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Non-degenerate quadric surfaces of Weingarten type

by DAE WON YOON (Jinju), YILMAZ TUNGER (Usak) and
MURAT KEMAL KARACAN (Usak)

Abstract. We study quadric surfaces in Euclidean 3-space with non-degenerate sec-
ond fundamental form, and classify them in terms of the Gaussian curvature, the mean
curvature, the second Gaussian curvature and the second mean curvature.

1. Introduction. Let M be a surface in Euclidean 3-space E3. If M
has non-degenerate second fundamental form II, we can regard this form as
a new Riemannian (or pseudo-Riemannian) metric on M. In this case, we
can define the Gaussian curvature and mean curvature of (M, IT), denoted
by K and Hj; respectively..

For XY € {K,H,K;,Hy}, X #Y, if M satisfies the Jacobi equation

D(X,Y) = det (X" X”) =0
u v
or a linear equation aX + Y = ~, then it said to be an (X,Y)- Weingarten
surface or an (X,Y)-linear Weingarten surface, respectively, where X, =
0X/0u, X, = 0X/0v and a, 3,7 € R.

The inner geometry of the second fundamental form has been a popular
research topic for a long time. W. Kiihnel [11] and G. Stamou [13] investi-
gated ruled (X,Y)-Weingarten surfaces in Euclidean 3-space E3. C. Baik-
oussis and Th. Koufogiorgos [I] studied helicoidal (H, K7)-Weingarten sur-
faces. M. I. Munteanu and A. I. Nistor [I2] and D. W. Yoon [I7] classified
the polynomial translation (X, Y)-Weingarten surfaces in Euclidean 3-space,
and F. Dillen and W. Kiihnel [4] and F. Dillen and W. Sodsiri [5, [6] gave a
classification of ruled (X,Y)-Weingarten surfaces in Minkowski 3-space E3,
where X,Y € {K,H, K }. D. Koutroufiotis [10] investigated closed ovaloid
(X,Y)-linear Weingarten surfaces in E3. D. W. Yoon [I6] and D. E. Blair
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and Th. Koufogiorgos [2] classified ruled (X,Y)-linear Weingarten surfaces
in E3. Recently, M. H. Kim and D. W. Yoon [§] studied (K, H)-Weingarten
quadric surfaces in Euclidean 3-space.

An interesting geometric question is:
Classify all surfaces in Fuclidean 3-space and a Minkowski 3-space sat-
isfying the condition
aX + pY =+,
where X7Y € {KvHvKHvHH}; X 75 Y and (avﬁa’Y) 75 (05050)
In this paper, we contribute to the solution of the above question, by

studying it for quadric surfaces in Euclidean 3-space E3. We prove the fol-
lowing theorem:

THEOREM 1.1. Let o and B be non-zero constants. Let M be a quadric
surface with non-degenerate second fundamental form in Euclidean 3-space
satisfying

aX + Y =0,

where X € {K,H}, Y € {H,K,Hr}. Then M is an open part of an
ordinary sphere or a hyperbolic paraboloid.

2. Preliminaries. We describe a surface M in Euclidean 3-space E? by
X(u7 U) = (xl(ua U)? T2 (U, U)? l‘g(u, ’U))

Let n be the standard unit normal vector field on M defined by n =
Xy X Xy/||Xy X Xyl|, where x,, = 0x(u,v)/0u. Then the first fundamental
form I and the second fundamental form II of M are defined by

I = Edu® 4+ 2Fdudv + Gdv?®,  II = edu® + 2fdudv + gdv?,
where
E = (xy,xy), F=(Xy,Xy), G=(Xy,Xy),
e = (Xyu,n), f=Xu,n), g= (Xpp,N).
The Gaussian curvature K and the mean curvature H are given by

K eg — f? _ Eg—-2Ff+Ge
- EG - F?’ ~ 2(EG - F?)

