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On Noether and strict stability,
Hilbert exponent, and relative Nullstellensatz

by Chia-chi Tung (Mankato, MN)

Abstract. Conditions characterizing the membership of the ideal of a subvariety S
arising from (effective) divisors in a product complex space Y × X are given. For the
algebra OY [V ] of relative regular functions on an algebraic variety V , the strict stability
is proved, in the case where Y is a normal space, and the Noether stability is established
under a weakened condition. As a consequence (for both general and complete intersec-
tions) a global Nullstellensatz is derived for divisors in Y ×CN , respectively, Y × PN (C).
Also obtained are a principal ideal theorem for relative divisors, a generalization of the
Gauss decomposition rule, and characterizations of solid pseudospherical harmonics on
a semi-Riemann domain. A result towards a more general case is as follows: Let Dj ,
1 ≤ j ≤ p, be principal divisors in X associated to the components of a q-weakly normal
map g = (g1, . . . , gp) : X → Cp, and S :=

⋂
S|Dj |. Then for any proper slicing (ϕ, g,D) of

{Dj}1≤j≤p (where D ⊂ X is a relatively compact open subset), there exists an explicitly
determined Hilbert exponent hD1···Dp,D for the ideal of the subvariety S = Y × (S ∩D).

1. Introduction. Determination of the membership of an ideal gener-
ated by polynomials over an algebraically closed field is a basic problem in
polynomial ideal theory. A result of O. Forster [Fo] in this direction can be
stated as follows: if A is a closed primary ideal in a Stein algebra Γ (X,OX)
(as a Fréchet space), then the ideal I(S) of all holomorphic functions vanish-
ing on the subvariety S = V(A) is precisely the radical ideal

√
A; moreover,

there exists an integer h ≥ 0 such that (
√
A)h ⊆ A. F. Lorenz [Lor, p. 281]

remarked that “actually finding such an h for a specified A, described say by
a set of generators, is a different matter”. The well-known Hilbert Nullstel-
lensatz ([W, p. 59]), Forster’s results, and Max Noether’s criterion for the
individual membership of a polynomial ideal are seemingly loosely related.
And all these results share some common ground with the (local) Rückert
Nullstellensatz ([GR3, p. 82]). The present work is motivated in part by a
wish to bring out (to some extent) the possible connections between them.
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As it gains in usefulness to allow subvarieties (arising from different situa-
tions) to depend on a parameter, an attempt is made in this work to find
conditions under which the overall and individual membership of the ideal
I(S) can be determined for a subvariety S lying in a product space Y ×X,
and a corresponding Hilbert exponent h explicitly described or estimated.

Let V be a positive-dimensional affine algebraic variety in CN and Y a
complex space. There are two useful properties concerning the complex alge-
bra OY [V ] of all Y -regular functions on V (see §2). The first (Theorem 2.1),
valid in the case where Y is a normal space, concerns the strict stability of
the subalgebra B = OY [V ] in O(Y ×CN ), meaning that, if f ∈ B \ {0} and
ψ ∈ O(Y×CN )\{0}, then both f/ψ (defined in terms of local extensions of f)
and ψ are equivalent to some elements of B whenever f/ψ ∈ O(Y ×CN ). The
second property (Theorem 2.2), a generalization of the well-known Noether
criterion, is the assertion that for any reduced complex space Y , the subalge-
bra OY [V ] of O(Y ×V ) is (relatively) Noether-stable, meaning that, if f and
gj , 1 ≤ j ≤ q, are elements of OY [V ] \ {0} such that the Noether condition

(1.1) fw ≡ 0 (〈g1,w, . . . , gq,w〉)

holds in OY×V,w at every point w of the subvariety S := V(g1, . . . , gq)
with π(w) lying off some thin subset of codimension ≥ 2 in CN (where
π : Y × CN → CN denotes the projection), then the Noether relation

(1.2) f ≡ 0 (〈g1, . . . , gq〉Y )

is valid in the ring OY [V ]. This result, which extends the Płoski–Tworzewski
Theorem [PT, Proposition 2.1] to the relative case, is proved by refining the
argument of Tworzewski [Tw, p. 2] for the Max Noether Theorem. In conse-
quence a global Nullstellensatz for divisors in a relative affine, respectively,
projective, variety (Theorems 2.3 and 4.2) can be deduced. The proof natu-
rally involves the local notion of Hilbert number (to be defined below).

Moreover, deeper study of subvarieties in affine or projective spaces ne-
cessitates the consideration of a relative semiglobal Nullstellensatz; this is
treated in §3 (and summarized below). Especially, it will be shown (in Theo-
rem 3.3) that, for a complete intersection S of divisors on an affine algebraic
variety V , there is an intrinsically determined Hilbert exponent hS ((3.9)) for
the ideal of all Y -regular functions f : Y × V → C vanishing on the product
subvariety S = Y ×S (compare the results of Płoski–Tworzewski [PT, The-
orem 3.1 and Proposition 2.2]). If F is a complete intersection of divisors in a
projective space PN (C) with defining system F (consisting of homogeneous
polynomials fj), the following result is obtained (Theorem 4.3): Assume
that the set F ∩ {z = [z0, . . . , zN ] | zk = 0} is thin in F for each k ∈ Z[0, N ].
Then there exists a Hilbert exponent h{F} (defined by (4.3)–(4.4)) for all ele-
ments in PolY,N+1(d)∩IY (Y ×F) (in the sense of (4.5)); moreover, if either
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〈f1, . . . , fq〉Y is a prime ideal or the system F defines F minimally, then
IY (Y × F) = 〈f1, . . . , fq〉Y . As applications, a generalization of the Gauss
decomposition rule and characterizations of solid pseudospherical harmonics
on a semi-Riemann domain are given in §5.

Turning next to local and semiglobal situations, let X, Y denote (un-
less otherwise mentioned) reduced, pure-dimensional complex spaces with a
countable base of open sets, and D b X a (relatively compact) open subset.
Let S be a subvariety of X and set SD := S ∩ D. If S = V(g1, . . . , gp) :=
{g1 = . . . = gp = 0} with gj ∈ O(X) := Γ (X,OX), the (complex) al-
gebra of holomorphic functions on X, then denote by Ia(Sa) the ideal of
germs of holomorphic functions vanishing on the germ of S at a point a, and
〈g1,a, . . . , gp,a〉 the ideal generated by the gj,a’s in OX,a. If fa ∈ Ia(Sa), then
by the Rückert Nullstellensatz the Hilbert relation

(1.3) f ra ≡ 0 (〈g1,a, . . . , gp,a〉)

holds in OX,a for some integer r ≥ 0. The integer r can actually be chosen
to depend only on the ideal generated by the gj,a, 1 ≤ j ≤ p. Therefore,
following Forster [Fo, p. 325], define the Hilbert number

(1.4) h(g, a) := min{r ∈ Z[0,∞) | f ra ≡ 0 (〈g1,a, . . . , gp,a〉), ∀fa ∈ Ia(Sa)},

where g = (g1, . . . , gp) : X → Cp. A continuous map π : X → N (between
topological spaces) is said to be light at a ∈ X, if for some neighborhood U of
a, the fibers of πcU consist of isolated points. If g : U → Cm is holomorphic
in an open set U ⊆ Cm and is light at a ∈ U , then (according to [GH, p. 669]
or [Ts, p. 110]) the germ relation (1.3) holds with r equal to the multiplicity
of g at a (see (3.1)). Thus

(1.5) h(g, a) ≤ ν0
g (a).

A system F = {gj}1≤j≤p defining a subvariety S is said to be minimal
if h(g, a) = 1 for all a ∈ S ([Ts, pp. 118–119]; cf. [Tu2, p. 127]). For the
convenience of the reader, the definition of the multiplicity “νg(a)” at a ∈ X
of a light, respectively, pure fibering, holomorphic map g is recalled at the
beginning of §3 (with some basic properties summarized in the Appendix,
§6).

The inequality (1.5) for the Hilbert number bespeaks the relevance of
considering intersecting divisors arising from the component functions gj . In
the following every divisor D mentioned is assumed to be effective, and its
support is denoted by S|D|. To give a result towards the general case, let
Dj , 1 ≤ j ≤ p, be principal divisors in X and S :=

⋂
S|Dj |.

Definition 1.1. A proper slicing of {Dj} is a triple (ϕ, g,D) such that:

(i) ϕ : D → Cq is holomorphic with ϕ−1(0) ∩ SD 6= ∅;
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(ii) g = (g1, . . . , gp), with each component giving a defining equation
gj = 0 for Dj ;

(iii) there exist an open, connected neighborhood Q of the origin 0 ∈
Cq and a connected, pure (m − q)-dimensional locally irreducible
analytic subset N of an open subset in Cp such that the junction
(g, ϕ) : D̃ := D ∩ g−1(N) ∩ ϕ−1(Q)→ N ×Q is proper and light.

Note that if π = (π1, . . . , πp) : X → Cp is a holomorphic map of pure
rank n = m − q > 0 (see §3) with a locally irreducible (local) image at
a ∈ X, then there exists a holomorphic map ϕ : D → Cq defined in an
open neighborhood D ⊆ Cm of a such that (ϕ, π,D) is a proper slicing of
{(πj)}1≤j≤p, (πj) being the divisor associated to πj ; this is shown in [Tu1,
Lemma 2.1.4]. To each proper slicing (ϕ, g,D) of a system {Dj} of principal
divisors in X is associated a positive integer

(1.6) hD1···Dp,D :=
∑
z∈D̃

νg,ϕ(z;w, t), ∀(w, t) ∈ N ×Q,

called the slicing degree, which is independent of (w, t) ∈ N ×Q (see Prop-
erty 6.1). Here νg,ϕ(z;w, t) := ν(g,ϕ)(z) denotes the multiplicity of the light
mapping (g, ϕ) at a point z of the fiber over (w, t) of (g, ϕ)cD̃, and is set
to be zero at all other points. The slicing degree actually depends only on
the divisors Dj and the map ϕ (as can be shown by invoking an extended
version of the invariance of the multiplicity under an invertible holomorphic
matrix transformation [St2, Theorem 6.1]).

