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Reducing the number of periodic points in the smooth
homotopy class of a self-map of a simply-connected manifold

with periodic sequence of Lefschetz numbers

by Grzegorz Graff and Agnieszka Kaczkowska (Gdańsk)

Abstract. Let f be a smooth self-map of an m-dimensional (m ≥ 4) closed connected
and simply-connected manifold such that the sequence {L(fn)}∞n=1 of the Lefschetz num-
bers of its iterations is periodic. For a fixed natural r we wish to minimize, in the smooth
homotopy class, the number of periodic points with periods less than or equal to r. The
resulting number is given by a topological invariant J [f ] which is defined in combinatorial
terms and is constant for all sufficiently large r. We compute J [f ] for self-maps of some
manifolds with simple structure of homology groups.

1. Introduction. Let M be a compact m-dimensional manifold and f
be a continuous self-map of M . The question of what is the minimal number
of fixed points in the homotopy class of f is one of the most important
problems in fixed point theory. The answer for manifolds of dimension m ≥ 3
is given by the Nielsen number N(f) [16]. The same answer remains true
if we modify the question by taking smooth f and asking for the minimal
number of fixed points in the smooth homotopy class of f [17].

However, there is a remarkable difference between the smooth and con-
tinuous cases when minimizing the number of periodic points instead of fixed
points. In order to describe this difference let us fix a natural number r and
consider

(1.1) min{#Fix(gr) : g ∼ f}.

In the continuous category the minimum in (1.1) is given by NFr(f),
an invariant introduced by Jiang [16], while in the smooth category by
NJDr[f ], defined in [9]. It turns out that the invariants do not coincide:
for smooth f , we have NJDr[f ] ≥ NFr(f), and equality holds only in some
exceptional situations [9], [14].
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The construction of NJDr[f ] takes into account two kinds of obsta-
cles in reducing the number of periodic points: the first one may be called
“topological” and depends on the fundamental group of the manifold (more
precisely, on so-called Reidemeister relations). The second one is related
to smoothness and can be expressed in terms of local fixed point indices
of iterations {ind(fn, x0)}∞n=1, where x0 is a periodic point. Although it
is difficult to compute NJDr[f ] in general, it becomes an easier task for
simply-connected manifolds, as then the first obstacle disappears. In such a
case the invariant, denoted by Dr[f ], is defined only in terms of indices of
iterations at periodic points [10].

The invariant Dr[f ] was computed in some particular cases, for example
for each r and all self-maps of S3 in [11] and under some specific assumptions
on r and f for other simply-connected manifolds [7], [8], [12].

In this work we consider maps with periodic Lefschetz numbers, and
examine the problem of determining

(1.2) MF diff
≤r (f) = min

{
#
⋃
k≤r

Fix(gk) : g
s∼ f
}
,

where
s∼ means that the maps g and f are C1-homotopic.

The aim of this paper is to introduce a topological invariant J [f ] and
prove that it is equal to MF diff

≤r (f) for all sufficiently large r (Theorem 2.7).
There are two reasons why we restrict our considerations to the class of

maps for which {L(fn)}∞n=1 is periodic. Firstly, in that case MF diff
≤r (f) turns

out to be independent of r for r ≥ R, where R can be easily determined
for a given f , so the invariant J [f ] does not depend on r. Secondly, the
calculation of J [f ] is not very difficult (especially for manifolds with all
homology groups low-dimensional, i.e. such that dimHi(M ;Q) is small), in
contrast to other invariants mentioned above which usually need non-trivial
combinatorial methods to be computed (see [8]).

The construction of J [f ] reduces to finding the minimal decomposition
of {L(fn)}∞n=1 into sequences, each of which can be realized as fixed point
indices (at a fixed point) of a smooth local map. In order to compute J [f ] one
must know the representation of Lefschetz numbers in the form of so-called
periodic expansion (Theorem 3.1) and the full list of periodic expansions of
local indices of smooth maps in a given dimension (which has been recently
provided in [13]; see Theorem 4.1). In the final part of the paper we find
the invariant J [f ] for self-maps of some manifolds with low-dimensional
homology, illustrating computational techniques which could also be applied
for more complicated cases (Section 4).

The results obtained reveal an interesting relation between continuous
and smooth categories for some of the classes of manifolds under consider-
ation. Although usually the smooth and continuous cases are different, in
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some special situations they coincide. Namely, in a continuous homotopy
class it is always possible to reduce the number of periodic points to no
more than one fixed point. We prove that in the given setting the same is
true in smooth homotopy classes for some manifolds having low-dimensional
homology groups such as Sm × Sm with m > 2 (Corollary 4.8).

1.1. Periodic expansions of indices and Lefschetz numbers. Let
M be an m-dimensional, closed, connected and simply-connected manifold.
The sequence of indices of iterations plays a key role in reducing the num-
ber of periodic points in a smooth homotopy class. We will represent such
sequences in the convenient form of so-called periodic expansion. In this sec-
tion we also use periodic expansion to give a characterization of maps with
{L(fn)}∞n=1 periodic.

Let U be an open subset of Rm. For a map f : U → Rm and its fixed
point x0, isolated for each iteration fn, the sequence {ind(fn, x0)}∞n=1 of
local fixed point indices is well-defined.