By Brioschi’s formula in Euclidean 3-space E? (cf. [14]) we are able to
define Ky of M by replacing the components of the first fundamental form
E, F,G by the components of the second fundamental form e, f, g, respec-
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tively ([1], [2], [12], [17] etc.). Then

1
b= gy
_%evv + fuv — %guu %eu Ju— %ev 0 %ev %gu
X fv - %gu € f - %611 € f
390 f g tow f g

It is said to be the second Gaussian curvature of M.
_ Next, we explain the second mean curvature Hy; of M in E3. Let V and
V be the Levi-Civita connections of the metric tensors I = g;;dx'dz’ and

I = Lijdxidxj, respectively, and let FZ; and 17; be the Christoffel symbols
of V and V, respectively. The difference tensor T is defined by

TE =Tk I foralli,j ke {1,2}.
It is known that

fo=(n/ldet I, Tf = /et 1), Th = (In /K]y,

where @|; denotes the partial derivative 9@/ ou'.

Let D be a bounded connected open set whose closure D is contained in
U C R2, let v: D — R be a C?-function such that v = 9v/9s = 9y/0t =0
on the boundary of D and let M := x(D) be a portion of M determined by
x|z : D — E?. Let a € RT. The normal variation ¢ : D x (—a,a) — E3 of
M determined by -y is given by

p(s,t,v) = x(s,t) +vy(s,t)n(s, 1)
for all (s,t) € D and all v € (—a,a). For all v € (—a,a), define x* : D — E3
by
x"(s,t) = ¢(s,t,v) for all (s,t) € D.

If a is small enough, we can assume that MV := x¥(D) is a portion of
non-developable surface determined by x" with II-area AY; is defined by

b =\ V/]det 11" ds dt,
D
where 11V = ijdmid:ﬂj is the second fundamental form of M". By a straight-
forward computation, we get
0
R

Lj; = vKgij + Vi — 2vH Lij,
v=0

which implies

9
ov

1.
V |det II°| = <2L”V,~fy|j - fyH) V |det II|.

v=0
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The first variation of AY; is

P 1
90 = S<2L3Vﬂj - VH) dAj.
v=0 D

On the other hand,
WLV dAy = =\ Vi(LITE) dAy.

D D

Thus, we get,

0 v 1 ii o mk

> ==\ H + S LYVTy; ) dAp.

v=0 B
We define )
H = H+ §Ll]§kTZ

Furthermore,

LIV, TE = L9V, TE = L9V, (In /|K|); = A(ln /|K]),

where A is the Laplacian with respect to II. It follows that ([7])

1 ~
Hys :H+7A(ln\/|K\)

sz 7 (it Zan VD),

where {z;} is a rectangular coordinate system in E3. The quantity Hp; is
called the second mean curvature of M.

Now, we define a quadric surface in E3. A subset M of Euclidean 3-space
E3 is called a quadric surface if it is the set of points (z1, 2, z3) satisfying
the following equation of second degree:

3 3
E Q5 TiT5 + Z biz; +¢c=0,
i=1 i=1

where a;;, b;, ¢ are all real numbers. Suppose that M is not a plane. Then
A = (a;5) is not a zero matrix and we may assume without loss of generality
that it is symmetric. Possibly after applying a coordinate transformation in
E3, M is either a ruled surface, or one of the following two kinds ([3]):

(2.1) 22 —ax? —bx3 =c¢, abc#0,
or

b
(2.2) w3 = 22?4+ 222, a>0,b>0.

2 2
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If a surface satisfies ([2.1)), it is said to be a quadric surface of the first
kind, and a surface satisfying (2.2)) is called a quadric surface of the second
kind.

3. Linear Weingarten quadric surfaces of the first kind. In this
section, we investigate quadric surfaces of the first kind satisfying

aX + Y =0,

where X € {K,H},Y S {H,KU,HH}.
Let M; be a quadric surface of the first kind in E3 corresponding to
x3 > 0. Then M; can be parametrized by

x(u,v) = (u,v, (¢ + au? + bw?)Y?).

