Non-degenerate quadric surfaces of Weingarten type

by Dae Won Yoon (Jinju), Yilmaz Tunçer (Usak) and Murat Kemal Karacan (Usak)

Abstract

We study quadric surfaces in Euclidean 3 -space with non-degenerate second fundamental form, and classify them in terms of the Gaussian curvature, the mean curvature, the second Gaussian curvature and the second mean curvature.

1. Introduction. Let M be a surface in Euclidean 3 -space \mathbb{E}^{3}. If M has non-degenerate second fundamental form $I I$, we can regard this form as a new Riemannian (or pseudo-Riemannian) metric on M. In this case, we can define the Gaussian curvature and mean curvature of $(M, I I)$, denoted by $K_{I I}$ and $H_{I I}$ respectively..

For $X, Y \in\left\{K, H, K_{I I}, H_{I I}\right\}, X \neq Y$, if M satisfies the Jacobi equation

$$
\Phi(X, Y)=\operatorname{det}\left(\begin{array}{cc}
X_{u} & X_{v} \\
Y_{u} & Y_{v}
\end{array}\right)=0
$$

or a linear equation $\alpha X+\beta Y=\gamma$, then it said to be an (X, Y)-Weingarten surface or an (X, Y)-linear Weingarten surface, respectively, where $X_{u}=$ $\partial X / \partial u, X_{v}=\partial X / \partial v$ and $\alpha, \beta, \gamma \in \mathbb{R}$.

The inner geometry of the second fundamental form has been a popular research topic for a long time. W. Kühnel [11] and G. Stamou [13] investigated ruled (X, Y)-Weingarten surfaces in Euclidean 3 -space \mathbb{E}^{3}. C. Baikoussis and Th. Koufogiorgos [1] studied helicoidal ($H, K_{I I}$)-Weingarten surfaces. M. I. Munteanu and A. I. Nistor [12] and D. W. Yoon [17] classified the polynomial translation (X, Y)-Weingarten surfaces in Euclidean 3-space, and F. Dillen and W. Kühnel [4] and F. Dillen and W. Sodsiri [5, 6] gave a classification of ruled (X, Y)-Weingarten surfaces in Minkowski 3 -space \mathbb{E}_{1}^{3}, where $X, Y \in\left\{K, H, K_{I I}\right\}$. D. Koutroufiotis [10] investigated closed ovaloid (X, Y)-linear Weingarten surfaces in \mathbb{E}^{3}. D. W. Yoon 16 and D. E. Blair

[^0]and Th. Koufogiorgos [2] classified ruled (X, Y)-linear Weingarten surfaces in \mathbb{E}^{3}. Recently, M. H. Kim and D. W. Yoon [8] studied (K, H)-Weingarten quadric surfaces in Euclidean 3-space.

An interesting geometric question is:
Classify all surfaces in Euclidean 3-space and a Minkowski 3-space satisfying the condition

$$
\alpha X+\beta Y=\gamma
$$

where $X, Y \in\left\{K, H, K_{I I}, H_{I I}\right\}, X \neq Y$ and $(\alpha, \beta, \gamma) \neq(0,0,0)$.
In this paper, we contribute to the solution of the above question, by studying it for quadric surfaces in Euclidean 3 -space \mathbb{E}^{3}. We prove the following theorem:

Theorem 1.1. Let α and β be non-zero constants. Let M be a quadric surface with non-degenerate second fundamental form in Euclidean 3-space satisfying

$$
\alpha X+\beta Y=0
$$

where $X \in\{K, H\}, Y \in\left\{H, K_{I I}, H_{I I}\right\}$. Then M is an open part of an ordinary sphere or a hyperbolic paraboloid.
2. Preliminaries. We describe a surface M in Euclidean 3 -space \mathbb{E}^{3} by

$$
\mathbf{x}(u, v)=\left(x_{1}(u, v), x_{2}(u, v), x_{3}(u, v)\right)
$$

Let \mathbf{n} be the standard unit normal vector field on M defined by $\mathbf{n}=$ $\mathbf{x}_{u} \times \mathbf{x}_{v} /\left\|\mathbf{x}_{u} \times \mathbf{x}_{v}\right\|$, where $\mathbf{x}_{u}=\partial \mathbf{x}(u, v) / \partial u$. Then the first fundamental form I and the second fundamental form $I I$ of M are defined by

$$
I=E d u^{2}+2 F d u d v+G d v^{2}, \quad I I=e d u^{2}+2 f d u d v+g d v^{2}
$$

where

$$
\begin{aligned}
E & =\left\langle\mathbf{x}_{u}, \mathbf{x}_{u}\right\rangle, & F & =\left\langle\mathbf{x}_{u}, \mathbf{x}_{v}\right\rangle, & G & =\left\langle\mathbf{x}_{v}, \mathbf{x}_{v}\right\rangle, \\
e & =\left\langle\mathbf{x}_{u u}, \mathbf{n}\right\rangle, & f & =\left\langle\mathbf{x}_{u v}, \mathbf{n}\right\rangle, & g & =\left\langle\mathbf{x}_{v v}, \mathbf{n}\right\rangle .
\end{aligned}
$$