It turns out that there are always some congruences among the elements
of this sequence, called the Dold relations [4],

(1.3)
∑
k|n

µ(k) ind(f (n/k), x0) ≡ 0 (mod n).

We denote by µ the Möbius function, i.e., µ : N → Z is defined by the
following three properties: µ(1) = 1, µ(k) = (−1)s if k is a product of s
different primes, and µ(k) = 0 otherwise.

For a given k ∈ N we define the basic sequence

regk(n) =

{
k if k |n,

0 if k - n.

Thus, regk is the periodic sequence

(0, . . . , 0, k, 0, . . . , 0, k, 0, . . .),

where the non-zero entries appear for indices divisible by k.

Theorem 1.1 (cf. [18]). The sequence {ind(fn, x0)}∞n=1 (and any other
sequence of integers) can be uniquely represented in the form of a periodic
expansion

ind(fn, x0) =
∞∑
k=1

ak regk(n),

where

an =
1

n

∑
k|n

µ

(
n

k

)
ind(fk, x0).

Remark 1.2. Notice that by the Dold relations (1.3) the coefficients an
are always integers.
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Remark 1.3. The Dold relations also hold for the sequence {L(fn)}∞n=1

of Lefschetz numbers, so the coefficients in the periodic expansion of
{L(fn)}∞n=1 are also integers [18].

The following remark will play an important role in defining the invariant
J [f ] (see Section 2).

Remark 1.4. The periodicity of {L(fn)}∞n=1 is equivalent to {L(fn)}∞n=1

being a finite combination of basic sequences [18].

For a manifold M of dimension m we will consider Hi(M ;Q), where
i = 0, . . . ,m, the homology groups with coefficients in Q, which are finite-
dimensional linear spaces over Q. For a self-map f of M we denote by f∗i
the linear map induced by f on Hi(M ;Q) and by f∗ the self-map

⊕m
i=1 f∗i

of
⊕m

i=1Hi(M ;Q).

Definition 1.5 ([18]). Let M be an m-dimensional compact connected
manifold. For integer i ≥ 0 and f : M → M , let ei(λ) be the algebraic
multiplicity of λ as an eigenvalue of f∗i. Define

e(λ) :=
m∑
i=0

(−1)iei(λ).

We will call an eigenvalue λ 6= 0 essential provided e(λ) 6= 0.

Remark 1.6. Let us notice that only essential eigenvalues give a con-
tribution to {L(fn)}∞n=1. Namely, let σ(f) denote the spectrum of f∗ and
σes(f) be the set of essential eigenvalues. Then

(1.4) L(fm) =
∑

λ∈σ(f)

e(λ)λm =
∑

λ∈σes(f)

e(λ)λm.

The following theorem gives a characterization of maps that have pe-
riodic Lefschetz numbers of iterations and shows that this is quite a large
class of maps. Although the conclusion can be deduced from Theorem 2.2
in [1], it is hidden in some chains of implications, so for the convenience of
the reader we give a straightforward proof below.

Theorem 1.7. Let f be a self-map of a compact manifold M of dimen-
sion m. Then {L(fn)}∞n=1 is periodic if and only if all essential eigenvalues
of the map f∗ induced by f on homology are (primitive) roots of unity.

Proof. “⇒” The Lefschetz number L(fn) is by definition

L(fn) =

m∑
i=0

(−1)i tr fn∗i.

Let ρ = max{|λ| : e(λ) 6= 0, λ ∈ σ(f∗)} = max{|λ| : λ ∈ σes(f∗)} (with
the convention that the maximum over the empty set is zero).



Reducing the number of periodic points 33

We denote by λ1, . . . , λk all essential eigenvalues (not necessarily dis-
tinct) satisfying |λi| < ρ, and define τ = max{|λ1|, . . . , |λk|}.

Suppose that ρ > 1. Then

(1.5) |L(fn)| ≥ ρn − (|λn1 |+ · · ·+ |λnk |) ≥ ρn − kτn.

If τ ≤ 1, then the right-hand side of (1.5) tends to infinity as n→∞. If
τ > 1, then

ρn − kτn = τn[(ρ/τ)n − k]

also tends to infinity. On the other hand, by assumption the sequence
{L(fn)}∞n=1 is periodic and thus bounded, so we get a contradiction.

As a result, we have ρ ≤ 1. The classical theorem of Kronecker states
that if all non-zero eigenvalues of an integral matrix have moduli less than or
equal to one, then all the eigenvalues are (primitive) roots of unity (cf. [21]).
Now, we consider a collection of algebraically conjugate eigenvalues in σ(f).
It is known that if one of the eigenvalues in the collection is essential then all
other eigenvalues are also essential (cf. [18, Remark 3.1.54] for the details).
As a result, we may associate with each collection of essential conjugate
eigenvalues an integral matrix and apply the Kronecker theorem. This proves
the first implication.

“⇐” If all essential eigenvalues of f∗ are roots of unity of degrees l1, . . . , ls,
then taking their least common multiple K we see that L(fn) = L(fn+K),
thus {L(fn)}∞n=1 is periodic.

The algebraic condition on the eigenvalues in Theorem 1.7 allows one to
produce many examples of maps with periodic Lefschetz numbers of itera-
tions. What is more, it turns out that any smooth map that can be deformed
to a map with finitely many periodic points also satisfies this condition.

