;

(ii) z′1, . . . , z
′
n and w′1, . . . , w

′
n are in {z ∈ E : v(z) = −∞}.

Consider now γ2 : [0, 1]→ ∆ given by

γ2(t) := (w′1, . . . , w
′
j , (j + 1− nt)z′j+1 + (nt− j)w′j+1, z

′
j+2, . . . , z

′
n)

for t ∈ [j/n, (j + 1)/n] and j = 0, . . . , n − 1. By (3.2) and property (ii)
above, γ2(t) ∈ {z ∈ En : u(z) = −∞} for t ∈ [0, 1]. This implies that
γ2 : [0, 1]→ ∆ \ S.

Observe that γ2(0) = z′ and γ2(1) = w′. By (i), the new path γ : [0, 1]→
∆ \ S given by

γ(t) :=




γ1(3t), t ∈ [0, 1/3],
γ2(3t− 1), t ∈ [1/3, 2/3],
γ3(3t− 2), t ∈ [2/3, 1],

satisfies γ(0) = z and γ(1) = w, and ∆ \ S is therefore connected.
Now let U be any subdomain of En. We wish to show that U \ S is

connected. To do this, pick points z = (z1, . . . , zn) and w = (w1, . . . , wn)
in U \ S. Since U is arcwise connected, there is a continuous function γ :
[0, 1]→ U such that γ(0) = z and γ(1) = w.

By the Heine–Borel Theorem, the compact set L := γ([0, 1]) can be
covered by a finite number of cubes ∆l (1 ≤ l ≤ N) with ∆l ⊂ U and
∆l ∩ L 6= ∅. Since the path L is connected, the union

⋃N
l=1∆l is also con-

nected.
Suppose without loss of generality that z ∈ ∆1 and w ∈ ∆N . From the

discussion above, if ∆1 ∩∆2 6= ∅ then (∆1 \ S) ∩ (∆2 \ S) = (∆1 ∩∆2) \ S
is connected, and hence (∆1 ∪ ∆2) \ S is also connected. Repeating this
argument at most N times and using the connectivity of

⋃N
l=1∆l, we finally

conclude that
⋃N
l=1∆l \ S (⊂ U \ S) is also connected. This completes the

proof.

Corollary 3.2. (i) If S1, . . . ,SN are relatively closed subsets of En

which do not separate domains, then the union
⋃N
l=1 Sl does not separate

domains either.
(ii) Let A,S be as in Proposition 3.1. Then for any closed sets F1 in Cp

and F2 in Cq (p, q ≥ 0), the closed set F1×S×F2 does not separate domains
in Cp × En × Cq.

Proof. To prove (i), let U be any subdomain of En. Since U \(⋃Nl=1 Sl) =
(. . . (U \ S1) . . . \ SN ), part (i) follows from the hypothesis on the Sl’s.

To prove part (ii), consider any subdomain U of Cp × En × Cq and let
(z1, w1, t1), (z2, w2, t2) be two points in U \ (F1×S×F2). Since A is an open
dense subset of En, int(F1 × S × F2) = ∅, and therefore we can employ the
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compactness argument that we already used in the proof of Proposition 3.1.
Consequently, one is reduced to the case where U is a cube in Cp+n+q.

Another reduction is in order. Since U \ (F1 × S × F2) is open and A
is dense in En, by replacing w1 (resp. w2) by w′1 (resp. w′2) close to w1

(resp. w2), we may suppose that w1, w2 ∈ En \ S.
Write the cube U as the product ∆1 × ∆2 × ∆3, where ∆1 (resp. ∆2

and ∆3) is a cube in Cp (resp. Cn and Cq). By Proposition 3.1, there is a
continuous path γ2 : [0, 1]→ ∆2 \ S such that γ2(0) = w1 and γ2(1) = w2.

We now consider the path γ : [0, 1] → ∆1 ×∆2 ×∆3 \ S where γ(t) :=
(γ1(t), γ2(t), γ3(t)) and γ1(t) := (1 − t)z1 + tz2, γ3(t) := (1 − t)t1 + tt2,
t ∈ [0, 1]. It is easy to see that γ(0) = (z1, w1, t1) and γ(1) = (z2, w2, t2),
which finishes the proof.

The following two lemmas will be crucial for the proof of Propositions B
and C.

Lemma 3.3. For an open set Ω⊂Cn and A⊂Ω, we have either ωA,Ω≡0
or supΩ ωA,Ω = 1.