The Gaussian curvature K and the mean curvature H are given by

$$
K=\frac{e g-f^{2}}{E G-F^{2}}, \quad H=\frac{E g-2 F f+G e}{2\left(E G-F^{2}\right)}
$$

By Brioschi's formula in Euclidean 3 -space \mathbb{E}^{3} (cf. [14]) we are able to define $K_{I I}$ of M by replacing the components of the first fundamental form E, F, G by the components of the second fundamental form e, f, g, respec-
tively ([1], 2], [12], 17] etc.). Then

$$
\begin{aligned}
K_{I I} & =\frac{1}{\left(e g-f^{2}\right)^{2}} \\
& \times\left\{\begin{array}{ccc}
\left\lvert\,-\frac{1}{2} e_{v v}+f_{u v}-\frac{1}{2} g_{u u}\right. & \frac{1}{2} e_{u} & f_{u}-\frac{1}{2} e_{v} \\
f_{v}-\frac{1}{2} g_{u} & e & f \\
\frac{1}{2} g_{v} & f & g
\end{array}\left|-\left|\begin{array}{ccc}
0 & \frac{1}{2} e_{v} & \frac{1}{2} g_{u} \\
\frac{1}{2} e_{v} & e & f \\
\frac{1}{2} g_{u} & f & g
\end{array}\right|\right\} .\right.
\end{aligned}
$$

It is said to be the second Gaussian curvature of M.
Next, we explain the second mean curvature $H_{I I}$ of M in \mathbb{E}^{3}. Let ∇ and $\widehat{\nabla}$ be the Levi-Civita connections of the metric tensors $I=g_{i j} d x^{i} d x^{j}$ and $I I=L_{i j} d x^{i} d x^{j}$, respectively, and let $\Gamma_{i j}^{k}$ and $\widehat{\Gamma}_{i j}^{k}$ be the Christoffel symbols of ∇ and $\widehat{\nabla}$, respectively. The difference tensor T is defined by

$$
\mathrm{T}_{i j}^{k}=\widehat{\Gamma}_{i j}^{k}-\Gamma_{i j}^{k} \quad \text { for all } i, j, k \in\{1,2\}
$$

It is known that

$$
\Gamma_{i k}^{k}=(\ln \sqrt{|\operatorname{det} I|})_{\mid i}, \quad \widehat{\Gamma}_{i k}^{k}=(\ln \sqrt{|\operatorname{det} I I|})_{\mid i}, \quad \mathrm{~T}_{i k}^{k}=(\ln \sqrt{|K|})_{\mid i}
$$

where $\Phi_{\mid i}$ denotes the partial derivative $\partial \Phi / \partial u^{i}$.
Let D be a bounded connected open set whose closure \bar{D} is contained in $U \subset \mathbb{R}^{2}$, let $\gamma: \bar{D} \rightarrow \mathbb{R}$ be a C^{2}-function such that $\gamma \equiv \partial \gamma / \partial s \equiv \partial \gamma / \partial t \equiv 0$ on the boundary of D and let $\widetilde{M}:=\mathbf{x}(\bar{D})$ be a portion of M determined by $\left.\mathbf{x}\right|_{\bar{D}}: \bar{D} \rightarrow \mathbb{E}^{3}$. Let $a \in \mathbb{R}^{+}$. The normal variation $\varphi: \bar{D} \times(-a, a) \rightarrow \mathbb{E}^{3}$ of \widetilde{M} determined by γ is given by

$$
\varphi(s, t, v)=\mathbf{x}(s, t)+v \gamma(s, t) \mathbf{n}(s, t)
$$

for all $(s, t) \in \bar{D}$ and all $v \in(-a, a)$. For all $v \in(-a, a)$, define $\mathbf{x}^{v}: \bar{D} \rightarrow \mathbb{E}^{3}$ by

$$
\mathbf{x}^{v}(s, t)=\varphi(s, t, v) \quad \text { for all }(s, t) \in \bar{D}
$$