As a generalization of the notion of an analytic covering space, a holomor-
phic map π : X → Cp is said to be q-weakly normal if the following conditions
are met: π has (i) pure rank m − q > 0 where 0 ≤ q < m := dimX, (ii)
locally irreducible, weakly normal (local) image ([Tu1, p. 104]) at each point
of Z := π−1(0). A result of Gunning [Gu, Theorem 3, p. 32] can be gener-
alized (Proposition 3.1): If π = (π1, . . . , πp) : X → Cp is q-weakly normal,
then for any proper slicing (ϕ, π,D) of {(πj)}1≤j≤p, the algebra O(Y × D̃)
is an integral algebraic extension, of degree at most h = h(π1)···(πp),D, of the
lifted algebra

(1.7) Õ[Y,N×Q] := (idY , (π, ϕ)cD̃)∗O(Y ×N ×Q).

Essential to the proof (and that of the Nullstellensatz 3.1) is the construc-
tion, for an element f ∈ C0(Y × D̃), of a monic characteristic pseudopoly-
nomial (in a sense similar to that of [GR3, p. 138]) arising from a Rieman-
nian fiber product of f (see (3.4)). The fact that the holomorphy of such a
pseudopolynomial follows from the Hartogs theorem (on the equivalence of
separate and joint holomorphy) seems to provide a lacking application of the
latter, in view of the remark of Grauert and Remmert [GR3, p. 2]. Further, if
S :=

⋂
S|(gj)| is determined by the component divisors of a q-weakly normal
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map g = (g1, . . . , gp) : X → Cp, then the slicing degree h = h(g1)···(gp),D of
any proper slicing (ϕ, g,D) of {(gj)}1≤j≤p serves as a Hilbert exponent (inde-
pendent of the parameter y ∈ Y ) for the ideal of SD,Y := Y ×SD (Theorem
3.1):

(1.8) I(SD,Y ) = h

√
〈g̃1, . . . , g̃p〉{Y },

where 〈g̃1, . . . , g̃p〉{Y } denotes the ideal in O(Y × D̃) generated by the func-
tions g̃j := gjcD̃, 1 ≤ j ≤ p. The question whether the ideal I(S) of a general
subvariety S in Y ×X admits a Hilbert exponent (as in (1.8)) remains open.
By the use of suitable slicing maps of g and properties of the multiplicity, it
can be shown that at each point a0 ∈ S \ (Ssing ∩Xsing) there is a neighbor-
hood U such that the multiplicity “ν0

g (a0)” gives a Hilbert exponent forSU,Y .
If D is a principal divisor in X with support S, then the Hilbert number of
a local defining function g of D at a normal point a of X is given by
(1.9) h(g, a) = max{ν0

g (cµ) | cµ ∈ Sreg ∩Bµ},
the maximum being taken over all branches Bµ of SU , for a suitable neigh-
borhood U of a; moreover, h(g, a) gives the smallest Hilbert exponent for
SU,Y (Theorem 3.2). The related question as to when the ideal associated
to a (general) divisor in Y ×PN (C) admits a principal generator is partially
answered in Theorem 4.1 (see also Propositions 3.3 and 4.1).

2. Strict and Noether stability. For f : Y ×X → C, set f (y)(z) :=
f(y, z) for (y, z) ∈ Y × X, and define ∆(f) := {y ∈ Y | f (y) ≡ 0}. Let
PolY,N (d) denote the set of all (holomorphic) homogeneous pseudopolynomi-
als (of degree d > 0) over Y in N indeterminates, that is,

(2.1) G(X1, . . . , XN ) =
∑
‖µ‖=d

aµX
µ1
1 · · ·X

µN
N ,

where aµ ∈ O(Y ) and at least one aµ 6≡ 0. Set PolY,N (0) := O(Y ). Then the
graded ring

OY [X1, . . . , XN ] :=
⊕
d≥0

PolY,N (d)

is a left module over the ring O(Y ). Denote by PolY,N the union of all its
summands PolY,N (d) (omitting the reference to Y if Y is a single point).
An element Q ∈ OY [X1, . . . , XN ] is naturally identified with a function
Q : Y × CN → C (by evaluation at each (y, z) ∈ Y × CN ). A mapping
g = (g1, . . . , gp) with gj ∈ OY [X1, . . . , XN ] (or gj ∈ PolY,N ) of (generic)
positive degree is said to be primitive over Y if the set ∆(g) :=

⋃p
j=1∆(gj)

is almost thin of codimension 2 (thus possibly empty) ([AS, p. 14]).
In the following let V denote a positive-dimensional affine algebraic vari-

ety in CN . An equivalence relation, “F ≡ G” (with respect to V ), is defined
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in OY [X1, . . . , XN ] by setting F ≡ G if and only if at each point y0 ∈ Y there
is a neighborhood Y0 such that F = G on Y0 × V . Every such equivalence
class is called a Y -regular function on V . The set OY [V ] of all Y -regular func-
tions on V forms a (complex) algebra under the usual operations. Denote by
AY = 〈g1, . . . , gp〉Y the ideal in OY [V ] generated by elements gj ∈ OY [V ],
1 ≤ j ≤ p,. Similarly, let V(A) = V(g1, . . . , gp) be the subvariety in Y × V
defined by the equations gj = 0, 1 ≤ j ≤ p (with the same notation in case
V = CN and the gj belong to PolY,N ). Denote by JY (S) the ideal of all
Y -regular functions on V vanishing on a subvariety S ⊆ Y × V .

In analogy with the notion of stable subalgebra of entire functions in CN
([BD, p. 268]), a property of recurring use concerning the relative algebra
OY [V ] is stated below. This is an immediate consequence of the generalized
Ronkin theorem of [Tu2, 4.1]:

Theorem 2.1. If Y is a normal complex space, then the subalgebra
OY [V ] is strictly stable in O(Y × CN ).

In Płoski–Tworzewski [PT, Proposition 2.1], the Max Noether theorem
is generalized to an affine algebraic variety in CN . This result can be further
extended to the relative case (by refining the proof of [PT, p. 33]):

Theorem 2.2 (Relative Noether Theorem). For any reduced complex
space Y , the subalgebra OY [V ] is Noether-stable in O(Y × V ).

Proof. At first a relative version of the Max Noether Theorem in CN will
be proved by modifying the argument of Tworzewski [Tw, p. 2] (with some of
the original steps included for completeness): “If Gj , 1 ≤ j ≤ p, and F are Y -
regular functions on CN such that Fw ≡ 0 (〈(G1)w, . . . , (Gp)w〉) in OY×CN ,w
at every point w ∈ S := V(G1, . . . , Gp) with π(w) lying off some thin subset
of codimension ≥ 2 in CN ([AS, p. 14]), then F ≡ 0 (〈G1, . . . , Gp〉Y ) in
OY [CN ]”.

Let Γ ⊂ Y × CN × Cp be the graph of G = (G1, . . . , Gp). Then for each
y ∈ Y , the set Z(y) := {(z, w) | (y, z, w) ∈ ({y} × CN × {0}) ∪ Γ} is an
N -dimensional algebraic set in CN ×Cp. Take w = (y0, a0) ∈ Y × (CN \ S),
where S is a thin analytic subset of codimension ≥ 2 in CN relative to which
the above mentioned Noether condition holds. Then on some neighborhood
Y0×∆ of (y0, a0) in Y × (CN \S), holomorphic functions λj , 1 ≤ j ≤ p, can
be chosen so that the function Ψ : Y0 ×∆× Cp → C,

Ψ(y, z, w) := F (y)(z)−
p∑
j=1

λ
(y)
j (z)wj , ∀(y, z, w) ∈ Y0 ×∆× Cp,

vanishes on Γ ∩ (Y0 × ∆ × Cp). It suffices to consider the case F 6≡ 0 in
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Y0 × CN . Let ψ(y) : Z(y) → C be defined by

ψ(y)(z, w) =

{
F (y, z) if w = 0,
0 if (y, z, w) ∈ Γ .

The assumption on the germs of F implies that ψ(y) is well-defined for each
y ∈ Y0. Clearly

ψ(y)c(∆× Cp) ∩ Z(y) = Ψ (y)c(∆× Cp) ∩ Z(y),

where Ψ (y)(z, w) := Ψ(y, z, w). Therefore ψ(y) extends holomorphically to a
function ψ̃(y) on (CN \S)×Cp, hence also to CN×Cp. Moreover, it is easy to
check that the graph of ψ̃(y) is an algebraic subset of CN ×Cp×C. Then by
Serre’s Algebraic Graph Theorem ([Łoj, p. 464]), there exists a polynomial
Q(y) : CN × Cp → C such that Q(y)cZ(y) = ψ̃(y). Thus

Q(y)c(CN × Cp) ∩ Z(y) = Ψ (y)c(CN × Cp) ∩ Z(y).

Write

Q(y)(z, w) = Q
(y)
0 (z) +

p∑
j=1

wj
∑
µ(j)

a
(y)

µ(j)
w
µ
(j)
1

1 · · ·wµ
(j)
p
p z

µ
(j)
p+1

1 · · · z
µ
(j)
p+N

N .