Theorem 1.8 ([3], [25]). Let f be a C1 self-map of a compact manifold
M with a finite number of periodic points. Then {L(fn)}∞n=1 is periodic.

Proof. Let us consider the periodic expansions of the sequences of the
indices of iterations at x ∈ Per(f), where Per(f) denotes the set of periodic
points of f :

(1.6) ind(fn, x) =
∞∑
k=1

ak regk(n).

Chow, Mallet-Paret and Yorke proved in [3] that if f is a C1 map, then
{ind(fn, x)}∞n=1 is a finite combination of basic sequences:

(1.7) ind(fn, x) =
∑

k∈O(x)

ak regk(n),
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where O(x) is a finite set. By the Lefschetz–Hopf theorem for fn we obtain

(1.8) L(fn) =
∑

x∈Fix(fn)

ind(fn, x).

By assumption there are finitely many periodic points. As a consequence,
by (1.8), {L(fn)}∞n=1 is a finite sum of sequences of the form (1.7), each of
which is a finite combination of periodic sequences.

In particular, Morse–Smale diffeomorphisms constitute a well-known
class of maps on compact manifolds with finitely many periodic points [22],
and thus they are examples of maps with periodic sequence of Lefschetz
numbers of iterations.

2. Definition of J [f ]. In this section we will define, using the notion
of so-called DDm sequences, a new topological invariant J [f ] which is equal
to the minimal number of periodic points with periods less than or equal to
a given r in the smooth homotopy class of f and which does not depend on
r for sufficiently large r.

In the rest of the paper we will consider smooth (i.e. C1) self-maps of
a manifold M with periodic sequence of Lefschetz numbers of iterations.
Our assumptions on the manifold are the following: M is smooth, closed,
connected and simply-connected, but in the formulation of the results we
will not repeat the natural assumptions of smoothness and connectedness
of M .

By Remarks 1.3 and 1.4 we can represent {L(fn)}∞n=1 in the form

(2.1) L(fn) =
∑
k∈O

bk regk(n),

where O = {k : bk 6= 0} is finite and bk ∈ Z.

By a p-orbit we will understand an orbit consisting of points with mini-
mal period equal to p.

Definition 2.1. A sequence {cn}∞n=1 of integers is called a DDm(p)
sequence if there are: a C1 map φ : U → Rm, where U ⊂ Rm is open, and P ,
an isolated p-orbit of φ, such that

(2.2) cn = ind(φn, P )

(notice that cn = 0 if n is not a multiple of p).

Let r be a fixed natural number. The finite sequence {cn}n|r will be called
a DDm(p | r) sequence if (2.2) holds for n | r, and a DDm(p ≤ r) sequence if
(2.2) holds for n ≤ r.
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Definition 2.2. Let {L(fn)}∞n=1 be an infinite sequence of Lefschetz
numbers. Suppose we can decompose {L(fn)}∞n=1 into the sum

(2.3) L(fn) = c1(n) + · · ·+ cs(n),

where ci is a DDm(li) sequence for i = 1, . . . , s. Each such decomposition
determines the number l = l1 + · · · + ls. We define the number J [f ] as the
smallest l which can be obtained in this way.

Analogously, we decompose {L(fn)}n≤r and {L(fn)}n|r into

(2.4) L(fn) = c1(n) + · · ·+ cs(n),

where for each i = 1, . . . , s, ci is a DDm(li ≤ r) sequence or DDm(li | r) se-
quence, respectively. Again, each such decomposition determines the number
l = l1 + · · ·+ ls.

Then Dr[f ] is defined as the smallest l under decompositions into
DDm(li | r) sequences; and Jr[f ] as the smallest l under decompositions
into DDm(li ≤ r) sequences.

By convention, if the sequence of Lefschetz numbers consists only of zero
elements, then it is a sum of 0 respective DDm sequences.

The following theorem was the main result of [10].

Theorem 2.3. Let f be a self-map of a closed simply-connected manifold
of dimension m ≥ 3 and r ∈ N a fixed number. Then

(2.5) Dr[f ] = min{#Fix(gr) : g
s∼ f},

where
s∼ means that the maps g and f are C1-homotopic.

Let us define

(2.6) MF diff
≤r (f) = min

{
#
⋃
k≤r

Fix(gk) : g
s∼ f
}
.

Lemma 2.4. Let f be a self-map of a closed simply-connected manifold
of dimension m ≥ 3 and r ∈ N a fixed number. Then

(2.7) Jr[f ] ≤MF diff
≤r (f) ≤ Dr![f ].

Proof. By the Kupka–Smale theorem f : M →M is smoothly homotopic
to a map g such that #

⋃
k≤r Fix(gk) is finite [22]. For any such g,⋃

k≤r
Fix(gk) = a1 ∪ · · · ∪ as,

where ai is an orbit of length li. By the Lefschetz–Hopf formula we get, for
n ≤ r,

L(fn) = L(gn) =
s∑
i=1

ind(gn, ai) =
s∑
i=1

ci(n),
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where ci(n) = ind(gn, ai). Since g is smooth, each ci is a DDm(li ≤ r)
sequence. Furthermore,

Jr[f ] ≤ l1 + · · ·+ ls = #a1 + · · ·+ #as = #
⋃
k≤r

Fix(gk).