If a is small enough, we can assume that $M^{v}:=\mathbf{x}^{v}(\bar{D})$ is a portion of non-developable surface determined by \mathbf{x}^{v} with $I I$-area $A_{I I}^{v}$ is defined by

$$
A_{I I}^{v}=\iint_{\bar{D}} \sqrt{\left|\operatorname{det} I I^{v}\right|} d s d t
$$

where $I I^{v}=L_{i j}^{v} d x^{i} d x^{j}$ is the second fundamental form of M^{v}. By a straightforward computation, we get

$$
\left.\frac{\partial}{\partial v}\right|_{v=0} L_{i j}^{v}=\gamma K g_{i j}+\nabla_{i} \gamma_{\mid j}-2 \gamma H L_{i j}
$$

which implies

$$
\left.\frac{\partial}{\partial v}\right|_{v=0} \sqrt{\left|\operatorname{det} I I^{v}\right|}=\left(\frac{1}{2} L^{i j} \nabla_{i} \gamma_{\mid j}-\gamma H\right) \sqrt{|\operatorname{det} I I|} .
$$

The first variation of $A_{I I}^{v}$ is

$$
\left.\frac{\partial}{\partial v}\right|_{v=0} A_{I I}^{v}=\iint_{\bar{D}}\left(\frac{1}{2} L^{i j} \nabla_{i} \gamma_{\mid j}-\gamma H\right) d A_{I I}
$$

On the other hand,

$$
\iint_{\bar{D}} L^{i j} \nabla_{i} \gamma_{\mid j} d A_{I I}=-\iint_{\bar{D}} \gamma \widehat{\nabla}_{k}\left(L^{i j} \mathrm{~T}_{i j}^{k}\right) d A_{I I}
$$

Thus, we get,

$$
\left.\frac{\partial}{\partial v}\right|_{v=0} A_{I I}^{v}=-\iint_{\bar{D}} \gamma\left(H+\frac{1}{2} L^{i j} \widehat{\nabla}_{k} \mathrm{~T}_{i j}^{k}\right) d A_{I I}
$$

We define

$$
H_{I I}:=H+\frac{1}{2} L^{i j} \widehat{\nabla}_{k} \mathrm{~T}_{i j}^{k}
$$

Furthermore,

$$
L^{i j} \widehat{\nabla}_{k} \mathrm{~T}_{i j}^{k}=L^{i j} \widehat{\nabla}_{j} \mathrm{~T}_{i k}^{k}=L^{i j} \widehat{\nabla}_{j}(\ln \sqrt{|K|})_{\mid i}=\widehat{\Delta}(\ln \sqrt{|K|})
$$

where $\widehat{\Delta}$ is the Laplacian with respect to $I I$. It follows that ([7])

$$
\begin{aligned}
H_{I I} & =H+\frac{1}{2} \widehat{\Delta}(\ln \sqrt{|K|}) \\
& =H-\frac{1}{2 \sqrt{\left|\operatorname{det}\left(L_{i j}\right)\right|}} \sum_{i, j}^{2} \frac{\partial}{\partial x^{i}}\left(\sqrt{\left|\operatorname{det}\left(L_{i j}\right)\right|} L^{i j} \frac{\partial}{\partial x^{j}}(\ln \sqrt{|K|})\right)
\end{aligned}
$$

where $\left\{x_{i}\right\}$ is a rectangular coordinate system in \mathbb{E}^{3}. The quantity $H_{I I}$ is called the second mean curvature of M.

Now, we define a quadric surface in \mathbb{E}^{3}. A subset M of Euclidean 3-space \mathbb{E}^{3} is called a quadric surface if it is the set of points $\left(x_{1}, x_{2}, x_{3}\right)$ satisfying the following equation of second degree:

$$
\sum_{i=1}^{3} a_{i j} x_{i} x_{j}+\sum_{i=1}^{3} b_{i} x_{i}+c=0
$$

where $a_{i j}, b_{i}, c$ are all real numbers. Suppose that M is not a plane. Then $A=\left(a_{i j}\right)$ is not a zero matrix and we may assume without loss of generality that it is symmetric. Possibly after applying a coordinate transformation in \mathbb{E}^{3}, M is either a ruled surface, or one of the following two kinds ([3]):

$$
\begin{equation*}
x_{3}^{2}-a x_{1}^{2}-b x_{2}^{2}=c, \quad a b c \neq 0 \tag{2.1}
\end{equation*}
$$

or

$$
\begin{equation*}
x_{3}=\frac{a}{2} x_{1}^{2}+\frac{b}{2} x_{2}^{2}, \quad a>0, b>0 . \tag{2.2}
\end{equation*}
$$