Denote the function ¢ 4 au? 4+ bv? by w. Then, using the natural frame
{Xu, %y} of M; defined by x,, = (1,0, au/y/w) and x, = (0,1,bv/y/w), the
components F, F' and G of the first fundamental form I of the surface are

E=1+d%*/w, F=auw/w, G=1+b?/w.
Moreover, the unit normal vector n of the surface M; is given by

n = (—au/\/q, —bv/\/q, Vw/\/4),

where ¢ = a(a + 1)u? 4+ b(b + 1)v? + c. From this, the components e, f and
g of the second fundamental form II are

e=q Pw Ay, f=q¢ 0By, g=q WGy,

where Ay = a(bv? + ¢), By = —abuv and Cy = b(au? + ¢).
Hence, the Gaussian curvature K and the mean curvature H are

1

(3.1) K = ?abc,
H L H

where Hy = (a + b)c + (ab + a?b)u? + (ab + ab?)v?.
To find the second Gaussian curvature, we must compute the derivatives
of the functions e, f and g with respect to u and v.

Cu = q_3/2w_2A1, €y = q_3/2w_2A27 Cvv = q_5/2W_3A3,
(33)  fu=qPw B, fo=q W By, fuw =q " Pw By,
gu = q w201, gy = ¢ w0, guu = ¢ P30,
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where
Ay = (abv? + ac)(—a(a + 1)uw — 2auqg),
Ay = 2abvqw + (abv® 4 ac)(—=b(b + 1)vw — 2bvg),
Az = (—=3b(b + 1)vw — 4bvq)(2abvwq + (abv® + ac)(—b(b + 1)vw — 2bvg))
+ wq(2abwq + ab*(b + 1)v’w — 6ab3 (b + 1)v* — 2ab*v?q
—ab(b + 1)cw — 6ab®(b + 1)cv? — 2abeq),
B = —abvwq + a®b(a + 1)u’vw + 2abuvg,
By = —abuwq + ab®(b + 1)uv’w + 2ab*uv?q,
Bs = (—3a(a + 1)uw — 4auq)(—abuwq + ab®(b + 1)uvw + 2ab’uv?q)
+ wq(—abwq — 2a*(a + 1)buw — 2a*bu’q + ab?® (b + 1)vw
+ 2a%b%(b + 1)u*v? + 2ab*qv* + 4a*(a + 1)b*u*v?),
Cy = 2abuwq + (abu? + be)(—a(a + 1)uw — 2auq),
Cy = (abu® 4 be)(=b(b + 1)vw — 2bvg),
C3 = (—3a(a + 1)uw — 4auq)(2abuwq + (abu® 4 be)(—ala + 1)uw — 2auq)
+ wq(2abwq + a*(a + 1)buw — 6a®(a + 1)bu* — 2a%bu’q
—a(a + 1)bcw — 6a*(a + 1)beu® — 2abeq).
Thus, the second Gaussian curvature Ky of M7 with the help of turns
out to be

(3.4) K = C%%;WK%
where
Ky = abcw(—%As + B3 — %03) + %AlBOCQ
+ (B1 — 3 A42)(BoBa — £ BoCy — $A40Co) — 3 A41Co(Bs — 3C1)
— 1A45ByCy + $A0CF + L A3C.

By straightforward computation, the second mean curvature H;; of M is

1 1
(3.5) Hy = e Hy + Cq3/2H2,
where
Hy =

(a* + 243 + a®)ut + (b + 2% 4 b?)o? + (2020 + 242D + 2ab + 2ab?)uv?
+ (3ac 4 2a%c — ac + a®be + abe)u? + (2b%¢ + ab?c + 3be 4 abe — b3c)v?
+ ac® + bc? 4 22
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First, we investigate (K, H)-linear Weingarten quadric surfaces of the
first kind in Euclidean 3-space.
Suppose that a quadric surface M; in E? satisfies the linear equation

(3.6) aK + BH = 0.
By (3.1) and (3.2)), equation (3.6 becomes
(3.7) 402a*b*c? — B2qH? = 0.