Proof. We first prove the lemma in the case whereΩ is bounded. Suppose
in order to get a contradiction that supΩ h

∗
A,Ω = M with 0 < M < 1. By

the definition of h∗A,Ω, it follows that

{u : u ∈ PSH(Ω), u ≤ 1 on Ω, u ≤ 0 on A}
= {u : u ∈ PSH(Ω), u ≤M on Ω, u ≤ 0 on A}.

Therefore, h∗A,Ω(z) ≤ Mh∗A,Ω < h∗A,Ω for any z ∈ Ω with h∗A,Ω(z) > 0, and
we obtain the desired contradiction.

The general case is analogous using the definition of ωA,Ω.

Lemma 3.4. Let Ω1 ( Ω2 be two domains of Cn such that Ω2 is pseu-
doconvex. Assume that there is an upper bounded function φ ∈ PSH(Ω2)
satisfying Ω1 = {z ∈ Ω2 : φ(z) < 0}. Then there is a function f ∈ O(Ω1)
such that there is no function f̂ ∈ M(Ω2) with f̂ = f on Ω1.

Proof. It is clear from the hypothesis that Ω1 is also pseudoconvex. Let
∂Ω1 be the boundary of Ω1 in Ω2 and let S be a countable dense subset of
∂Ω1. It is a classical fact that there is a function f ∈ O(Ω1) such that

lim
z∈Ω1, z→w

|f(z)| =∞, w ∈ S.(3.3)

We will show that this is the desired function. Indeed, suppose in order to
get a contradiction that there is a function f̂ ∈ M(Ω2) satisfying f̂ = f
on Ω1. Because of (3.3), S ∩ Ω2 and then ∂Ω1 ∩ Ω2 are contained in the
pole set of f̂ (i.e. the union of the set of all poles of f̂ and the set of all
indeterminacy points of f̂ ). Therefore, for any point w ∈ ∂Ω1 ∩ Ω2, there
is a small open neighborhood U of w and a complex analytic subset C
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of codimension one such that U \ C ⊂ Ω1. Since φ ∈ PSH(U) is upper
bounded, φ(w) = lim supz∈U\C, z→w φ(z) = φ(w) ≤ 0 for all w ∈ ∂Ω1. Since
Ω1 ( Ω2, φ is non-constant and therefore φ(w) < 0 for all w ∈ ∂Ω1, which
is a contradiction.

We are now ready to prove Propositions B and C.

Proof of Proposition B. Suppose, without loss of generality, that D = Ep

and G = Eq. The general case is analogous. Let Fp (resp. Fq) be any closed
ball contained in the open set Ap (resp. Aq). Define the relatively closed set
S by

S := (Ep \ Ap)× Fq ∪ Fp × (Eq \ Aq).(3.4)

We now check the properties (i) and (ii) of Proposition B. First, intS = ∅
because Ap (resp. Aq) is open dense set in Ep (resp. Eq). Second, by Propo-
sition 3.1 and Corollary 3.2(ii), the two relatively closed sets (Ep \ Ap)
× Fq and Fp × (Eq \ Aq) do not separate domains. By Corollary 3.2(i), the
union S also enjoys this property. Thus S satisfies (i).

Using (3.4), a direct computation entails that A = Ap and B = Aq and
A,B are open, in particular they are locally pluriregular.

By the classical Cross Theorem (see for instance [7] or [1]), the envelope
of holomorphy of X is given by

X̂ := {(z, w) ∈ Ep × Eq : ωA,Ep(z) + ωB,Eq(w) < 1}.
We now show that h∗An,En(0) > 0 for n ≥ 2. Indeed, let M := supEn u,

where u is defined in (3.2). Observe that M > 0 since u(0) = 0. Consider
the function ũ ∈ PSH(En) given by

ũ(z) :=
u(z)−M
M + 1

2

+ 1 for z ∈ En.

It can be easily checked that ũ(z) ≤ 1 on En and ũ(z) ≤ 0 on An. Thus
ũ(0) ≤ h∗An,En(0). On the other hand, ũ(0) = 1/(2M + 1) > 0. Hence our
assertion above follows.

We next show that X̂ ( Ep × Eq. Indeed, we have

{w ∈ Eq : (0, w) ∈ X̂} ⊂ {w ∈ Eq : h∗Aq,Eq(w) < 1− h∗Ap,Ep(0)}.
Since h∗Aq,Eq(0) > 0 and h∗Ap,Ep(0) > 0, Lemma 3.3 applies, and conse-
quently, the latter set is strictly contained in Eq. This proves our assertion.