If a surface satisfies (2.1), it is said to be a quadric surface of the first kind, and a surface satisfying (2.2) is called a quadric surface of the second kind.
3. Linear Weingarten quadric surfaces of the first kind. In this section, we investigate quadric surfaces of the first kind satisfying

$$
\alpha X+\beta Y=0
$$

where $X \in\{K, H\}, Y \in\left\{H, K_{I I}, H_{I I}\right\}$.
Let M_{1} be a quadric surface of the first kind in \mathbb{E}^{3} corresponding to $x_{3}>0$. Then M_{1} can be parametrized by

$$
\mathbf{x}(u, v)=\left(u, v,\left(c+a u^{2}+b v^{2}\right)^{1 / 2}\right) .
$$

Denote the function $c+a u^{2}+b v^{2}$ by ω. Then, using the natural frame $\left\{\mathbf{x}_{u}, \mathbf{x}_{v}\right\}$ of M_{1} defined by $\mathbf{x}_{u}=(1,0, a u / \sqrt{\omega})$ and $\mathbf{x}_{v}=(0,1, b v / \sqrt{\omega})$, the components E, F and G of the first fundamental form I of the surface are

$$
E=1+a^{2} u^{2} / \omega, \quad F=a b u v / \omega, \quad G=1+b^{2} v^{2} / \omega .
$$

Moreover, the unit normal vector \mathbf{n} of the surface M_{1} is given by

$$
\mathbf{n}=(-a u / \sqrt{q},-b v / \sqrt{q}, \sqrt{\omega} / \sqrt{q})
$$

where $q=a(a+1) u^{2}+b(b+1) v^{2}+c$. From this, the components e, f and g of the second fundamental form $I I$ are

$$
e=q^{-1 / 2} \omega^{-1} A_{0}, \quad f=q^{-1 / 2} \omega^{-1} B_{0}, \quad g=q^{-1 / 2} \omega^{-1} C_{0}
$$

where $A_{0}=a\left(b v^{2}+c\right), B_{0}=-a b u v$ and $C_{0}=b\left(a u^{2}+c\right)$.
Hence, the Gaussian curvature K and the mean curvature H are

$$
\begin{align*}
& K=\frac{1}{q^{2}} a b c, \tag{3.1}\\
& H=\frac{1}{2 q^{3 / 2}} H_{1}, \tag{3.2}
\end{align*}
$$

where $H_{1}=(a+b) c+\left(a b+a^{2} b\right) u^{2}+\left(a b+a b^{2}\right) v^{2}$.
To find the second Gaussian curvature, we must compute the derivatives of the functions e, f and g with respect to u and v.

$$
\begin{array}{lll}
e_{u}=q^{-3 / 2} \omega^{-2} A_{1}, & e_{v}=q^{-3 / 2} \omega^{-2} A_{2}, & e_{v v}=q^{-5 / 2} \omega^{-3} A_{3} \\
f_{u}=q^{-3 / 2} \omega^{-2} B_{1}, & f_{v}=q^{-3 / 2} \omega^{-2} B_{2}, & f_{u v}=q^{-5 / 2} \omega^{-3} B_{3} \tag{3.3}\\
g_{u}=q^{-3 / 2} \omega^{-2} C_{1}, & g_{v}=q^{-3 / 2} \omega^{-2} C_{2}, & g_{u u}=q^{-5 / 2} \omega^{-3} C_{3},
\end{array}
$$