As a consequence we get the first inequality in (2.7).

To prove the second, assume that g1 achieves the minimum in (2.6) for r,
and g2 achieves the minimum in (2.5) for r!. Then

MF diff
≤r (f) = #

⋃
k≤r

Fix(gk1 ) ≤ #
⋃
k≤r

Fix(gk2 ) ≤ #
⋃
k|r!

Fix(gk2 )

= #Fix(gr!2 ) = Dr![f ].

Remark 2.5. In the proof of Lemma 2.4 instead of r! one can use the
least common multiple of {1, . . . , r}.

Lemma 2.6. Let f be a self-map of a closed simply-connected manifold
of dimension m ≥ 4. Assume R = max{k : k ∈ O} in (2.1) and r ≥ R.

(1) To calculate J [f ], Jr[f ] and Dr[f ] one can equivalently take the
minimum in Definition 2.2 only over DDm(1) or DDm(1 ≤ r),
DDm(1 | r) sequences, respectively.

(2) Furthermore, one can equivalently take the minimum in Definition
2.2 over sequences c(n) =

∑
k ak regk(n) satisfying ak = 0 for k > R.

Proof. Part (1) was proved in [8] and is a consequence of the fact that
every DDm(p) sequence with p ≥ 2 is a sum of at most two DDm(1) se-
quences.

(2) Assume that a minimal decomposition (2.3) of {L(fn)}∞n=1 is given,
where ci(n) =

∑
k a

i
k regk(n), and assume that aik 6= 0 for some k > R

and some i = 1, . . . , s. We have bk = 0 =
∑s

i=1 a
i
k in (2.1). Thus, we can

always replace c1, . . . , cs in the minimal decomposition by c′1, . . . , c
′
s with the

respective coefficients a′ik = 0. The same is obviously true for {L(fn)}n≤r
and {L(fn)}n|r.

Theorem 2.7. Let f be a self-map of a closed simply-connected man-
ifold M of dimension m ≥ 4. Assume {L(fn)}∞n=1 is periodic and R =
max{k : k ∈ O} in (2.1). Then for every r ≥ R,

J [f ] = Jr[f ] = MF diff
≤r (f).

Proof. We have

(2.8) J [f ] = Jr[f ] ≤MF diff
≤r (f) ≤ Dr![f ] = J [f ].

Here the equalities are straightforward consequences of Lemma 2.6(2), while
the inequalities were proved in Lemma 2.4.
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Remark 2.8. Notice that by Theorem 2.7 the value of Jr[f ] is constant
for all r ≥ R. As a consequence, Jr[f ] = J [f ] is an invariant that does
not depend on r (for r large enough), but only on the space M and f .
In other words, J [f ] is equal to the minimal number of all periodic points
with periods less than or equal to r in a smooth homotopy class of f for all
sufficiently large r.

What is more, for a given manifold M we will determine the value of
R = max{k : k ∈ O} and express it in terms of primitive roots of unity
contained in the spectrum of the map f∗ on homology (cf. Remark 3.4).

Remark 2.9. Assume that a decomposition of the Lefschetz numbers of
the iterations of f into DDm(1 | r) sequences is given. Then, by the construc-
tion described in [9], we can find, in the smooth homotopy class of f , a map g
whose fixed points are in one-to-one correspondence to the DDm(1 | r) se-
quences. Thus, by Lemma 2.6(1) and the equality J [f ] = Dr![f ] obtained
in (2.8), the number J [f ] can be realized at fixed points in the smooth
homotopy class of f .

3. Periodic expansion for maps with periodic Lefschetz numbers
of iterations. In this section we will determine the periodic expansion
of Lefschetz numbers for smooth maps having {L(fn)}∞n=1 periodic, which
makes it possible to find the value of J [f ] effectively.

Let ε1, . . . , εϕ(d) be all the dth primitive roots of unity, where ϕ denotes
the Euler function, i.e. ϕ(d) is the number of positive integers less than or
equal to d that are coprime to d. For a given d we define Ld(n) = εn1 + · · ·
· · ·+ εnϕ(d).

The cyclotomic polynomial
∏ϕ(d)
i=1 (x − εi) has integer coefficients, thus

Ld(n) is equal to trAn for some integer matrix A, having the cyclotomic
polynomial as the characteristic polynomial. On the other hand, the se-
quence trAn for an integer matrix A always satisfies the Dold relations (see
Theorem 3.1.4 in [19]). As a consequence, by Theorem 1.2, Ld(n) can be
uniquely represented as an integral combination of basic sequences regk.

Let us consider an arbitrary map f with periodic Lefschetz numbers of
iterations. Then by Theorem 1.7 all its essential eigenvalues are primitive
roots of unity. Let Pd denote the set of all dth primitive roots of unity and
let σes(f) be the set of essential eigenvalues of f . We define

e(d) =
∑

λ∈Pd∩σes(f)

e(λ).

The essential dth primitive roots of unity appear in collections of ϕ(d) ele-
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ments, contributing e(d)
ϕ(d)Ld(n) to L(fn), so we get

L(fn) =
∑
d

e(d)

ϕ(d)
Ld(n).

As a consequence, to find the periodic expansion of {L(fn)}∞n=1 it is
enough to determine the expansions of each {Ld(n)}∞n=1.