We are now ready to complete the proof. By Lemma 3.4, there is a
holomorphic function f in X̂ which cannot be meromorphically extended
to Ep × Eq. Therefore, there is no meromorphic function f̂ ∈ M(Ep × Eq)
such that f̂ = f on

X \ S = ((Ap \ Fp)× Eq) ∪ (Ap ×Aq) ∪ (Ep × (Aq \ Fq)),
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which is a set of unicity for meromorphic functions. The proof is thereby
finished.

Proof of Proposition C. In order to simplify the notation, we only con-
sider the case n = 3, the general case n > 3 is analogous. Let B be the
following open dense subset of E:

B := {z ∈ E : v(z) < −1/2},
where v is given by (3.1). Then by virtue of (3.2), it can be checked that
(E \ B) × (E \ B) ⊂ E2 \ A2. Fix any closed ball F contained in the open
set B. Next apply Proposition 3.1 and Corollary 3.2 to the relatively closed
set S := (E \ B)× (E \ B). Consequently, the set

S := (F × (E \ B)× (E \ B)) ∪ ((E \ B)× F × (E \ B))(3.5)

∪ ((E \ B)× (E \ B)× F )

does not separate domains in E3. Moreover, since B is an open dense subset
of E, we see that intS = ∅ and S is relatively closed. Hence S satisfies
property (i).

To verify (ii), one first computes the following sets using (3.5):

S1 = S2 = S3 = (E \ B)× (E \ B),

T = (B × E × E) ∪ (E × B × E) ∪ (E × E × B).
(3.6)

Next, by the product property for the relative extremal function [6], we have
h∗B×B,E2(0) = h∗B,E(0). Since B×B ⊂ A2 and we have shown in Proposition B
that h∗A2,E2(0) > 0, it follows that h∗B,E(0) > 0.

Consider now the domain of holomorphy

Ω := {(z, w, t) ∈ E3 : h∗B,E(z) + h∗B,E(w) + h∗B,E(t) < 2}.(3.7)

Since B is open and therefore locally pluriregular, it can be proved using
Lemma 5 in [2] that Ω is a domain. Moreover it can be easily checked that
T ⊂ Ω using (3.6) and (3.7).

We now prove that Ω ( E3. Indeed, since h∗B,E(0) > 0, by Lemma 3.3
there are z, w ∈ E such that h∗B,E(z) > 2/3 and h∗B,E(w) > 2/3. Then the
fiber

{t ∈ E : (z, w, t) ∈ Ω} ⊂ {t ∈ E : h∗B,E(t) < 2/3}.
Another application of Lemma 3.3 shows that the latter set is strictly con-
tained in E. This proves our assertion.

We can now complete the proof. By Lemma 3.4, there is a holomorphic
function f in Ω which cannot be meromorphically extended to En. There-
fore, there is no meromorphic function f̂ ∈M(En) such that f̂ = f on T \S,
a set of unicity for meromorphic functions. Hence, the proof is finished.
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4. Auxiliary results. Let S be a subset of an open set D ⊂ Cn. Then
S is said to be of Baire category I if S is contained in a countable union of
relatively closed sets in D with empty interior. Otherwise, S is said to be of
Baire category II.

The following lemma is very useful.

Lemma 4.1. For j ∈ {1, . . . ,M} and M ≥ 2, let Ωj be a domain in Cmj
and let S be a relatively closed subset of Ω1 × . . .×ΩM with intS = ∅. For
aj ∈ Ωj , j ∈ {3, . . . ,M}, let S(a3, . . . , aM ) denote the set of all a2 ∈ Ω2 such
that intCm1 S(·, a2, a3, . . . , aM) = ∅. For j ∈ {4, . . . ,M}, let S(aj , . . . , aM )
denote the set of all aj−1 ∈ Ωj−1 such that Ωj−2 \ S(aj−1, aj , . . . , aM ) is of
Baire category I , and finally let S denote the set of all aM ∈ ΩM such that
ΩM−1 \ S(aM ) is of Baire category I. Then ΩM \ S is of Baire category I.