By the definition of ψ(y) one has F (y) = Q
(y)
0 and

(2.2) F (y)(z) =

p∑
j=1

λj(y, z)G
(y)
j (z),

where

λj(y, z) := −
∑
µ(j)

a
(y)

µ(j)
(G

(y)
1 )µ

(j)
1 · · · (G(y)

p )µ
(j)
p z

µ
(j)
p+1

1 · · · z
µ
(j)
p+N

N

for (y, z) ∈ Y0 × CN . Consequently, there exist functions cρ(j,µ(j)) ∈ O(Y0),
1 ≤ j ≤ p, such that

F (y)(z) = −
p∑
j=1

∑
µ(j)

∑
ρ(j,µ(j))

a
(y)

µ(j)
c

(y)

ρ(j,µ(j))
z
ρ(j,µ(j))1
1 · · · zρ(j,µ(j))N

N .

Then for each (µ, j) with some c(y)

ρ(j,µ(j))
6≡ 0 in Y0, one has

(2.3) aµ(j) =
∂ρ(j,µ(j))F

∂zρ(j,µ(j))
∈ O((Y0 \A)× CN ),

where A is a thin analytic subset of Y0. Since the function F agrees with
the one defined by the right-hand side of (2.2) where any term containing
a

(y)

µ(j)
is dropped if every ensuing coefficient cρ(j,µ(j)) ≡ 0, it follows from the

formula (2.3) that F ≡ 0 (〈G1, . . . , Gp〉Y ) in OY [CN ].
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The general case of an affine algebraic variety can now be deduced from
the preceding. Let f and gj , 1 ≤ j ≤ q, be elements of OY [V ]\{0} such that
the Noether condition (1.1) holds at every point w of S := V(g1, . . . , gq)
with π(w) lying off some thin subset of codimension ≥ 2 in CN . Locally at
a given point y0 ∈ Y , the space Y is embeddable as a subvariety in an open
subset of Cp. There is a thin analytic subset S of codimension ≥ 2 in CN
such that if w = (y0, a0) ∈ Y × (CN \ S), then a local equation

(2.4) F (y) (ζ)−
q∑
j=1

ηj(y, ζ)G
(y)
j (ζ) = R(y) (ζ), ∀(y, ζ) ∈ Ω1 ×∆1,

holds with ηj ∈ O(Ω1 × ∆1), 1 ≤ j ≤ q, where Ω1 × ∆1 is a product
neighborhood of (y0, a0) in Cp × (CN \ S), F , respectively, Gj , 1 ≤ j ≤ q,
an element of OΩ1 [X1, . . . , XN ] inducing f , respectively, gj , 1 ≤ j ≤ q, on
Ω1×V , and R a function in O(Ω1×∆1) vanishing on Y1×U1 := (Y ×V )∩
(Ω1 ×∆1).

Regarding the set Cp × V as an affine algebraic susbset in Cp+N there
exists a set {Gj}q+1≤j≤q+s of generators of the ideal J (Cp × V ) in the
ring C[ζ1, . . . , ζp, X1, . . . , XN ]. It follows from Serre’s Lemma ([Łoj, p. 458])
that at every point (w0, a0) ∈ Cp × V the germs of such Gj ’s generate the
ideal I(w0,a0)(Cp × V ) in OCp+N ,(w0,a0). Therefore, given (y0, a0) ∈ S with
a0 ∈ ∆1 \ S, there is a product neighborhood Ω0 ×∆a0 ⊆ Ω1 × (∆1 \ S) of
(y0, a0) such that, for all (y, ζ) ∈ Ω0 ×∆a0 ,

F (y)(ζ)−
q∑
j=1

η
(y)
j (ζ ′)G

(y)
j (ζ) =

q+s∑
j=q+1

ξ
(y)
j (ζ ′)Gj(ζ)

for some ξj ∈ O(Ω0×∆a0), q+1 ≤ j ≤ q+s. Thus at every point (y0, a0) ∈ S̃

with a0 ∈ CN \ S, where S̃ := V(G1, . . . , Gq+s), the germs of the elements
Gj , 1 ≤ j ≤ q + s, generate the germ of F in OY0×CN ,(y0,a0), where Y0 :=
Y ∩ Ω0. By the preceding relative Noether Theorem, there exist elements
λ̂j ∈ OY0 [X1, . . . , XN ], 1 ≤ j ≤ q + s, such that

F =

q∑
j=1

λ̂jGj +

q+s∑
j=q+1

λ̂jGj in Y0 × CN .

Here the second sum H :=
∑q+s

j=q+1 λ̂jGj belongs to OY0 [X1, . . . , XN ] and
vanishes on Y0 × V , thus completing the proof of the general case.

A (local) relative version of the Hilbert Nullstellensatz for polynomial
ideals is given by Łojasiewicz–Płoski [Łoj, p. 407]. Theorem 2.2 allows for an
extension of this result to relative regular functions on an algebraic variety.
The proof of [Łoj, p. 407]) will need to be modified and the existence of the
Hilbert number (1.4) established. The latter is stated in the next proposition,



Noether and strict stability 9

which is an easy consequence of the Rückert Nullstellensatz ([Łoj, p. 284]
and the Noetherian character of the local rings of X; its proof is omitted.

Proposition 2.1. Let g = (g1, . . . , gp) : X → Cp be a holomorphic map.

(1) The Hilbert number h(g, a) is a well-defined positive integer for every
point a ∈ S := V(g1, . . . , gp).

(2) If b ∈ X \ S, then OX,b = 〈g1,b, . . . , gp,b〉.

Theorem 2.3 (Nullstellensatz for an algebraic variety). Assume that Y
is a connected complex space and V an affine algebraic variety. Let AY be
the ideal in OY [V ] generated by Y -regular functions gj, j = 1, . . . , p, on V .

(1) If the subvariety S := V(AY ) is empty, then AY = OY [V ].
(2) If S is not empty, then JY (S) admits a Hilbert exponent h > 0

over Y , namely,

(2.5) JY (S) = h
√
AY .

(3) If Y is a Stein space and {gj}1≤j≤p generates an ideal in O(Y × V )
that is an intersection of prime ideals, then JY (S) = AY .

Proof. Let {Gp+1, . . . , Gp+s} be a polynomial system defining V in CN
and letQ ∈ JY (S). Given a point y0 ∈ Y , let Y1 be a neighborhood such that
Q, respectively, each gj , 1 ≤ j ≤ p, is induced by an element Q̃, respectively,
Gj , in OY1 [X1, . . . , XN ]. Let hQ, respectively, hGj , 1 ≤ j ≤ p + s, be the
homogenization of Q̃, respectively, Gj , 1 ≤ j ≤ p+ s (in the indeterminates
X0, X1, . . . , XN , so that when restricted to Y1×{1}×CN , hQ reduces to Q̃,
respectively, hGj to Gj). Suppose that for a point (t0, z0) with t0 6= 0,
(hGj)

(y)(t0, z0) = 0 for all j = 1, . . . , p + s. Then Gj(y, z
0/t0) = 0 for

1 ≤ j ≤ p and Gj(z0/t0) = 0 for p + 1 ≤ j ≤ p + s. Hence (y, z0/t0) ∈ S,
which implies that Q̃(y, z0/t0) = 0 and hence (hQ)(y)(t0, z0) = 0. One may
also require that (hQ)(y)(0, z0) = 0. Thus the function hQ vanishes on the
subvariety hS := {hG1 = 0, . . . ,hGp+s = 0} ⊂ Y1 × CN+1. By Proposition
2.1 (applied to the point w0 = (y0, 0) ∈ Y × CN+1), there exist a positive
integer h = h(y0) (independent of hQ) and a connected neighborhood Y0×∆0

⊆ Y1 × CN+1 of w0 such that

(2.6) (hQ)h (y, ζ) =

p+s∑
j=1

λj(y, ζ)(hGj)(y, ζ), (y, ζ) ∈ Y0 ×∆0,

for suitable λj ∈ O(Y0 × ∆0), 1 ≤ j ≤ p + s. Note that if hS = ∅, then
the above relation holds for h = 0. The subalgebra OY0 [X1, . . . , XN+1] being
Noether-stable in O(Y × CN+1), there exist λ̃j ∈ OY0 [X1, . . . , XN+1], 1 ≤
j ≤ p+ s, such that the relation (2.6), with each λj replaced by λ̃j , remains
valid for all (y, ζ) ∈ Y0 × CN+1. This shows that Q ∈ h

√
AY . The function
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y0 7→ h(y0), being locally constant on the connected space Y , is a constant
on Y . Consequently, the global Hilbert relation (2.5) is proved.

Assume now that Y is Stein and the ideal 〈g1, . . . , gq〉 in O(Y × V )
generated by gj , 1 ≤ j ≤ q, is an intersection of prime ideals. Since the
product space Y × V is Stein, according to Forster [Fo, Satz 4, p. 315] (or
Siu [S, p. 297]) the set of all holomorphic functions vanishing onS is precisely
given by the ideal 〈g1, . . . , gq〉. Consequently the Noether stability of OY [V ]
in O(Y × V ) implies that the ideal JY (S) is globally generated by the gj ’s
over Y .

3. The slicing degree and a semiglobal relative Nullstellensatz.
LetM and N be complex spaces of pure dimensionm > 0 and n respectively
with q := m − n ≥ 0, f : M → N a holomorphic map, and a ∈ M . A
holomorphic map ϕ : U → Cq is called a slicing map of f at a, if the
junction (f, ϕ) : U → N × Cq is light. Denote by Φ0

a(f) the set of all slicing
maps of f at a. The map f is said to be a q-fibering if Fz := f−1(f(z)) has
pure dimension q for all z ∈M . The rank of f at a is defined by

ranka f := dimaM − dima Fa.