We represent {Ld(n)}∞n=1, for d fixed, as an integral combination of basic
sequences regk:

(3.1) Ld(n) =
∞∑
k=1

adk regk(n),

where adk are integers.
The following theorem gives the value of adk, and thus allows us to de-

termine the periodic expansion of {Ld(n)}∞n=1.

Theorem 3.1. The coefficient adk of the periodic expansion of {Ld(n)}∞n=1

is equal to

(3.2) adk =

{
0, k - d,
µ(d/k), k | d.

We precede the proof with two technical lemmas. Let (a, b) denote the
greatest common divisor of a and b.

Lemma 3.2. Let d ∈ N and p be a prime number. Then:

(1) if (d/pα, p) = 1, then ϕ(d)/ϕ(d/pα) = pα−1(p− 1);
(2) if (d/pα, p) = p, then ϕ(d)/ϕ(d/pα) = pα.

Proof. Let d = ps11 · . . . ·psrr , where pi for i = 1, . . . , r are different primes.

Then ϕ(d) = d (p1−1)·...·(pr−1)
p1·...·pr (cf. [2]).

We prove (2). If (d/pα, p) = p, then for some i, pi = p and si ≥ α + 1;
assume for simplicity that i = r. Then

ϕ(d)

ϕ(d/pα)
=

d (p1−1)·...·(pr−1−1)(p−1)
p1·...·pr−1p

d
pα

(p1−1)·...·(pr−1−1)(p−1)
p1·...·pr−1p

= pα.

The proof of (1) is analogous.

In the rest of this section we will repeatedly make use of the multiplica-
tivity of the Möbius function: µ(pq) = µ(p)µ(q) for coprime p and q.

Lemma 3.3. Let d, k ∈ N and let p be a prime. If kp | d then∑
l|k

µ

(
d

l

)
µ

(
kp

l

)
ϕ(d)

ϕ(d/l)
= −

∑
l|k

µ

(
d

l

)
µ

(
k

l

)
ϕ(d)

ϕ(d/l)
.
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Proof. We denote the left-hand side of the formula by A. Then

A =
∑

l|k∧(k/l,p)=1

µ

(
d

l

)
µ

(
k

l
p

)
ϕ(d)

ϕ(d/l)
+

∑
l|k∧(k/l,p)=p

µ

(
d

l

)
µ

(
lpsp

l

)
ϕ(d)

ϕ(d/l)
,

where in the second term we substitute k = lps, s ∈ N since (k/l, p) = p. As
µ(lpsp/l) = 0, the second term vanishes. We get

(3.3) A = µ(p)

( ∑
l|k∧(k/l,p)=1

µ

(
d

l

)
µ

(
k

l

)
ϕ(d)

ϕ(d/l)

+
∑

l|k∧(k/l,p)=p

µ

(
d

l

)
µ

(
k

l

)
ϕ(d)

ϕ(d/l)
−

∑
l|k∧(k/l,p)=p

µ

(
d

l

)
µ

(
k

l

)
ϕ(d)

ϕ(d/l)

)
.

By assumption d = kpt, where t ∈ N. Thus the third term in brackets in
(3.3) is equal to zero because µ(d/l) = µ(kpt/l) = µ(lpspt/l) = 0. Finally,
we obtain

A = −
∑
l|k

µ

(
d

l

)
µ

(
k

l

)
ϕ(d)

ϕ(d/l)
.

Proof of Theorem 3.1. The following formula for adk was proved in [6]:

(3.4) adk =


0, k - d,
1

k

∑
l|k

µ

(
d

l

)
µ

(
k

l

)
ϕ(d)

ϕ(d/l)
, k | d.

We will simplify this formula so as to obtain (3.2). Clearly, we have to
consider the case of k | d only.

We will use induction on the number of primes in the decomposition
of k. We denote by adk the right-hand side of (3.4) and by Adk the right-hand
side of (3.2).

First, for k = 1 and arbitrary d, we have

ad1 = µ(d) = Ad1.

Next, let k = p be a prime dividing d. Then

(3.5) adp =
1

p

(
µ(d)µ(p) + µ

(
d

p

)
ϕ(d)

ϕ(d/p)

)
.

Let us consider two cases. If (d/p, p) = p, then p2 | d so µ(d) = 0 and by
Lemma 3.2(2),

adp =
1

p
· µ
(
d

p

)
p = Adp.

If (d/p, p) = 1, then by Lemma 3.2(1) formula (3.5) takes the form

adp =
1

p

(
−µ
(
d

p
· p
)

+ µ

(
d

p

)
(p− 1)

)
= µ

(
d

p

)
= Adp.
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Now we make our inductive assumption: for all natural k and d such
that k | d and k has r prime factors (i.e. k = p1 · . . . · pr, where pi are not
necessarily different primes), we have

adk = µ

(
d

k

)
= Adk.

We will prove that the same is true for k having one factor more, i.e.

(3.6) adkp = Adkp.

We have

kp · adkp =
∑
l|kp

µ

(
d

l

)
µ

(
kp

l

)
ϕ(d)

ϕ(d/l)

=
∑
l|k

µ

(
d

l

)
µ

(
kp

l

)
ϕ(d)

ϕ(d/l)
+

∑
p|l|kp∧l-k

µ

(
d

l

)
µ

(
kp

l

)
ϕ(d)

ϕ(d/l)

=: X + Y.