Proof. For j ∈ {1, . . . ,M} let (Q + iQ)mj = {qj1, . . . , q
j
n, . . .} and δn :=

1/n, n ∈ N. For q ∈ Ωj and r > 0, let ∆q(r) denote the polydisc in Cmj
with center q and multi-radius (r, . . . , r).

Suppose to get a contradiction that ΩM \S is of Baire category II. Then
for all aM ∈ ΩM \S, ΩM−1\S(aM ) is of Baire category II. Therefore, for j =
M−1, . . . , 3 and any aj ∈ Ωj \S(aj+1, . . . , aM ), the set Ωj−1\S(aj , . . . , aM )
is of Baire category II. Put

Sn(a3, . . . , aM ) := {a2 ∈ Ω2 : S(·, a2, a3, . . . , aM ) ⊃ ∆q1
n
(δn)}.

Since S is relatively closed, Sn(a3, . . . , aM ) is also relatively closed in Ω2.
Moreover, from the definition of S(a3, . . . , aM), we have the identity

Ω2 \ S(a3, . . . , aM ) =
∞⋃

n=1

Sn(a3, . . . , aM ).

Since it is shown in the above discussion that Ω2 \ S(a3, . . . , aM ) is of
Baire category II in Ω2, we can apply the Baire Theorem to the
right side of the latter identity. Consequently, there exist n1, n2 ∈ N such
that Sn1(a3, . . . , aM ) ⊃ ∆q2

n2
(δn2). This implies that S(·, ·, a3, . . . , aM ) ⊃

∆q1
n1

(δn1)×∆q2
n2

(δn2).
Now define inductively, for j = 2, . . . ,M − 1 and n1, . . . , nj ∈ N,

Sn1,...,nj (aj+2, . . . , aM )

:= {aj+1 ∈ Ωj+1 : S(. . . , aj+1, . . . , aM ) ⊃ ∆q1
n1

(δn1)× . . .×∆
qjnj

(δnj )}.

Since S is relatively closed, Sn1,...,nj (aj+2, . . . , aM ) is also relatively closed.
Moreover, it can be checked that

Ωj+1 \ S(aj+2, . . . , aM ) ⊂
∞⋃

n1,...,nj=1

Sn1,...,nj (aj+2, . . . , aM ).



Extension theorems of Sakai type 181

By the Baire Theorem again, it follows that there are n1, . . . , nj+1 ∈ N such
that Sn1,...,nj (aj+2, . . . , aM ) ⊃ ∆

qj+1
nj+1

(δnj+1), and hence

S(. . . , aj+2, . . . , aM ) ⊃ ∆q1
n1

(δn1)× . . .×∆
qj+1
nj+1

(δnj+1).

Finally, we deduce for j = M − 1 that intS 6= ∅, which contradicts the
hypothesis. Hence, the proof is complete.

Remark 4.2. If we apply Lemma 4.1 to the case where Ω1 := Dj and
Ω2 := (D1×. . .×Dj−1)×(Dj+1×. . .×DN ) then, for each j ∈ {1, . . . , N}, the
set Sj in the statement of Theorem D is of Baire category I. In particular,
the set Ω \ ((T \ S) ∩Ω) is of Baire category I for all open sets Ω ⊂ D.

Lemma 4.3. Let U ⊂ Cp and V ⊂ Cq be two pseudoconvex domains.
Consider four sets C ⊂ A ⊂ U and D ⊂ B ⊂ V such that C = A, D =
B and A, B are locally pluriregular. Put X := X(A,B;U, V ) and X̂ :=
X̂(A,B;U, V ). Assume f ∈ Os(X) and there is a finite constant K such
that for all c ∈ C and d ∈ D,

sup
V
|f(c, ·)| < K and sup

U
|f(·, d)| < K.

Then there exists a unique function f̂ ∈ O(X̂) such that f̂ = f on X.

Proof. From the hypothesis on the boundedness of f, it follows that the
two families {f(c, ·) : c ∈ C} and {f(·, d) : d ∈ D} are normal. We now
define two functions f1 on A× V and f2 on U ×B as follows.

For any z ∈ A, choose a sequence (cn)∞n=1 ⊂ C such that limn→∞ cn = z
and the sequence (f(cn, ·))∞n=1 converges uniformly on compact subsets of V.
We let

f1(z, w) := lim
n→∞

f(cn, w) for all w ∈ V.