The direct computation of the left hand side of (3.7)) gives a polynomial in
u and v with constant coefficients by adjusting the power of the functions ¢
and H;. The coefficients of u% and % in (3.7) give, respectively,
B2 (a+1)° =0, B2’ (b+1)° =0.
Thus, a = —1, b = —1 and o? = ¢fB?. Therefore, M; is a sphere.
Secondly, we study a quadric surface M; in E3 satisfying the linear equa-
tion

(3.8) aK + K =0.
By (3.1) and (3.4), equation ({3.8]) becomes
(3.9) B2qK3 — a?a®°cfwb = 0.

By inserting the functions ¢, w and Ks, equation (3.9) becomes poly-
nomial in u and v with constant coefficients. From the coefficients of 1?2
and v?2, we have, respectively,

1BV (a+1)° =0, 182 A(b+1)° =0,
so a = —1 and b = —1. In this case, from the coefficient of u'? in (3.9) we
have a? = ¢/, which implies equation (3.9)) holds identically. Thus, M is
a sphere.
Thirdly, suppose that a quadric surface M; in E3 satisfies

(3.10) aH + K =0.
Then, by (3.2)) and (3.4), equation (3.10) becomes
(3.11) (aa®V’c? Hiw?® 4 28K2)%¢° — 4a’a*b* P H3W® = 0.

The coefficients of ©30 and v3" in ([3.11]) give, respectively,
B2av it (a+1)° =0, Fa*PEb+1)° =0.
Thus, a = —1, b = —1 because abc # 0 and 8 # 0. In this case, the coefficient
of u'? in (3.11) is given by 4c'(a + B)2. Since ¢ # 0, @ = —f3. Then from
the conditions of a, b, « and (3, equation (3.11)) clearly holds.
Fourthly, we consider a quadric surface M; in E? satisfying

(3.12) aK + BH = 0.
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By using and , equation can be written as
(3.13) B2 H?¢® — (2BH3 + 2aabc®¢*)? = 0,
and the coefficients of !4 and v'* in give, respectively,
Ba a4+ 1) =0, B2 ED+1) =0.
Thus, clearly, a = —1, b = —1. In this case, the surface M is a sphere. On
the other hand, from the values of a and b, equation becomes
—4c8(a® — %) = 0.

From this, a? = ¢3?, thus equation ([3.13) clearly holds.
Fifthly, we consider a quadric surface M; in E3 satisfying

(3.14) aH + SH = 0.
By using (3.2)) and (3.5)), equation (3.14) can be written as
(3.15) 4B*H3 — ¢* (o + B)*Hiq” =0,

and the coefficients of u'* and v in (3.15) give, respectively
—d0*P(a+ )4 a+1)7" =0, —a®"Fla+p)20b+1) =0,

which imply a = b= -1 or aa = —f. If a = b = —1, then the coefficient of
the constant term in is —4c?(a + B)%. From this, we get a = —f3, in
which case equation clearly holds. So, Mj is a sphere.

Consequently, we have the following theorem.

THEOREM 3.1. Let a and B be non-zero constants. If My is a quadric
surface of the first kind with non-degenerate second fundamental form in
FEuclidean 3-space satisfying the equation

aX + BY =0,

where X € {K,H}, Y € {H,Ky,Hy}, then My is an open part of an
ordinary sphere.

REMARK. The unit sphere with radius 1 satisfies K = —H = —K ;3 =
—Hp=1.

4. Linear Weingarten quadric surfaces of the second kind. In
this section, we study quadric surfaces of the second kind satisfying

aX + Y =0,
where X € {K, H},Y S {H, KH,HH}.
Let x : U — E? be a quadric surface of the second kind in E3. Then

a 5 b

x(u,v) = <u,v, SU + 21)2).
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From this, the components E, F' and G of the first fundamental form are
E=1+d*? F=abuw, G=1+0b%>
We define a smooth function ¢ as follows:
0 = % % x| = 1+ a2u? + b2,

so the unit normal vector field n of so My is
1
(4.1) n=—(—au,—bv,1).
Via

The components of the second fundamental form on M, are

e=al\/g, f=0, g=b//q.
On the other hand, the Gaussian curvature K and the mean curvature H
are
ab 1