By Lemma 3.3 and the induction assumption we get

X = −
∑
l|k

µ

(
d

l

)
µ

(
k

l

)
ϕ(d)

ϕ(d/l)
= −µ

(
d

k

)
k.

In order to compute Y we consider two cases: (k, p) = 1 to (k, p) = p.
(I) (k, p) = 1. Then we substitute l = pj, where j | k, and obtain

Y =
∑
j|k

µ

(
d

jp

)
µ

(
k

j

)
ϕ(d)

ϕ(d/jp)
(3.7)

=
∑
j|k

µ

(
d

jp

)
µ

(
k

j

)
ϕ(d/p)

ϕ(d/jp)

ϕ(d)

ϕ(d/p)
.

By the induction assumption for k and d/p and by Lemma 3.2, we have

(3.8) Y = µ

(
d

pk

)
k
ϕ(d)

ϕ(d/p)
=


µ

(
d

kp

)
kp− µ

(
d

kp

)
k if (d/p, p) = 1,

µ

(
d

kp

)
kp if (d/p, p) = p.

Thus adk under the assumption that (k, p) = 1 is equal to

(3.9) X + Y =


−µ
(
d

k

)
k + µ

(
d

kp

)
kp− µ

(
d

kp

)
k if (d/p, p) = 1,

−µ
(
d

k

)
k + µ

(
d

kp

)
kp if (d/p, p) = p.

Notice that if (d/p, p) = 1, then µ(d/k) = −µ(d/kp)µ(p). As a conse-
quence, −µ(d/k)k − µ(d/kp)k = 0 in the first case of (3.9). Furthermore, if
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(d/p, p) = p, then p2| dk , so −µ(d/k)k = 0 in the second case of (3.9). Finally,
always

(3.10) X + Y = µ

(
d

kp

)
kp,

which is (3.6).
(II) (k, p) = p. Then we substitute l = p2j, where j | kp , to obtain,

Y =
∑
j| k
p

µ

(
d

jp2

)
µ

(
k

jp

)
ϕ(d)

ϕ(d/jp2)
(3.11)

=
∑
j| k
p

µ

(
d

jp2

)
µ

(
k

jp

)
ϕ(d/p2)

ϕ(d/jp2)

ϕ(d)

ϕ(d/p2)
.

Then we repeat the same reasoning as in case (I). We consider two subcases:
(d/p2, p) = 1 and (d/p2, p) = p, apply the induction assumption for k/p and
d/p2, and use Lemma 3.2 for α = 2, obtaining the conclusion in the form
(3.10). This ends the proof of Theorem 3.1.

Remark 3.4. Let L(fn) =
∑

k∈O bk regk(n), where O = {k : bk 6= 0}.
Then, by Theorem 2.7, R = max{k : k ∈ O}, so R is the maximal index
of non-vanishing basic sequences in the periodic expansion of {L(fn)}∞n=1.
Thus, by Theorem 3.1, R is equal to the maximal degree of all essential
primitive roots of unity in the spectrum of the map f∗.

4. Applications: calculations of the invariant J [f ] for manifolds
with low-dimensional homology groups

4.1. Indices of iterations of smooth maps. By definition the calcu-
lation of J [f ] reduces to finding the minimal decomposition of {L(fn)}∞n=1

into sequences of the form {ind(gn, x0)}∞n=1, where g is a smooth map and
x0 is a fixed point of g. Thus, to calculate J [f ] one must know all local
indices of iterations of a smooth map at a fixed point. This information is
provided in [13] and given below as Theorem 4.1.

Let us remark that finding the indices of iterations of a particular class of
maps is a difficult task in general. Recently some important results in this di-
rection were obtained for planar homeomorphisms [23], R3-homeomorphisms
[19], [24] and holomorphic maps [26].

To describe the indices for smooth maps we will need some notation.
For a set H of integers we denote by LCM(H) the least common multiple
of all elements in H, with the convention that LCM(∅) = 1. We define
H = {LCM(Q) : Q ⊂ H}.

Next, for natural s we denote by L(s) every set of natural numbers of
the form L, where #L = s and 1, 2 6∈ L.
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By L2(s) we denote every set of natural numbers of the form L, where
#L = s+ 1 and 1 6∈ L, 2 ∈ L.

Theorem 4.1 ([13]). Let g be a C1 self-map of Rm (m>1), having x0 as
an isolated fixed point for each iteration. Then the sequence {ind(gn, x0)}∞n=1

of local indices has one of the following forms.
(I) For m odd:

(Ao) ind(gn, x0) =
∑

k∈L2(m−3
2

) ak regk(n).

(Bo), (Co), (Do) ind(gn, x0) =
∑

k∈L(m−1
2

) ak regk(n),

where a1 =


1 in case (Bo),

−1 in case (Co),

0 in case (Do).

(Eo), (F o) ind(gn, x0) =
∑

k∈L2(m−1
2

) ak regk(n),

where a1 = 1 and a2 =

{
0 in case (Eo),

−1 in the case (F o).

(II) For m even:

(Ae) ind(gn, x0) =
∑

k∈L2(m−4
2

) ak regk(n).