Similarly, for any w∈B, choose a sequence (dn)∞n=1⊂D such that limn→∞ dn
= w and the sequence (f(·, dn))∞n=1 converges uniformly on compact subsets
of U. We let

f2(z, w) := lim
n→∞

f(z, dn) for all z ∈ U.

We first check that f1 and f2 are well defined. Indeed, it suffices to verify
this for f1 since the same argument also applies to f2. Let (c′n)∞n=1 ⊂ C be
another sequence such that limn→∞ c′n = z and the sequence (f(c′n, ·))∞n=1
converges uniformly on compact subsets of V. Since for all b ∈ B,

lim
n→∞

f(cn, b) = f(z, b) = lim
n→∞

f(c′n, b),

and since B is a set of unicity for holomorphic functions on V, our claim
follows.
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One next verifies that f1 = f2 on A× B. Indeed, let z ∈ A, w ∈ B and
let (cn)∞n=1 ⊂ C, (dn)∞n=1 ⊂ D be as above. Then clearly, we have

f1(z, w) = lim
n→∞

f(cn, dn) = f2(z, w).

We are now able to define a function f̃ on X(A,B;U, V ) by f = f1 on A×V
and f = f2 on U × B. It follows from the construction of f1 and f2 that
f̃ ∈ Os(X(A,B;U, V )).

One next checks that f̃ = f on X. Indeed, since for each a ∈ A, f(a, ·)
and f̃(a, ·) are holomorphic, it suffices to verify that f̃(a, d) = f(a, d). But
the latter equality follows easily from the definition of f1 and the hypothesis.

Finally, one applies the classical Cross Theorem (see for instance [7], [1])
to f̃ ∈ Os(X(A,B;U, V )); thus the existence of f̂ follows. The unicity of f̂
is also clear.

Lemma 4.4 (Rothstein type theorem, cf. [8]). Let f ∈ O(Ep × Eq). As-
sume that A ⊂ Ep is such that for all open subsets U ⊂ Ep, A∩U is of Baire
category II. Let G ⊂ Cq be a domain such that Eq ⊂ G and assume that for
all a ∈ A, the function f(a, ·) extends meromorphically to f̃(a, ·) ∈ M(G).
Then for any relatively compact subdomain G̃ ⊂ G, there are an open dense
set A ⊂ Ep and a function f̃ ∈ M(Ω), where Ω := Ep × Eq ∪ A × G̃, such
that f̃ = f on Ep × Eq.

Sketch of proof. (1) The case where G := ∆0(R) (R > 1). Argue as in
the proof of Rothstein’s theorem given in [10].

(2) The general case. Fix an a ∈ Ep and r > 0. Let B denote the set
of all b ∈ G such that there exist 0 < rb < r, an open dense subset Ab of
∆a(rb) and fb ∈ M(Ab ×∆b(rb)) such that fb(α, ·) = f̃(α, ·) on ∆b(rb) for
all α ∈ A ∩Ab.

Obviously, B is open. Using case (1) and the hypothesis on A, one can
show that B is closed in G. Thus B = G. Moreover, one can also show that if
Ab∩Ab′ 6= ∅ and ∆b(rb)∩∆b′(rb′) 6= ∅, then fb = fb′ on (Ab∩Ab′)×(∆b(rb)∩
∆b′(rb′)). Therefore, using the hypothesis that G̃ is relatively compact, we
see that for any a ∈ Ep and any r > 0, there is an open set Aa,r ⊂ ∆a(r) and
fa,r ∈M(Aa,r × G̃) such that fa,r(α, ·) = f̃(α, ·) on G̃ for all α ∈ A ∩ Aa,r.

Finally, let A :=
⋃
a∈En, r>0Aa,r. This open set is clearly dense in Ep.

By gluing the functions fa,r together, we obtain the desired meromorphic
extension f̃ ∈ M(Ω); so the proof of the lemma is complete.

5. Proof of Theorem D. We will only give the proof of Theorem D
for the case where f is separately meromorphic. Since the case where f is
separately holomorphic is quite similar and in some sense simpler, it is left
to the reader.
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Proof of (ii). Put

Aj := {zj ∈ Dj : intCnj S(zj , ·) = ∅} for j = 1, 2.(5.1)

By Lemma 4.1, Dj \ Aj is of Baire category I. For aj ∈ Aj (j = 1, 2), let

f̃(a1, ·) (resp. f̃(·, a2)) denote the meromorphic extension of f(a1, ·) (resp.
f(·, a2)) to D2 (resp. to D1).