The map f is said to be of pure rank if rankz f = const for all z ∈M . Assume
that N is locally irreducible. Let f : M → N be a holomorphic q-fibering. If
q = 0, choose an open neighborhood U bM of a with Fa ∩ U = {a}. Then

(3.1) 1 ≤ νf (a) := lim sup
z→a

#Fz ∩ U

is an integer independent of the choice of U , called the multiplicity of f at a.
Consider now the case where f : M → N is a holomorphic q-fibering at a

with q > 0. Given ϕ ∈ Φ0
a(f) the restriction ψ = ϕcFa∩U is light at a, hence

the covering index νfϕ(a) := νψ(a) is well-defined. An element ϕ ∈ Φ0
a(f) is

called regular if there exists a local embedding α : U → U ′ ⊆ G into an open
set G ⊆ Cea , where ea is the embedding dimension of M at a, and a regular
holomorphic map ϕ̃ : G→ Cq such that ϕ̃ ◦ α = ϕcU .

Property 3.1 ([Tu1, (2.1.5)]). A holomorphic map f : M → N is a
q-fibering at a if and only if the set Φ1

a(f) of all regular slicing maps of f at
a is not empty.

Define
da(f) := Min {νfϕ(a) | ϕ ∈ Φ1

a(f)}.

Let Φ2
a(f) be the set of all ϕ ∈ Φ1

a(f) with minimal covering index, that is,

(3.2) νfϕ(a) = da(f).
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Definition 3.1. The multiplicity of f at a is defined by

(3.3) νf (a) := Min {ν(f,ϕ)(a) | ϕ ∈ Φ2
a(f)}.

Note that in Stoll [St1] different definitions are given for the multiplicity
“νf (a)” and order “ ν̃f (a)” of f at a (see [St1, p. 48]), and these two definitions
agree at each point where M is locally irreducible. Stoll’s “multiplicity” is
not needed in this paper (and an example shows that it does not agree with
the one defined above at singular points of M ; see [Tu1, p. 125]). For the
multiplicity (3.3) one sees that, in general, νf (a) ≥ ν̃f (a) ([Tu1, Lemma
2.2.3]). Also it is shown in [Tu1, Proposition 2.2.5] that: if M, N are pure-
dimensional, N is locally irreducible, and f : M → N is q-fibering, then at
every simple point a of M, νf (a) = ν̃f (a) = ν(f,ϕ)(a) for all ϕ ∈ Φ2

a(f).
Furthermore, according to Draper [D, Proposition 5.1], if a is a simple point
of M and N is a normal space, then “ ν̃f (a)” agrees with the (classical)
“intersection multiplicity” (see [D, §4]):

ν̃f (a) = i(Γ · (M × {b}) · (L× {N}, (a, b)),
where Γ denotes the graph of f, b = f(a), and L ⊂M is an analytic subset
of pure dimension m− q at a and has compact closure which meets Fa in an
isolated point at a. If further M, N are complex manifolds, then the latter
(intersection multiplicity) agrees with that defined by Borel–Haefliger [BH].

If π : X → U ⊆ Cm is a finite branched analytic covering, then a
function f ∈ C0(X) is holomorphic if and only if f is integral over the
subalgebra π∗(OU ) ([GuRo, pp. 104–105] and [Gu, Theorem 3, p. 32]). This
characterization carries over to the more general case of a q-weakly normal
mapping:

Proposition 3.1. If π = (π1, . . . , πp) : X → Cp is q-weakly normal,
then for any proper slicing (ϕ, π,D) of {(πj)}1≤j≤p:

(i) The algebra O(Y × D̃) is an integral algebraic extension, of degree at
most h = h(π1)···(πp),D (see (1.6)), of the lifted algebra Õ[Y,N×Q] (see
(1.7)).

(ii) If an element f ∈ C0(Y × D̃) is holomorphic, then there exists a
monic element P ∈ Õ[Y,N×Q][X1] such that P (f(y, z), y, π(z), ϕ(z))

≡ 0 in Y × D̃; the converse assertion holds if, in addition, X and Y
are normal spaces.

Proof. Since π : X → Cp is q-weakly normal, the slicing degree h =
h(π1)···(πp),D given by the expression (1.6) is a positive integer independent
of (w, t) ∈ N ×Q (Property 6.1 below). Given an element f ∈ C0(Y × D̃),
consider the associated Riemannian fiber product

(3.4) ω(y, w, t, ζ) :=
∏
z∗∈D̃

(ζ − f (y)(z∗))νπ,ϕ(z∗;w,t)
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defined in Y ×N ×Q×C. The continuity of the function ω is shown in [Tu1,
(1.2.20)]. Restricting ω to {y} ×N ×Q×C (for fixed y ∈ Y ) gives rise to a
polynomial function

(3.5) ω(y)(w, t, ζ) =

h∑
k=0

(−1)kp
(y)
k (w, t) ζh−k

on N × Q × C, where the integer h is the slicing degree of {(πj)}1≤j≤p.
Here the coefficient p(y)

k (w, t) arises from the kth elementary symmetric func-
tion of the values of the restriction f (y) on π−1(w) ∩ ϕ−1(t) ∩D, and each
pk ∈ C0(Y × N × Q). The mapping ω : Y × N × Q × C → C is shown
to be separately holomorphic in each variable [Tu1, (1.2.19)]. Hence by the
Hartogs theorem ([GR1, Satz 29]), ω is jointly holomorphic; moreover, as
a function of (y, w, t), ω is holomorphic in Y × N × Q. Clearly, for fixed
y ∈ Y, ω(y)(π(z), ϕ(z), f (y)(z)) = 0 for all z ∈ D̃. Hence

(3.6) fh (y, z) =

h−1∑
k=0

(−1)k+1p
(y)
k (g(z), ϕ(z))(f (y)(z))h−k, z ∈ D̃,

thus f is integral of degree h over Õ[Y,N×Q].
Conversely, assume that f ∈ C0(Y × D̃) is integral over Õ[Y,N×Q]. The

map π̂ := (idY , (π, ϕ)cD̃) : Y × D̃ → Y × N × Q being light, proper and
holomorphic, the Andreotti–Stoll theorem [AS, Lemma 2.2, pp. 45–46] (on
finite branched analytic coverings) and the same argument as in [GuRo,
Lemma, pp. 104–105] imply that f is holomorphic in Y ×D̃ off a thin analytic
subset. Hence so is f in Y × D̃, by the normality of the latter.

Theorem 3.1 (Nullstellensatz for a q-weakly normal mapping). Assume
that g = (g1, . . . , gp) : X → Cp is q-weakly normal. Then:

(i) For any proper slicing (ϕ, g,D) of {(gj)}1≤j≤p, the slicing degree
h = h(g1)···(gp),D gives a Hilbert exponent for SD,Y := Y × SD, where S :=⋂
S|(gj)|.
(ii) At every point a ∈ S \ (Ssing ∩Xsing), the multiplicity ν0

g (a) gives a
Hilbert exponent for SU,Y , for some neighborhood U of a, and consequently

h(g, a) ≤ ν0
g (a).

Proof. (i) Assume that the function Q(y) belongs to I(SD) for every
y ∈ Y . Since each p

(y)
k (w, t) is expressible as a polynomial (without constant

term) in the push-forwards∑
{νg,ϕ(z∗;w, t)(Q(y)(z∗))s | z∗ ∈ g−1(w) ∩ ϕ−1(t) ∩D},

where s = 1, 2, . . . , one has p
(y)
k (0, t) = 0. Thus for each k = 1, . . . , h, the
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function p
(y)
k (g(z), ϕ(z)) can be written as

p
(y)
k (g(z), ϕ(z)) =

∑
‖µ‖>0

hµ(y, ϕ(z)) g1(z)µ1 · · · gp(z)µp , z ∈ D̃,

with holomorphic coefficients hµ(y, ϕ(z)) in Y × D̃. Consequently, for each
k = 1, . . . , h− 1, the function p

(y)
k (g(z), ϕ(z)) belongs to the ideal generated

by the restrictions gjcD̃. By virtue of the identity (3.6), this implies that
there exist λj ∈ O(Y × D̃), j = 1, . . . , p, such that

(3.7) (Q(y, z))h = λ1(y, z) g1(z) + · · · + λp(y, z) gp(z), (y, z) ∈ Y × D̃.
This proves the Hilbert relation (1.8).

(ii) At each a ∈ S there exists an open neighborhood U0 on which g is
a q-fibering. By Property 3.1, there exists a holomorphic map ϕ : U0 → Cq
such that g is light along ϕ at each z ∈ SU0∩ϕ−1(0). A topological argument
([Tu1, (1.1.5)]) shows that for a (possibly smaller) neighborhood U b U0 of a,
(ϕ, g, U) is a proper slicing of {(gj)}1≤j≤p with

S ∩ ϕ−1(0) ∩ U = {a}.
The map ϕ can be chosen with minimal covering index at a point a (see
(3.2) and (3.3)). If a ∈ S \ (Ssing ∩Xsing), then Properties 6.2 and 6.4 below
imply that

νg,ϕ(a; 0, ϕ(a)) = ν0
g (a).

Finally, it follows from Property 6.1 and the expression (1.6) that the mul-
tiplicity ν0

g (a) gives a Hilbert exponent for the ideal I(SU,Y ).

A reinterpretation of Tsikh’s criterion for a minimal defining system ([Ts,
pp. 119–120]) can be given as in the next corollary (where the proof offers
an alternative verification of the second implication on p. 119 of [Ts]):

Corollary 3.1. Let X be a complex manifold of pure dimension m > 0
and S an analytic subset of pure codimension q defined by a system {gj}1≤j≤q
⊂ O(X). Then the following conditions are equivalent:

(i) Every branch of S contains a point a ∈ Sreg with ν0
g (a) = 1 (where

g = (g1, . . . , gq)).
(ii) The set E := {a ∈ S | ν0

g (a) > 1} is nowhere dense in S.
(iii) {gj}1≤j≤q defines S minimally.