(Be) ind(gn, x0) =
∑

k∈L(m−2
2

) ak regk(n).

(Ce), (De), (Ee) ind(gn, x0) =
∑

k∈L2(m−2
2

) ak regk(n),

where a1 =


1 in case (Ce),

−1 in case (De),

0 in case (Ee).

(F e) ind(gn, x0) =
∑

k∈L(m
2

) ak regk(n), where a1 = 1.

Corollary 4.2. In particular, in dimension m = 4 we have six patterns
of possible indices of iterations (cf. also Theorem 3.3 in [12]), which are listed
in Table 1.

By [d, l] we denote the least common multiple of d and l.

Table 1. Sequences of local indices in dimension m = 4; in all formulas d, l > 2

Case m = 4

(A) a1 reg1(n) + a2 reg2(n)

(B) a1 reg1(n) + ad regd(n)

(C) reg1(n) + a2 reg2(n) + ad regd(n) + a[d,2] reg[d,2](n)

(D) − reg1(n) + a2 reg2(n) + ad regd(n) + a[d,2] reg[d,2](n)

(E) a2 reg2(n) + ad regd(n) + a[d,2] reg[d,2](n)

(F) reg1(n) + ad regd(n) + al regl(n) + a[d,l] reg[d,l](n)
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4.2. Continuous versus smooth category. As mentioned in the in-
troduction, there is a huge difference between the smooth and continuous
categories in respect of minimization of the number of periodic points in a
homotopy class. We will clarify this difference below.

Let us consider the numbers

MF≤r(f) = min
{

#
⋃
k≤r

Fix(gk) : g ∼ f
}
,(4.1)

MFr(f) = min{#Fix(gr) : g ∼ f},(4.2)

where ∼ means that the maps g and f are (continuously) homotopic.

The following formula was proved in [15, Theorem 5.1] for any self-map
of a simply-connected closed manifold of dimension m ≥ 3:

MFr(f) =

{
0 if L(fk) = 0 for all k | r,
1 otherwise.

Thus we get

(4.3) MF≤r(f) ≤MFr!(f) ≤ 1

for any natural r. As a consequence, in dimension m ≥ 3 one can always
find in the homotopy class of f a map g with no more than one (fixed) point
in the set

⋃
k≤r Fix(gk).

Applying Corollary 4.2 we will show that this is not true in the smooth
category even for maps having periodic Lefschetz numbers of iterations. We
exhibit a self-map f of a 4-dimensional manifold M with simple homology
groups for which J [f ] = 2. Our example also illustrates the method of
calculating the invariant J [f ].

Example 4.3. Let us consider a 4-dimensional closed simply-connected
manifold M with the following homology groups: H0(M ;Q) = Q, H1(M ;Q)
= 0, H2(M ;Q) = Q4, H3(M ;Q) = 0, H4(M ;Q) = Q. Assume that a smooth
self-map f of M induces the identity on the 0th and 4th homology groups
and that the eigenvalues of f∗2 are primitive roots of unity of degree d = 4,
each with multiplicity 2.

Now, we consider L4(n) (cf. (3.1)) generated by ϕ(4) = 2 primitive roots
of unity. By Theorem 3.1, L4(n) has the following periodic expansion:

L4(n) =
∑
k|4

µ

(
4

k

)
regk(n) = − reg2(n) + reg4(n).

Determining the periodic expansion of the Lefschetz numbers of the it-
erations of f we have to take into account the eigenvalues equal to 1 on
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H1(M ;Q) and H4(M ;Q) and multiplicities on H2(M ;Q). We obtain

L(fn) = reg1(n) + 2L4(n) + reg1(n)(4.4)

= 2 reg1(n)− 2 reg2(n) + 2 reg4(n).

As the dimension of the manifold is 4, we can use Table 1 to calculate J [f ].
It is easy to observe that the sequence in (4.4) is none of the sequences in
Table 1. Thus J [f ] > 1. On the other hand, the sequence in (4.4) can be
represented as a sum of two sequences listed in Table 1, of type (A) and (B)
respectively:

c(A) = 2 reg1(n)− 2 reg2(n), c(B) = 2 reg4(n).

Thus, finally, J [f ] = 2.

Remark 4.4. As an example of a map satisfying the assumptions of
Example 4.3 one can take a self-map f of M = S2 × S2 # S2 × S2, defined
in the following way. Let g : R3 → R3 be given by g(x, y, z) = (−x, y, z).
Assume that M is a result of attaching by the identity mapping two copies
of S2 × S2 along the boundary of a disk D such that if (u, v) ∈ D then
(v, u) ∈ D and (g(u), v) ∈ D. Then also (g(v), u) ∈ D for (u, v) ∈ D and
thus the map given by (4.5) below is well-defined.

Let us define the map f by

(4.5) f((u, v)1) = (g(v), u)2, f((u, v)2) = (g(v), u)1,

where (u, v)i, i = 1, 2, denote the coordinates in the ith copy of S2 × S2 in
S2 × S2 # S2 × S2. Then f = ḡ ◦ s ◦ t is the composition of three self-maps
t, s, ḡ of S2 × S2 # S2 × S2 defined as:

t((u, v)i) = (v, u)i,(4.6)

s((u, v)i) = (u, v)3−i,(4.7)

ḡ((u, v)i) = (g(u), v)i,(4.8)

where i = 1, 2. It is not difficult to verify that the induced map f∗2 has
eigenvalues −i and i, each with multiplicity two, and that f is orientation
preserving (because t is orientation preserving and ḡ and s are orientation
reversing).