Let U ⊂ D1, V ⊂ D2 be arbitrary open sets. For a relatively compact
pseudoconvex subdomain V of V and for a positive number K, let Q1

V,K

denote the set of a1 ∈ A1 ∩ U such that supV |f̃(a1, ·)| ≤ K (and thus

f̃(a1, ·) ∈ O(V )). By (5.1) and the hypothesis, a countable number of the
Q1
V,K cover A1∩U . Since the latter set is of Baire category II, we can choose

V,K1 such that the closureQ1
V,K1

contains a polydisc∆1 ⊂ U and Q1
V,K1
∩∆1

is of Baire category II in ∆1.
For a relatively compact pseudoconvex subdomain U of ∆1 and for a

positive number K, we denote by Q2
U,K the set of a2 ∈ A2 ∩ V such that

supU |f̃(·, a2)| ≤ K (and thus f̃(·, a2) ∈ O(U)). By (5.1) and the hypothesis,
a countable number of the Q2

U,K cover A2 ∩ V. Since the latter set is of

Baire category II, we can choose U,K2 such that Q2
U,K2

contains a polydisc
∆2 ⊂ V and Q2

U,K2
∩∆2 is of Baire category II in ∆2.

Now let K := max{K1,K2}, A := A1∩U , C := Q1
V,K ∩U , B := A2∩∆2,

D := Q2
V,K ∩∆2. Then it is easy to see that A = C = U and B = D = ∆2.

Moreover, all other hypotheses of Lemma 4.3 are satisfied. Consequently, an
application of this lemma gives the following.

Let U ⊂ D1, V ⊂ D2 be arbitrary open sets. Then there are a polydisc
∆a(r) ⊂ U × V and a function f̂ ∈ O(∆a(r)) such that f̂ = f on (T \ S) ∩
∆a(r).

Write a = (a1, a2) ∈ D1 × D2. Since the set Aj ∩ ∆aj (r) is of Baire
category II, by replacing ∆aj (r) with a smaller polydisc we see that this set
satisfies the hypothesis of Lemma 4.4. Consequently, an application of that
lemma gives f1

a ∈M(∆a1(r)×Ω2) and f2
a ∈ M(Ω1×∆a2(r)) which coincide

with f on (T \ S) ∩∆a(r). Moreover, one sees that the function fU ,V given
by

fU ,V := f1
a on ∆a1(r)×Ω2, fU ,V := f2

a on Ω1 ×∆a2(r),

is well defined, meromorphic on the cross XU ,V = X(∆a1(r),∆a2(r);Ω1, Ω2),
and fU ,V = f on (T \ S) ∩XU ,V .

Using Remark 4.2, one can also prove the following. If U ′ ⊂ D1, V ′ ⊂
D2 are arbitrary open sets and fU ′,V ′ is the corresponding meromorphic
function defined on the corresponding cross XU ′,V ′ , then fU ,V = fU ′,V ′ on
XU ,V ∩XU ′,V ′ .
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Let Aj :=
⋃
U⊂Ω1,V⊂Ω2

∆aj(r) for j = 1, 2. It is clear that Aj is an

open dense set in Ωj . Then gluing all fU ,V together, we obtain a function f̂
meromorphic on X := X(A1, A2;Ω1, Ω2) satisfying f̂ = f on (T \ S) ∩ X.
Finally, one applies Theorem 1.3 of [4] to f̂ , and the conclusion of (ii) follows.

Proof of (i). In what follows, ΣM will denote the group of permutations
of {1, . . . ,M}. Moreover, for any σ ∈ ΣM and under the hypothesis and in
the notation of Lemma 4.1, we define

Sσ := {zσ : z ∈ S} and Ωσ := Ωσ(1) × . . .×Ωσ(M),

where
zσ := (zσ(1), . . . , zσ(M)), z ∈ Ω = Ω1 × . . .×ΩM .

If in the statement of Lemma 4.1, one replaces S by Sσ and Ω by Ωσ,
then one obtains Sσ, Sσ(aσ(N)), . . . , Sσ(aσ(3), . . . , aσ(N)). The proof will be
divided into three steps.