Proof. Assume first that the set E is nowhere dense in S. Then by The-
orem 3.1, every point a ∈ S admits a neighborhood U such that the Hilbert
relation (3.7) holds with the exponent h = 1 for all Q ∈ I(SU,Y ). In partic-
ular, if a ∈ S and fa ∈ Ia(Sa), then fa ≡ 0 (〈g1,a, . . . , gq,a〉). Thus the set
{gj}1≤j≤q defines S minimally.
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Conversely, if the system {gj}1≤j≤q defines S minimally, then by Tsikh’s
criterion [Ts, p. 119], the set

T := {a ∈ S | (dg1 ∧ · · · ∧ dgq)a = 0}
is nowhere dense in S. At every point a ∈ S \ T the map g has Jacobian
rank q, hence is locally (equivalent to) a projection at a and a ∈ Sreg. By
Property 6.3, ν0

g (a) = 1 for all such a. Therefore S \T = S \E and conditions
(i) and (ii) hold.

Theorem 3.2. If D is a principal divisor in a normal space X with
defining equation g(z) = 0, then at each point a ∈ S := S|D|, there is a
neighborhood U such that:

(i) h(g, a) is given by formula (1.9).
(ii) h(g, a) is equal to the smallest Hilbert exponent for the ideal I(SU,Y ).

Proof. Given a point a ∈ S, there is a neighborhood U ⊆ X such that,
for every branch Bκ of SU , 1 ≤ κ ≤ r, there exists a holomorphic function
gκ ∈ O(U) with germ (gκ)z generating the stalk of the ideal sheaf of Bκ at
every z ∈ U ([GR2, Theorem 5, p. 129]). By Corollary 3.1, one deduces that
ν0
gκ(z) = 1 for every z ∈ (Bκ)reg ∩ Xreg. The normality of X implies that
the same holds for all z ∈ (Bκ)reg. Hence by the divisibility Property 6.7, g
is divisible by gν11 · · · gνrr in U , where νκ is the multiplicity of g at any point
of Bκ ∩ (SU )reg. Hence one can write

gcU = ugν11 · · · g
νr
r

for some u ∈ O∗(U). Similarly, if G ∈ I(SU,Y ), then for each y ∈ Y ,

G(y)cU = Gc{y} × U = v(y) gs11 · · · g
sr
r

for some v(y) ∈ O∗(U) and suitable integers sj > 0. Thus, taking h = hS :=
max{νκ | κ = 1, . . . , r}, one has

(G(y))hcU = (v(y))h gh s11 · · · gh srr = ṽ(y)gν11 · · · g
νr
r

for some ṽ(y) ∈ O(U). Therefore G(y) ∈ h
√
〈gcU〉. The quotient λ(y, z) :=

ṽ(y)(y, z)/u(z) is holomorphic in Y × U by the Hartog theorem ([GR1, Satz
29]), and it satisfies the equation

(3.8) Gh(y, z) = λ(y, z) g(z), (y, z) ∈ Y × U.
Furthermore, the number h is the smallest positive integer satisfying (3.8).
Indeed, taking l to be a positive integer less than hS , the function ψ :=
g1 · · · gr vanishes on SU but the function (ψcU)l is not divisible by gcU .
Similarly the germ (ψl)a = (ψa)

l is not divisible by the germ ga. Conse-
quently, hS = h(g, a).

If S is a complete intersection of divisors in an affine algebraic variety,
then the product subvariety S = Y × S admits an intrinsically determined
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Hilbert exponent for Y -regular functions (cf. Płoski–Tworzewski [PT, The-
orem 3.1]):

Theorem 3.3. Let V be an affine algebraic variety and Y a complex
space. Assume that S is a complete intersection (of codimension q) of divisors
Dj in V defined by regular functions gj , 1 ≤ j ≤ q. Then the integer

(3.9) hS := max {ν0
g (cµ) | cµ ∈ Sreg ∩Bµ},

where g = (g1, . . . , gq) and the maximum is taken over all branches Bµ of S,
is a Hilbert exponent for the ideal JY (Y × S).

Proof. By Theorem 3.1, given a0 ∈ S, there exists a neighborhood U ⊆
V of a0 such that, setting ha0 := h((DjcU)1···(DpcU)p),U , every element f ∈
I(SU,Y ) satisfies a Hilbert relation

(3.10) fha0 (y, ζ) = α1(y, ζ) g1(ζ) + · · ·+αq(y, ζ) gq(ζ), ∀(y, ζ) ∈ Y ×U,

for suitable αj ∈ O(Y × U), 1 ≤ j ≤ q. This relation shows that

fha0w ≡ 0 (〈g1,w, . . . , gq,w〉)

in OY×V,w at every point w = (y0, a0) ∈ Y × S. Since the function νg is
locally constant on Sreg (Property 6.5 below), the integer hS given by (3.9)
is well-defined and one has

ha0 ≤ hS , ∀a0 ∈ Sreg.

This implies that
(fhS )w ≡ 0 (〈g1,w, . . . , gq,w〉)

in OY×V,w at every point w ∈ (Y × S) \ A, where A := Y × Ssing. Hence,
if f ∈ I(Y × S) is Y -regular, then it follows from the Noether stability of
OY [V ] that

(3.11) fhS ≡ 0 (〈g1, . . . , gq〉Y ) in OY [V ].

Proposition 3.2. Let V, Y and S be the same as in Theorem 3.3. If
either V is irreducible and S is minimally defined by F = {gj}1≤j≤q or Y is
a Stein space and F generates an ideal in O(Y × V ) equal to an intersection
of prime ideals, then JY (Y × S) = 〈g1, . . . , gq〉Y .

Proof. Assume first that V is irreducible and S is minimally defined
by F. Then by Corollary 3.1, taking a0 to be a point of Sreg, we have (3.10)
(with ha0 = ν0

g (a0) = 1), hence also (3.11) (with hS = 1). This proves that
JY (Y × S) = 〈g1, . . . , gq〉Y .

In the remaining case the desired conclusion follows from the same argu-
ment as that for the corresponding assertion in Theorem 2.3.
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If Y0 ⊆ Y and S ⊂ Y × CN (respectively, S ⊂ Y × PN (C)), set S|Y0 :=

S ∩ (Y0 × CN ) (respectively, S|Y0 := S ∩ (Y0 × PN (C))).

Proposition 3.3. Let D be a principal divisor in Y × CN defined by a
primitive element g ∈ OY [X1, . . . , XN ] over a normal, irreducible space Y .
Assume that at every point of Y off an almost thin subset T of codimen-
sion 2 ([AS, p. 14]), there is a Stein neighborhood U such that g has simple,
irreducible factors in OU [X1, . . . , XN ]. Then JY (S|D|) = 〈g〉Y .

Proof. Let S := S|D|. If S = ∅, then we have 1 = u g, where u =

(1/g) ∈ O(Y × CN ). The subalgebra OY [X1, . . . , XN ] being strictly stable
in O(Y ×CN ), the quotient function u actually belongs to OY [X1, . . . , XN ].
Hence one has 〈g〉Y = OY [X1, . . . , XN ]. If Z 6= ∅, then deg(g) > 0. Choose a
Stein neighborhood U ⊆ Y \ T such that g has simple, irreducible factors in
OU [X1, . . . , XN ]. By the principal ideal theorem for relative hypersurfaces
([Tu2, Theorem 4.2(2)]), the subvariety S|U is minimally defined by an equa-
tion g1 · · · gr = 0 where each gj ∈ OU [X1, . . . , XN ] has positive degree and
the set {V(gj)}1≤j≤r gives all branches of S|U . Moreover, by Properties 6.5
and 6.7,

g = u(π∗φ) gλ11 · · · g
λr
r

for some u ∈ O∗(U×CN ), φ ∈ O(U), and suitable positive integers λj . Since
g is primitive over U and has simple irreducible factors in OU [X1, . . . , XN ],
the function φ is nonvanishing in U and each λj equals 1. As above, the strict
stability of the subalgebra OU [X1, . . . , XN ] implies that g = v g1 · · · gr for
some v ∈ OU [X1, . . . , XN ]. Let Q ∈ JY (S|D|). Then by Corollary 3.1 and
Theorem 3.2, the quotient h := Q/g is holomorphic in U×CN . It follows that
h is holomorphic in (Y \T )×CN , hence (by normality of Y ) also in Y ×CN .
Therefore (as in the preceding) h ∈ OY [X1, . . . , XN ], thereby proving the
desired conclusion.

4. Nullstellensatz for relative projective varieties. An element g
in OY [X1, . . . , XN ] (or PolY,N ) of (generic) positive degree is said to be
irreducible at y0 ∈ Y if there exists a Stein neighborhood U such that g is
irreducible in OU [X1, . . . , XN ]. To each element g ∈ PolY,N+1 is associated
a subset V(g) in Y × PN (C):

V(g) := {(y, [z0, . . . , zN ]) ∈ Y × PN (C) | g(y)(z0, . . . , zN ) = 0}.

A subset S ⊆ Y × PN (C) is called a relative algebraic set (over Y ) if at
each point of Y there exist an open neighborhood Y0 and (finitely many)
elements gj ∈ PolY0,N+1, 1 ≤ j ≤ p, such that the restriction S|Y0 is given
by the common zero set V(g1, . . . , gp) := V(g1) ∩ · · · ∩ V(gp). The relative
Chow Theorem asserts that a subset S ⊆ Y × PN (C) is relative algebraic
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over Y if and only if it is analytic in Y ×PN (C) (for a proof see Fischer [Fi,
4.3] or [Tu2, Theorem 3.1]).