(4.2) K==, H

q27 = 2q3/2H17

where H; = a’bu® + ab®*v? + a + b. By definitions, the second Gaussian
curvature K7 and the second mean curvature Hj; are
1 1 1
(4.3) K = WKz, Hp = e (2H1 - H2>,
where Ko = (a?b — a®)u® + (ab® — b3)v? + a + b and Hy = (a® — a®b)u® +
(b3 — ab®)v? —a — b.
Firstly, we suppose that Ms satisfies the equation aK + SH = 0. Then
from we have
40’a?b? — BQquz = 0.
Since the above equation depends on the variables v and v, all the coefficients
of the powers of u and v must vanish. For the leading coefficients of u°
and v%, we have —32a5b? = 0 and —/3%2a?b% = 0 respectively, which imply
a =0 or b =0. This is a contradiction. Therefore, there is no (K, H)-linear
Weingarten quadric surface.
Secondly, we study quadric surfaces Ms in E3 satisfying a X + 8K = 0.

By (4.2)) and (4.3), we obtain
(4.4) B2qK3 — 4a’a®b? = 0.

The coefficient of u® in (#.4) is 52a®(a — b)?, which implies @ = b. In this
case, equation (4.4) becomes

4820 % + 48%b*0? + 48%0? — 40%* = 0.
Therefore, ab = 0 and 8b = 0, a contradiction. Thus, there is no (K, Kjj)-
linear Weingarten quadric surface.
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Thirdly, we suppose that a quadric surface My in E3 satisfies aH +
BKi = 0. Then, by (4.2) and (4.3)), we get
(a®b — Ba® + Ba’b)u? + (aab® + Bab® — Bb*)v? + aa + ab + Ba + Bb =0,

which easily implies a = —b and @ = —26. Thus, the implicit equation of
My is given by z = %xz — %yQ, that is, a hyperbolic paraboloid.

Fourthly, we consider a quadric surface My in E3 satisfying oK + BHpr
= 0. By using (4.2) and (4.3)), we obtain
(4.5) 40%a®b?q — B%(qH, — 2H,)? = 0,

and the coefficient of «® in gives —(2ab? = 0. In this case, we have
Bab = 0, which is a contradiction. Therefore, there is no (K, Hjs)-linear
Weingarten quadric surface.

Fifthly, we consider a quadric surface Mo in E3 satisfying o H +BH; = 0.

By using (4.2)) and (4.3)), we obtain
(4.6) (a+ B)qH, — 2BH; = 0.

From the coefficient of u* in (4.6]), we have a*b(a + 3) = 0, which implies
a = —f. In this case, equation (4.6)) becomes

(—2Ba® + 2Ba®b)u? + (—28b° + 2Bab*)v? + 2Ba + 2b = 0,

which implies a = b = 0, a contradiction.
Consequently, we have the following theorems.

THEOREM 4.1. Let a and B be non-zero constants. If My is a quadric
surface of the second kind with non-degenerate second fundamental form
in Buclidean 3-space satisfying aH + K = 0, then Ms is an open part
of a hyperbolic paraboloid. Furthermore, the hyperbolic paraboloid satisfies
K =2H.

THEOREM 4.2. Let o and 3 be non-zero constants. There is no quadric
surface of the second kind with non-degenerate second fundamental form in
FEuclidean 3-space satisfying o K +6H =0, aK+ 8K =0, aK+8H;; =0
oraH + BH = 0.

Combining Theorems 3.1, 4.1, 4.2 and the result of [5], we obtain the
following

THEOREM 4.3 (Characterization). Let o and [ be non-zero constants.
Let M be a quadric surface with non-degenerate second fundamental form
in Buclidean 3-space satisfying

aX + Y =0,

where X € {K,H}, Y € {H,K,Hr}. Then M is an open part of an
ordinary sphere or a hyperbolic paraboloid.
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