Step 1: N = 2. By (ii), for each pair of relatively compact pseudoconvex
subdomains Ωj ⊂ Dj (j = 1, 2) we obtain a polydisc ∆Ω1,Ω2 ⊂ Ω1×Ω2 and
a function fΩ1,Ω2 ∈ O(∆Ω1,Ω2) such that f = fΩ1,Ω2 on (∆Ω1,Ω2 ∩ T ) \ S. A
routine identity argument shows that any two functions fΩ1,Ω2 coincide on
the intersection of their domains of definition. Gluing fΩ1,Ω2 , we obtain the
desired function f̂ ∈ O(

⋃
∆Ω1,Ω2).

Step 2: N = 3. Consider the following elements of Σ3:

σ1 :=
(

1 2 3

2 1 3

)
, σ2 :=

(
1 2 3

1 2 3

)
,

σ3 :=
(

1 2 3

3 2 1

)
, σ4 :=

(
1 2 3

3 1 2

)
.

Fix any subdomain Ω1 × Ω2 × Ω3 ⊂ D and pick any a3 ∈ Sσ1 ∩ Sσ2 .
Then by the definition, Ω1 \Sσ1(a3) (resp. Ω2 \Sσ2(a3)) is of Baire category
I in Ω1 (resp. Ω2).

Also, for any a1 ∈ Sσ1(a3) ∩ Sσ3 , we have intS(a1, ·, a3) = ∅ and the set
Ω2 \ {a2 ∈ Ω2 : intS(a1, a2, ·) = ∅} is of Baire category I.

Similarly, for any a2 ∈ Sσ2(a3)∩Sσ4, we have intS(·, a2, a3) = ∅ and the
set Ω1 \ {a1 ∈ Ω1 : intS(a1, a2, ·) = ∅} is of Baire category I.

Thus f is well defined on the union X of the following two subsets of
Ω1 ×Ω2 × {a3}:

{(z1, z2, a3) : z1 ∈ Sσ1(a3) ∩ Sσ3 , z2 ∈ Sσ3(z1) ∩ Sσ2(a3)},(5.2)

{(z1, z2, a3) : z2 ∈ Sσ2(a3) ∩ Sσ4 , z1 ∈ Sσ4(z2) ∩ Sσ1(a3)}.(5.3)
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Observe that by the definition in Lemma 4.1, Ω1 \ (Sσ4(z2)∩Sσ1(a3)) (resp.
Ω2 \ (Sσ3(z1) ∩ Sσ2(a3))) is of Baire category I in Ω1 (resp. Ω2). By virtue
of (5.2)–(5.3), the same conclusion also holds for the fibers X(z1, ·, a3) and
X(·, z2, a3), z1 ∈ Sσ1(a3) ∩ Sσ3 (resp. z2 ∈ Sσ2(a3) ∩ Sσ4).

Let Uj ⊂ Ωj (j = 1, 2) be an arbitrary open subset. If ∆ := ∆q(r)
is a polydisc, then we denote by λ∆ the polydisc ∆q(λr) for all λ > 0.
Repeating the Baire category argument already used in the proof of part (ii),
one can show that there are a positive number K, polydiscs ∆j ⊂ Uj , and
subsets Q1

U1,U2
of Sσ1(a3) ∩ Sσ3 (resp. Q2

U1,U2
of Sσ2(a3) ∩ Sσ4) such that

QjU1,U2
= ∆j , Q

j
U1,U2

is of Baire category II, and sup2∆2
| ˜f(a1, ·, a3)| ≤ K

(resp. sup2∆1
| ˜f(·, a2, a3)| ≤ K) for aj ∈ QjU1,U2

.
Therefore, by applying Lemma 4.2, we obtain a function fa3 = fU1,U2,a3 ∈

O(∆1×∆2) which extends f(·, ·, a3) to ∆1×∆2×{a3} for all a3 ∈ Sσ1∩Sσ2 .
Now let Uj ⊂ Ωj (j = 1, 2, 3) be an arbitrary open subset. Since the set

Ω3 \ (Sσ1 ∩ Sσ2) is of Baire category I, by using the previous discussion we
can employ the Baire category argument already used in the proof of (ii).
Consequently, there are a positive numberK, polydiscs∆j ⊂ Uj , and subsets
Q3
U1,U2,U3

of Sσ1∩Sσ2 such that Q3
U1,U2,U3

= ∆3, Q
3
U1,U2,U3

is of Baire category
II, and sup2∆1×2∆2

|fa3(·, ·)| ≤ K for a3 ∈ Q3
U1,U2,U3

.
By changing the role of 1, 2, 3 and by taking smaller polydiscs, we obtain

in the same way subsets Qj
U1,U2,U3

⊂ ∆j (j = 1, 2) with similar properties.
For j ∈ {1, 2, 3} consider the following subsets of T :