Lemma 4.1. Let Y be irreducible and G ∈ OY [X1, . . . , XN ] (respectively,
G ∈ PolY,N+1) be primitive over Y . If G is irreducible at some point of Yreg,
then V(G) is an irreducible hypersurface in Y ×CN (respectively, Y ×PN (C)).

Proof. Observe that if g ∈ OY [X1, . . . , XN ], the irreducibility of the
affine variety V(g) is equivalent to that of its completion V(hg) in PN (C).
Also, an element G ∈ PolY,N+1 is reducible in OU [X0, . . . , XN ] for some open
subset U ⊆ Yreg if and only if so is g := aG in OU [X1, . . . , XN ]. Therefore
to prove the lemma it suffices to consider the case of a primitive element
g ∈ OY [X1, . . . , XN ]. Let Sj , 1 ≤ j ≤ r, be the irreducible components of
S := V(g). Assume that there exists a Stein neighborhood U ⊆ Yreg over
which g is irreducible. Then (as in the proof of Proposition 3.3) the restric-
tion (Sj)|U is minimally defined by an equation gj = 0 of positive degree,
for every j. Hence it follows from Corollary 3.1 and Theorem 3.2 that the
quotient u = g/g1 · · · gr is holomorphic in U × CN . Therefore, by Theorem
2.1, if r > 1, then g is reducible in OU [X1, . . . , XN ], hence a contradiction.
This proves that S = S1, so it is an irreducible variety.

Let U{k} := {a = [a0, . . . , aN ] | ak 6= 0} be the kth canonical chart
and α[k] the associated coordinate map on U{k} given by α[k] : a 7→ a[k] :=(
a0
ak
, . . . , âkak , . . . ,

aN
ak

)
(here “ ̂ ” denotes omission). The kth dehomogenization

(for 1 ≤ k ≤ N) of an element g ∈ PolY,N+1 is the holomorphic function
g[k] : Y × CN → C defined by (y, ζ) 7→ g[k],{y}(ζ), where

g[k],{y}(ζ0, . . . , ζk−1, ζk+1, . . . , ζN ) := g{y}(ζ0, . . . , ζk−1, 1, ζk+1, . . . , ζN );

the dehomogenization ag = g[0] is similarly defined. Setting g̃[k] := g[k] ◦
(idY , α

[k]), the system {(Y ×U{k}, g̃[k])}0≤k≤N defines a divisor in Y ×PN (C),
called the principal divisor associated to g.

If gj ∈ PolY0,N+1, 1 ≤ j ≤ p, and S := V(g1, . . . , gp), then the set IY (S)
of all elements f ∈ PolY,N+1 vanishing on S is a homogeneous ideal in
OY [X0, . . . , XN ], as can be seen as follows: if f ∈ IY (S), and w = (y, a) ∈ S,
then f (y) vanishes at all homogeneous coordinates of a. It follows that all ho-
mogeneous components f (y)

j of f (y) vanish at a. Thus every such component
belongs to IY (S), proving that IY (S) is homogeneous. A standard argument
shows that a nonvoid relative algebraic set S is irreducible in Y × PN (C)
if and only if IY (S) is a prime ideal in OY [X0, . . . , XN ]. It is easy to see
that if IY (S) = 〈P1, . . . , Pr〉Y for some Pj ∈ PolY,N+1, 1 ≤ j ≤ r, then
S = V(P1, . . . , Pr). The precise determination of the ideal IY (S) for a given
relative projective variety S will be considered in the rest of this paper in
several cases.
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Proposition 4.1. Let D be a principal divisor in Y ×PN (C) associated
to a primitive element G ∈ PolY,N+1 over a normal, irreducible space Y , and
S = S|D|. If at every point of Y off an almost thin subset T of codimension 2,
there is a neighborhood U such that G has simple, irreducible factors in
OU [X0, . . . , XN ], then IY (S) = 〈G〉Y .

Proof. The pseudopolynomial f = aG is primitive over Y with V(f) 6= ∅.
Let U ⊆ Y \ T be a Stein neighborhood over which G is irreducible. Then
f has simple, irreducible factors in OU [X1, . . . , XN ] (see Lemma 6.1 below).
Hence by Lemma 4.1, aS = V(f) is a union of irreducible branches of codi-
mension 1 in Y × CN . Consequently, the same is true for S = V(G) in
Y × PN (C). Observe that by Proposition 3.3, JY (aS) = 〈f〉. If Q ∈ IY (S),
then aQ ∈ JY (aS), hence aQ = uf for some u ∈ OY [X1, . . . , XN ]. Therefore
Q = (hu)G ∈ 〈G〉Y .

According to Gunning [Gu, Theorem 2, p. 42], if in a product spaceW×C,
where W is an open subset of CN , a subvariety S is realizable as a finite
branched analytic covering of W under the natural projection W ×C→W ,
then a set of global generators can be constructed for the ideal I(S). A
generalization of this assertion to the case of a divisor in a vector bundle on
a Stein manifold is given in [Tu2, 4.2(2)]. By virtue of the latter and Lemma
6.1, conditions under which the associated ideal of a divisor in Y × PN (C)
is principal can be ascertained:

Theorem 4.1. Assume that Y is a connected Stein manifold (of dimen-
sion n ≥ 0) with H2(Y,Z) = 0, and D an (arbitrary effective) divisor in
Y × PN (C) with S|D| ∩ (Y × CN ) 6= ∅. Then:

(i) D is a principal divisor associated to an element f ∈ PolY,N+1.
(ii) S|D| consists of finitely many branches Sj, 1 ≤ j ≤ l, each being

defined minimally by an equation gj = 0 for some irreducible gj ∈
PolY,N+1.

(iii) IY (S|D|) = 〈g1 . . . gl〉Y , where, if deg(gj) = 0, then Sj = φ−1
j (0) ×

PN (C) for some irreducible φj ∈ O(Y ).

Theorem 4.2 (Relative projective Nullstellensatz; cf. [ZS, Theorem 15,
pp. 171–172], [CLO, Theorem 9, p. 384]). Let Y be a connected complex space
and Dj a principal divisor in Y ×PN (C) associated to gj ∈ PolY,N+1(lj), for
j = 1, . . . , p, and S :=

⋂p
j=1 S|Dj |.

(1) If p ≤ N , then the restriction S|{y} is not empty for all y ∈ Y and
there is a positive integer h such that

(4.1) IY (S) = h

√
〈g1, . . . , gp〉

Y
.
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(2) If p > N and if S is not empty, then the relation (4.1) remains valid
for S.

Proof. Let C(S) ⊆ Y × CN+1 be the affine cone of S. If p ≤ N , the
restriction S|{y0} is nonempty for all y0 ∈ Y , by a result of Lang [La, p. 43,
Corollary]. Thus, according to [CLO, p. 384, (2)], the ideal IY (S) coincides
with that (in OY [X0, . . . , XN ]) associated to the analytic cone C(S). There-
fore Theorem 2.3 implies (by resorting to homogeneous expansions) that
there exists a positive integer h with the following property: for each y0 ∈ Y
there is a neighborhood Y0 such that every element G ∈ IY (S)∩PolY,N+1(d)
satisfies the equation

Gh = λ1 g1 + · · ·+ λqgq in Y0 × CN+1

for some λj ∈ PolY0,N+1(hd− lj), 1 ≤ j ≤ p. This proves (4.1).

In the following, let Dj be a divisor in PN (C) with support Fj , for
1 ≤ j ≤ q ≤ N . By Theorem 4.1, each Dj admits a global defining equation
gj(z0, . . . , zN ) = 0 for some gj ∈ PolN+1. Also, by Theorem 4.2, the projec-
tive variety F :=

⋂q
j=1 Fj is nonempty. If F has codimension q at a, define

the intersection number of the divisors Dj at a ∈ F ∩ U{k} by

(4.2) (D1 · · ·Dq)a := ν0((g̃
[k]
1 , . . . , g̃[k]

q ), a[k])

(cf. [AY, p. 180]). Observe that, by the invariance of multiplicity under an
invertible holomorphic matrix transformation ([St2, Theorem 6.1]), the in-
tersection number (4.2) is a positive integer intrinsically determined by the
divisors Dj (independent of their local representations).

A projective variety F of pure codimension q > 0 in PN (C) is called a
complete intersection if there exist (effective) divisors D1, . . . ,Dq such that
F =

⋂q
j=1 S|Dj |. Thus, for such a complete intersection one may choose for

each Dj a defining homogeneous polynomial fj . The integer

(4.3) h{D1,...,Dq} := max {(D1 · · ·Dq)cµ | cµ ∈ Bµ ∩ Freg},

where the maximum is taken over all branches Bµ of F, is intrinsically de-
termined. For a system F = {fj}1≤j≤q (as above) defining a complete inter-
section, also set

(4.4) h{F} := max
(
h{D1,...,Dq}, max

1≤j, k≤q
{mk(fj)}

)
,

where mk(P ) denotes the highest power such that zmk(P )
k divides P . The

system F is said to be minimal for F if h{F} = 1.

Theorem 4.3 (Hilbert exponent for a projective complete intersection).
Assume that:
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(i) F is a complete intersection of divisors in PN (C) defined by F =
{fj}1≤j≤q, and

(ii) F ∩ {z = [z0, . . . , zN ] | zk = 0} is thin in F for each k ∈ Z[0, N ].