Remark 4.5. Notice that by Remark 3.4, we have R = 4 in Example
4.3. As a consequence, for each r ≥ 4 there is a g in the smooth homotopy
class of f such that g has two elements in the set

⋃
k≤r Fix(gk) and by

Remark 2.9 each of them is a fixed point. Furthermore, there is no h in the
smooth homotopy class of f with less than two elements in

⋃
k≤r Fix(hk).

4.3. Manifolds for which continuous and smooth categories co-
incide. In this subsection we identify a class of manifolds such that for any
of their smooth self-maps f we have J [f ] = 1, which means that one can



Reducing the number of periodic points 45

always (as in the continuous case) reduce the number of periodic points of
periods not exceeding a given r to just one fixed point.

Below we will call a map f Lefschetz trivial if L(fn) = 0 for each n.
Notice that for such a map J [f ] = 0.

Theorem 4.6. Let M be a closed simply-connected manifold of dimen-
sion m ≥ 4 such that dimHi(M ;Q) ≤ 1 for each i and let f be a Lefschetz
non-trivial C1 self-map of M with periodic sequence of Lefschetz numbers
of iterations. Then J [f ] = 1.

Proof. By Theorem 1.7, the Lefschetz numbers in this case are equal to
L(fn) =

∑
i(−1)iλni , where each λi ∈ {−1, 1} is an essential eigenvalue. On

the other hand, we have

(4.9) λni =

{
reg1(n) if λi = 1,

− reg1(n) + reg2(n) if λi = −1.

As a consequence, we may represent L(fn) in the form L(fn) = a1 reg1(n)+
a2 reg2(n) with some integers a1 and a2. By Table 1 we can realize each such
sequence by one sequence of indices of iterations of type (A). Thus, for self-
maps of a 4-dimensional manifold M we have J [f ] = 1. On the other hand,
every DD4(1) sequence is also a DDm(1) sequence for m > 4 (cf. [10]).
Consequently, if dimM ≥ 4 then J [f ] = 1.

By Theorem 4.1 the larger the dimension m of the manifold M , the fewer
sequences are required to obtain a given combination of basic sequences
(Lefschetz numbers). As a consequence, we may generalize Theorem 4.6 to
a larger class of manifolds, assuming the dimension of the manifold is higher.
This technique is illustrated by the following

Theorem 4.7. Let M be a closed simply-connected manifold of dimen-
sion m ≥ 5 such that dimHq(M ;Q) = 2 for some q and dimHi(M ;Q) ≤ 1
for each i 6= q. Assume that f is a Lefschetz non-trivial C1 self-map of M
with periodic sequence of Lefschetz numbers of iterations. Then J [f ] = 1.

Proof. By an argument similar to that in the proof of Theorem 4.6 we
may represent L(fn) in the form

(4.10) L(fn) = a1 reg1(n) + a2 reg2(n) + Ld(n),

where Ld(n) = εn1 + · · · + εnϕ(d) is a sum of powers of all primitive roots

of unity induced by f on Hq(M ;Q); a1, a2 ∈ Z. As Hq(M ;Q) is two-
dimensional, ϕ(d) = 2 and the only possible roots of unity are of degree
d = 1, 2, 3, 4, 6. The roots of degree 1 and 2 give the contribution only to
a1 reg1(n) + a2 reg2(n) so we must calculate the contribution of the roots of
degrees 3, 4, 6. Applying Theorem 3.1 we calculate the periodic expansion
of {L(fn)}∞n=1 in each case; the results are given in Table 2.
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Table 2. All possible sequences {L(fn)}n given in (4.10)

Case L(fn) for d = 3, 4, 6

d = 3 a1 reg1(n) + a2 reg2(n) + reg3(n)

d = 4 a1 reg1(n) + a2 reg2(n) + reg4(n)

d = 6 a1 reg1(n) + a2 reg2(n)− reg3(n) + reg6(n)

The dimension of the manifold m is at least 5. We will show that each
sequence in Table 2 is also a sequence of type (Ao) of Theorem 4.1 for m = 5,
which proves that J [f ] = 1 independently of f .

For m = 5 we have

L2

(
m− 3

2

)
= L2(1) = {2, d} = {1, 2, d, [d, 2]}.

Thus the sequence of type (Ao) is given by

a1 reg1(n) + a2 reg2(n) + ad regd(n) + a[d,2] reg[d,2](n),

and covers all forms of sequences listed in Table 2, which ends the proof.

Corollary 4.8. Let M be one of the following manifolds: Sm (m ≥ 4),
Sl × Sk (l 6= k; l, k ≥ 2), CPm (m ≥ 2), HPm (m ≥ 1); Sm × Sm (m > 2).
Let f be a smooth self-map of M with periodic sequence of Lefschetz numbers
of iterations. Then by Theorems 4.6 and 4.7 for each r there is a g in the
smooth homotopy class of f such that either

⋃
k≤r Fix(gk) = {p}, where p is

a fixed point of g, or
⋃
k≤r Fix(gk) = ∅.
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