Tj := {a = (a1, a2, a3) :

ak ∈ ∆k, al ∈ ∆l, aj ∈ QjU1,U2,U3
, {k, l, j} = {1, 2, 3} and

either intCnl S(·, ak, aj) = ∅ or intCnk S(al, ·, aj) = ∅}.
One next proves that

f(a) = faj (ak, al), a ∈ T1 ∪ T2 ∪ T3.(5.4)

Indeed, let a = (a1, a2, a3) ∈ T3 with intS(·, a2, a3) = ∅. In view of (5.2),
we can choose a sequence (zn1 )∞n=1 → a1 and for every n ≥ 1 a sequence
(zn,m2 )∞m=1 → a2 such that (zn1 , z

n,m
2 , a3) ∈ X for all n,m ∈ N. Clearly,

f(zn1 , z
n,m
2 , a3) = fa3(zn1 , z

n,m
2 ). Therefore,

f(a) = lim
n→∞

f(zn1 , a2, a3) = lim
n→∞

lim
m→∞

f(zn1 , z
n,m
2 , a3) = fa3(a1, a2).

Now, we wish to glue the three functions faj (j = 1, 2, 3) together. Since
the family {faj : aj ∈ QjU1,U2,U3

} is normal, we define an extension fj of
faj (j = 1, 2, 3) to ∆ := ∆1 ×∆2 ×∆3 as follows.

Let {j, k, l} ∈ {1, 2, 3} and for z = (z1, z2, z3) ∈ ∆, choose a sequence
(anj )∞n=1 ⊂ QjU1,U2,U3

such that limn→∞ anj = zj and the sequence (faj )
∞
n=1
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converges uniformly on compact subsets of ∆k ×∆l. We let

fj(z) := lim
n→∞

fanj (ank , a
n
l ),(5.5)

for any sequence ((ank , a
n
l , a

n
j ))∞n=1 ⊂ Tj → z as n→∞.

Let us first check that the functions fj are well defined. Indeed, this will
follow from the estimate

(5.6) |faj (ak, al)− fbj (bk, bl)| ≤ CK|a− b|,
a = (ak, al, aj), b = (bk, bl, bj) ∈ Tj .

Here C is a constant that depends only on ∆. It now remains to prove
(5.6) for example in the case j = 3. To do this, let z = (z1, z2, z3), w =
(w1, w2, w3) ∈ T3. Then by (5.2) and (5.3), one can choose a1, a

′
1 ∈ ∆1 and

a2 ∈ ∆2 such that

(5.7)
(a1, a2, z3), (a′1, a2, z3) ∈ T2 ∩ T3,

|z − (a1, a2, z3)| ≤ 2|z − w|, |w − (a′1, a2, z3)| ≤ 2|z − w|.
Write
|f3(z)− f3(w)| ≤ |f3(z)− f3(a1, a2, z3)|

+ |f3(a′1, a2, z3)− f3(w)|+ |f2(a1, a2, z3)− f2(a′1, a2, z3)|.
Since sup2∆1×2∆2

|fz3 | ≤ K, sup2∆1×2∆2
|fw3 | ≤ K and sup2∆1×2∆3

|fa2 |
≤ K, applying Schwarz’s lemma to each term on the right side of the latter
estimate and using (5.7) we obtain the desired estimate (5.6).

From the construction (5.5) above, fj(·, ·, zj) ∈ O(∆k ×∆l). Moreover,
a routine identity argument using (5.2) and (5.3) shows that f1 = f2 = f3.
Finally, define

f̂U1,U2,U3(z) = f1(z) = f2(z) = f3(z), z ∈ ∆;

then f̂U1,U2,U3 extends f holomorphically from T1 ∪ T2 ∪ T3 to ∆. Again
an identity argument as in (5.4) shows that f̂U1,U2,U3 = f on (T ∩ ∆) \ S.
Gluing f̂U1,U2,U3 for all U1,U2,U3 together we obtain the desired extension
function f̂ . Hence the proof is complete in this case.

Step 3: N ≥ 4. The general case uses induction on N. Since the proof is
very similar to the case N = 3 making use of Lemmas 4.1 and 4.3 and using
the inductive hypothesis for N − 1, we leave the details to the reader.
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