Then for any complex space Y :

(a) Every nonzero element G ∈ PolY,N+1(d) ∩ IY (Y × F) satisfies the
equation

(4.5) Gh{F} = λ1 f1 + · · ·+ λq fq in Y0 × CN+1

for some λj ∈ PolY0,N+1(h{F}d− lj), 1 ≤ j ≤ q.
(b) If either 〈f1, . . . , fq〉Y is a prime ideal or the system F defines F

minimally, then IY (Y × F) = 〈f1, . . . , fq〉Y .

Proof. Let G ∈ PolY,N+1(d) ∩ IY (Y × F) be given. Choose k ∈ Z[0, N ]

such that mk(G) > 0 and F contains a point a ∈ U{k}. By Theorem 3.1(ii),
given y0 ∈ Y , there exists a product neighborhood Y0 × ∆ ⊆ Y × CN of
(y0, a

[k]) such that, for an exponent h ≥ h{D1,...,Dq}, the equation

(4.6) (G[k](y, ζ))h =

q∑
j=1

α
(y)
j (ζ)f

[k]
j (ζ), ∀(y, ζ) ∈ Y0 ×∆,

holds for some αj ∈ O(Y0×∆), 1 ≤ j ≤ q. The subalgebra OY [X1, . . . , XN ]
of pseudopolynomials being Noether-stable in O(Y × CN ), the coefficient
functions αj in (4.6) may be chosen to be elements of PolY0,N . Hence by the
identity theorem for holomorphic functions, the relation (4.6) remains valid
for all (y, ζ ′) ∈ Y ×CN . If we denote by d(P ) the degree, respectively, “hPj”
the kth homogenization, of a nonzero polynomial Pj ∈ O[X1, . . . , XN ], then
the identity

X
d(P1)+d(P2)
k

h(P1 + P2) = X
d(P1+P2)
k [X

d(P2)
k

hP1 +X
d(P1)
k

hP2]

holds for all such Pj , j = 1, 2 ([ZS, (3), p. 179]). By use of this formula it
can be shown that the relation (4.6) implies that

[(hG[k])(y)(z0, . . . , zN )]h =

q∑
j=1

λ̂
(y)
j (z0, . . . , zN ) h(f

[k]
j )(z0, . . . , zN )

for suitable pseudopolynomials λ̂j ∈ PolY0,N+1, 1 ≤ j ≤ q, for all (y, z) ∈
Y0 × {z ∈ CN+1 | zk 6= 0}. Thus for such (y, z), the identity

Xk
−mk(P ) P = h(P (k))

([ZS, (5′), p. 180]) implies that

z
−mk(G)h
k (G(y)(z0, . . . , zN ))h =

q∑
j=1

λ̂
(y)
j (z0, . . . , zN ) z

−mk(fj)
k fj(z0, . . . , zN ).
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Therefore, choosing h = h{F} as in (4.4), one has

(G(y)(z0, . . . , zN ))h{F} =

q∑
j=1

λ̂
(y)
j (z0, . . . , zN ) z

µk,j
k fj(z0, . . . , zN ),

where the integer µk,j := mk(G)h{F} − mk(fj) is nonnegative. Hence (by
continuity) the global relation (4.5) follows.

If 〈f1, . . . , fq〉Y is a prime ideal, then the above relation implies that
G ∈ 〈f1, . . . , fq〉Y . Clearly, if h{F} = 1, then the same conclusion holds for F.
Thus assertion (b) is proved.

A consequence of the above theorem and the Bézout property of projec-
tive hypersurfaces ([Tu3, Corollary 4.1]) is the following:

Corollary 4.1. Let Fj(c) be a hypersurface in PN (C) defined by a
homogeneous equation fj(z; c) = 0, where c varies in a locally connected
Hausdorff space W . Assume that for some c = c∗ ∈ W , the set F(c) :=⋂N
j=1 Fj(c) does not meet any of the hyperplanes {z = [z0, . . . , zN ] | zk = 0}

for 0 ≤ k ≤ N . Then for all c ∈ W sufficiently close to c∗, the system
F(c) = {fj(z; c)}1≤j≤N defines a finite intersection F(c) with

h{F(c)} ≤ deg(f1) · · · deg(fN ).

5. Gauss decomposition of pseudopolynomials. In this section, let
(X, p) be a semi-Riemann domain of dimension m > 0 (see [Tu4, §2 and §3]
for notation), a an arbitrary point of X, and Y an irreducible complex space.
A (holomorphic) strictly a-homogeneous pseudopolynomial on X over Y (of
degree d) is a holomorphic function ψ : Y ×X → C such that

ψ(y) = G(y) ◦ p[a]

for some G ∈ PolY,N (d), where N = 2m, and p[a] : X → Cm ≡ R2m has
components ζ [a]

2j−1 := x̃j − x̃j(a), ζ
[a]
2j := ỹj − ỹj(a), 1 ≤ j ≤ m; call such G a

strict push-forward of ψ. Denote by PolY,N (a, d) the set of all such elements
ψ of degree d. In particular, an element ψ(k,ξ)

a ∈ PolY,N (a, k), where k ≥ 1,
with strict push-forward

F (k,ξ)(X1, . . . , XN ) := (ξ1X1 + · · ·+ ξNXN )k, ξ = (ξ1, . . . , ξN ) ∈ CN ,
is called an elementary a-pseudospherical harmonics (in view of Proposition
3.1 and Example 3.2 of [Tu4, §3]). To characterize the submodule over O(Y )
generated by such elements, it is helpful to introduce (as follows) a differential
operator associated to each element ψ ∈ PolY,N (a, d).

For any G ∈ PolY,N (d) of positive degree, substituting āµ for each aµ in
the expression (2.1) defines an element Ĝ∈PolY,N (d). Given ψ ∈ PolY,N (a, d)
with strict push-forward G, by substituting further (in (2.1)) the symbolic
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operator ∂/∂Xj for each variable Xj (holding y fixed in Y \∆(ψ)), a linear
operator Ĝ[D] : PolY (k)→ PolY (k−d) is defined, hence also a linear opera-
tor ψ̂[a][D] : PolY,N (a, k)→ PolY,N (a, k−d), for integers k, d with 0 < d ≤ k,
with the property that

ψ̂[a][D]η = (Ĝ[D]H) ◦ p[a],

where H is a strict push-forward of η. A bilinear mapping

PolY,N (a, d)× PolY,N (a, k)→ PolY,N (a, k − d)

(between abelian groups) is given by the rule

(5.1) 〈ψ, η〉 := ψ̂[a][D]η.

Note that when applied to the space PolN (k) × PolN (k), this bilinear map
defines a Hermitian symmetric scalar product. Also, for every element Q ∈
PolN (d), 1 ≤ d ≤ k, the definition (5.1) implies that

(5.2)
Q̂[D]F (k,ξ)(z1, . . . , zN ) = k(k − 1)(k − d + 1) Q̂(ξ)F (k−d,ξ)(z1, . . . , zN ).

If ψ ∈ PolY,N (a, d), η ∈ PolY,N (a, k) and ξ ∈ PolY,N (a, k − d), then the
following adjoint formula holds:

(5.3) 〈ψ̂[a][D]η, ξ〉 = 〈η, ψξ〉
(cf. [H, p. 30]). This formula and Proposition 4.1 give rise to a generalization
of the Gauss decomposition rule:

Proposition 5.1.

(1) If M ⊆ PolY,N (a, k) is a submodule over O(Y ) and g ∈ PolY,N (a, d)
with 0 < d < k, then

(5.4) M = ker(ĝ[a][D]bM)⊕ g · =(ĝ[a][D]bM);

in particular,

(5.5) PolY,N (a, k) = ker(ĝ[a][D])⊕ g · PolY,N (a, k − d).

(2) For each ψ ∈ PolY,N (a, k),

(5.6) ψ =

[k/d]∑
j=0

gj Zk−jd

where Zj ∈ ker(ĝ[a][D]) ∩ PolY,N (a, j) and Zj is not divisible by g.

Proof. Observe that if ψ = gη, where η ∈ PolY,N (a, k − d), then

〈ψ, ψ〉 = ψ̂[D]ψ = (η̂[D]ĝ[a][D])ψ = 〈η, ĝ[a][D]ψ〉.
Suppose that ψ ∈ ker(ĝ[a][D]bM) ∩ g · =(ĝ[a][D]cM). Then ψ = gη for some
η ∈ =(ĝ[a][D]bM), and consequently 〈ψ, ψ〉 = 0, whence ψ = 0. This proves
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that the kernel space of ĝ[a][D]bM and the space g ·=(ĝ[a][D]bM) have trivial
intersection, hence are of complementary dimensions in M. From this the
relation (5.4) follows.

By virtue of the adjoint formula (5.3), the mapping ĝ[a][D] : PolY,N (a, k)
→ PolY,N (a, k− d) is surjective. Hence the decomposition (5.4) implies that
the representation (5.5) holds. By iteration of this formula it is easy to show
that every element ψ ∈ PolY,N (a, k) admits (for each d ∈ Z(0, k)) the Gauss
decomposition (5.6).

Given c = (c1, . . . , cq) with cj = (cj1, . . . , c
j
N ) ∈ CN , 1 ≤ j ≤ q, define the

Fermat variety F{d,c} := V(F {d,c
1}, . . . , F {d,c

q}), where

F {d,c
j} := cj1X

d
1 + · · ·+ cjNX

d
N .

The solid a-pseudospherical harmonics over Y (of type {d, c} and degree
k ≥ 1) are the members of the submodule (over O(Y ))

H
{d,c}
Y (a, k) := {Z ∈ PolY,N (a, k) | 〈ψ,Z〉 = 0, ∀ψ ∈ 〈Ψa,{1}, . . . , Ψa,{q}〉Y },

where Ψa,{j} = Ψ
{d,cj}
a := F {d,c

j} ◦ p[a].

Proposition 5.2. Assume that F is a complete intersection of Fermat
divisors in PN−1(C) of codimension q defined by a system F = {F {d,cj}1≤j≤q,
and one of the following conditions holds:

(i) F defines F minimally,
(ii) 〈F{1}, . . . , F{q}〉Y , where F{j} = F {d,c

j}, is a prime ideal,
(iii) N > 2, q = 1, c1 6= 0 ∈ CN , and Y is a normal space.

Then

(5.7) PolY,N (a, k) = H
{d,c}
Y (a, k)

⊕
1≤j≤q

Ψ{d,c
j}

a PolY,N (a, k − d);

furthermore, H{d,c}Y (a, k) is generated over O(Y ) by the set

Ha,k = H
{d,c}
a,k := {ψ(k,ξ)

a | [ξ̄] = [ξ̄1, . . . , ξ̄N ] ∈ F{d,c}}

of elementary pseudospherical harmonics of degree k parametrized by F{d,c}.

Proof. Repeated application of formula (5.4) yields the decomposition
formula (5.7). By (5.2), an elementary pseudospherical harmonics ψ(k,ξ)

a be-
longs to H

{d,c}
Y (a, k) whenever ξ ∈ F{d,c}. Owing to the decomposition (5.7),

it suffices to prove that the submodule over O(Y ) generated by the set
Ha,k in PolY,N (a, k) has an “orthogonal complement” given by the direct
sum ⊕

1≤j≤q
Ψ{d,c

j}
a PolY,N (a, k − d).
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By the identity (5.2), each element ψ of this direct sum satisfies the equa-
tion 〈ψ, ψ(k,ξ)

a 〉 = 0, provided [ξ̄] ∈ F{d,c}. Conversely, if Z ∈ PolY,N (a, k)
and Z is “orthogonal” to Ha,k, then, for any strict push-forward Z of Z,
Ẑ(y)(ξ) = 0, hence also Z(y)(ξ̄) = 0 for each y ∈ Y . By Theorem 4.3 there
exist λj ∈ PolY,N (s− d), 1 ≤ j < q, such that

Zh{F} = λ1F
{d,c1} + · · ·+ λqF

{d,cq} on Y × CN .

Hence, if either 〈F{1}, . . . , F{q}〉Y is a prime ideal or h{F} = 1, then

(5.8) Z ∈
⊕

1≤j≤q
F {d,c

j} PolY,N (k − d).

If N > 2, q = 1 and c1 6= 0, then F {d,c1} is irreducible in OY [X1, . . . , XN ]
([P, Theorem 1]), hence, if Y is a normal space, Proposition 4.1 asserts that
the relation (5.8) remains valid (with q = 1). Thus in either case the second
assertion follows.

Let D ⊂ X be an open set and a ∈ D. The (induced) Laplace operator
∆p in D∗ can be expressed in the form

∆p = r−2
a ∆sph + r1−N

a

∂

∂ra

(
rN−1
a

∂

∂ra

)
,

where ∆sph is, by definition, the “pseudospherical Laplacian”. Let Sa(ρ0) :=
∂D[a](ρ0) for sufficiently small ρ0 > 0.

Proposition 5.3.

(1) For each fixed (a, ξ) ∈ X×CN , the (surface pseudospherical harmon-
ics) Y(k,ξ)

a := r−ka ψ
(k,ξ)
a is an eigenvector of ∆sph belonging to the eigenvalue

− k (k +N − 2).
(2) If N > 2, each eigenspace of the pseudospherical Laplacian on Sa(ρ0)

is spanned by the functions Y
(k,ξ)
a with ξ2

1 + · · ·+ ξ2
N = 0, for some k ≥ 0.

(3) L2(Sa(ρ0)) =
⊕

k≥0 Êa,k(ρ0), where Êa,k(ρ0) denotes the span of the

set Ea,k(ρ0) := ρ0
−kH

{2,c[1]}
a,k cSa(ρ0), with c[1] = (1, . . . , 1).

Proof. Observe that the function Y
(k,ξ)
a is a-radially symmetric ([Tu4, §3,

Remark 2]). Since every a-radially symmetric function Y ([Tu4, §3]) satisfies
the equation

∆sph(Y) = r2−k
a ∆p(r

k
a Y)− k(k +N − 2)Y

for any integer k > 0, it follows that the surface pseudospherical harmonic
Y

(k,ξ)
a is an eigenfunction of ∆sph with eigenvalue −k(k + N − 2). The re-
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maining assertion follows from the standard argument (see [H, p. 32]) by
considering a “real” decomposition formula (5.6) with g := r2

a.

6. Appendix: Multiplicity and relative cancellation rules. Some
basic properties of the multiplicity of a holomorphic map are summarized
below. For complete proofs of Properties 3.1 and 6.1–6.5, see [Tu1].

Property 6.1 (Cf. [Tu1, (1.2.17)]). If (ϕ, g,D) is a proper slicing of
divisors {Dj}1≤j≤p in M (in the sense of Definition 1.1) then the sum∑
{νg,ϕ(z;w, t) | z ∈ D} is a positive integer independent of (w, t) ∈ N ×Q.

Property 6.2 ([Tu1, (2.2.1)–(2)]). If a ∈ (Fa)reg, then νf (a) = νf,ϕ(a)
for all ϕ ∈ Φ2

a(f).

Property 6.3 ([Tu1, (2.2.2)]). If N is normal at f(a), then νf (a) = 1
if and only if f is (equivalent to) a (local) projection at a and a ∈ (Fa)reg.

Property 6.4 ([Tu1, (2.2.5)]). If a ∈ Mreg, then νf (a) = ν̃f (a) =
νf,ϕ(a) for all ϕ ∈ Φ2

a(f).

Property 6.5 ([Tu1, (2.2.6)]). νf (z) = const for all z ∈ (Fa)reg.

Property 6.6 ([AS, pp. 266–267]). If a ∈ Mreg and f, g ∈ OM,a \ {0},
then ν0

fg(a) = ν0
f (a)+ν0

g (a), where ν0
f (a) := νf (a) if f(a) = 0, and ν0

f (a) := 0
otherwise.

Property 6.7 ([Tu2, Lemma, p. 132]). LetM be a normal complex space
and f, g ∈ O(M) with S := V(f) a thin subset of M . Then g ∈ 〈f〉 whenever
ν0
g (w) ≥ ν0

f (w) for every w ∈ Yreg ∩ Sreg.

In the following let Y denote an irreducible complex space, and f, g, h, P
∈ OY [X1, . . . , XN ] be of positive degree. Some relative factoring, cancellation
(and therewith divisibility) rules (of recurring use) are gathered below.

Lemma 6.1. If f is primitive over Y , then f has simple, irreducible
factors in OY [X1, . . . , XN ] if and only if so does the homogenization F = hf
in OY [X0, . . . , XN ].

Proof. Since S = V(f) is rational over Y , the set S ∩ (Y × PN−1(C)) is
thin on (the projective closure) S, by [Tu2, Theorem 3.2]. Suppose that F =
G1G2, Gj ∈ OY [X0, . . . , XN ], with deg(Gj) > 0, j = 1, 2. Then each Gj is
homogeneous and aF = (aG1) (aG2), where each aGj is of positive degree.
Thus f is reducible over Y . The converse assertion is proved similarly.

In the remainder of this section assume that Y is a normal complex
space. The next assertion is an easy consequence of the unique factorization
property of pseudopolynomials [Tu2, Theorem 4.2(2)]:
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Proposition 6.1. Assume that g and P are relatively prime over some
pseudoball U0 ([Tu4, §2]) at every point of Y off an almost thin subset T
of codimension 2 (namely, admitting no common factor in OU0 [X1, . . . , XN ]
with nonvoid zero set). Then fP ≡ hP (〈g〉) (in the ring O(Y ×CN )) if and
only if f ≡ h (〈g〉Y ).

Corollary 6.1. Let F, G, H, Q ∈ PolY,N+1 be of positive degree. As-
sume that Q and G are relatively prime over some pseudoball U0 at ev-
ery point of Y off an almost thin subset of codimension ≥ 2. Then FQ ≡
HQ (〈G〉) (in O(Y × CN+1)) if and only if F ≡ H (〈G〉Y ).

Proposition 6.2. Assume that g is primitive over Y and irreducible
at every point of Y off an almost thin subset T of codimension ≥ 2. If
P is not divisible by g over some pseudoball at each point of Y \ T , then
fP ≡ hP (〈g〉) (in O(Y × CN )) if and only if f ≡ h (〈g〉Y ).

Proof. Without loss of generality assume that h ≡ 0. Suppose that
fP ≡ 0 (〈g〉). Let U0 ⊆ Y \ T be a pseudoball such that P /∈ 〈g〉U0 .
Suppose that P = uP̂ and g = uĝ for some u, P̂ , ĝ ∈ OU0 [X1, . . . , XN ].
If deg ĝ = 0, then the primitivity of g implies that ĝ is nonvanishing, thus
contradicting the fact that P is not divisible by g. It then follows from the
local irreducibility of g in Y \ T (and the primitivity of g) that the function
u is nonvanishing. Thus g and P are relatively prime over U0. Hence by
Proposition 6.1, f ≡ 0 (〈g〉Y ).

Of possible use in the theory of algebraic functions is the following can-
celation property:

Proposition 6.3. If P is irreducible in OY [X1, . . . , XN ] with deg(P ) >
deg(g), then fP ≡ hP (〈g〉) (in O(Y × CN )) if and only if f ≡ h (〈g〉Y ).
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