where

$$
\begin{aligned}
A_{1}= & \left(a b v^{2}+a c\right)(-a(a+1) u \omega-2 a u q), \\
A_{2}= & 2 a b v q \omega+\left(a b v^{2}+a c\right)(-b(b+1) v \omega-2 b v q), \\
A_{3}= & (-3 b(b+1) v \omega-4 b v q)\left(2 a b v \omega q+\left(a b v^{2}+a c\right)(-b(b+1) v \omega-2 b v q)\right) \\
& +\omega q\left(2 a b \omega q+a b^{2}(b+1) v^{2} \omega-6 a b^{3}(b+1) v^{4}-2 a b^{2} v^{2} q\right. \\
& \left.-a b(b+1) c \omega-6 a b^{2}(b+1) c v^{2}-2 a b c q\right), \\
B_{1}= & -a b v \omega q+a^{2} b(a+1) u^{2} v \omega+2 a^{2} b u^{2} v q, \\
B_{2}= & -a b u \omega q+a b^{2}(b+1) u v^{2} \omega+2 a b^{2} u v^{2} q, \\
B_{3}= & (-3 a(a+1) u \omega-4 a u q)\left(-a b u \omega q+a b^{2}(b+1) u v^{2} \omega+2 a b^{2} u v^{2} q\right) \\
& +\omega q\left(-a b \omega q-2 a^{2}(a+1) b u^{2} \omega-2 a^{2} b u^{2} q+a b^{2}(b+1) v^{2} \omega\right. \\
& \left.+2 a^{2} b^{2}(b+1) u^{2} v^{2}+2 a b^{2} q v^{2}+4 a^{2}(a+1) b^{2} u^{2} v^{2}\right), \\
C_{1}= & 2 a b u \omega q+\left(a b u^{2}+b c\right)(-a(a+1) u \omega-2 a u q), \\
C_{2}= & \left(a b u^{2}+b c\right)(-b(b+1) v \omega-2 b v q), \\
C_{3}= & (-3 a(a+1) u \omega-4 a u q)\left(2 a b u \omega q+\left(a b u^{2}+b c\right)(-a(a+1) u \omega-2 a u q)\right. \\
& +\omega q\left(2 a b \omega q+a^{2}(a+1) b u^{2} \omega-6 a^{3}(a+1) b u^{4}-2 a^{2} b u^{2} q\right. \\
& \left.-a(a+1) b c \omega-6 a^{2}(a+1) b c u^{2}-2 a b c q\right) .
\end{aligned}
$$

Thus, the second Gaussian curvature $K_{I I}$ of M_{1} with the help of (3.3) turns out to be

$$
\begin{equation*}
K_{I I}=\frac{1}{a^{2} b^{2} c^{2} q^{3 / 2} \omega^{3}} K_{2} \tag{3.4}
\end{equation*}
$$

where

$$
\begin{aligned}
K_{2}= & a b c \omega\left(-\frac{1}{2} A_{3}+B_{3}-\frac{1}{2} C_{3}\right)+\frac{1}{4} A_{1} B_{0} C_{2} \\
& +\left(B_{1}-\frac{1}{2} A_{2}\right)\left(B_{0} B_{2}-\frac{1}{2} B_{0} C_{1}-\frac{1}{2} A_{0} C_{2}\right)-\frac{1}{2} A_{1} C_{0}\left(B_{2}-\frac{1}{2} C_{1}\right) \\
& -\frac{1}{2} A_{2} B_{0} C_{1}+\frac{1}{4} A_{0} C_{1}^{2}+\frac{1}{4} A_{2}^{2} C_{0}
\end{aligned}
$$

By straightforward computation, the second mean curvature $H_{I I}$ of M_{1} is

$$
\begin{equation*}
H_{I I}=\frac{1}{2 q^{3 / 2}} H_{1}+\frac{1}{c q^{3 / 2}} H_{2} \tag{3.5}
\end{equation*}
$$

where

$$
\begin{aligned}
H_{2} & = \\
& \left(a^{4}+2 a^{3}+a^{2}\right) u^{4}+\left(b^{4}+2 b^{3}+b^{2}\right) v^{4}+\left(2 a^{2} b^{2}+2 a^{2} b+2 a b+2 a b^{2}\right) u^{2} v^{2} \\
& +\left(3 a c+2 a^{2} c-a^{3} c+a^{2} b c+a b c\right) u^{2}+\left(2 b^{2} c+a b^{2} c+3 b c+a b c-b^{3} c\right) v^{2} \\
& +a c^{2}+b c^{2}+2 c^{2}
\end{aligned}
$$

First, we investigate (K, H)-linear Weingarten quadric surfaces of the first kind in Euclidean 3 -space.

Suppose that a quadric surface M_{1} in \mathbb{E}^{3} satisfies the linear equation

$$
\begin{equation*}
\alpha K+\beta H=0 . \tag{3.6}
\end{equation*}
$$

By (3.1) and (3.2), equation (3.6) becomes

$$
\begin{equation*}
4 \alpha^{2} a^{2} b^{2} c^{2}-\beta^{2} q H_{1}^{2}=0 \tag{3.7}
\end{equation*}
$$

The direct computation of the left hand side of (3.7) gives a polynomial in u and v with constant coefficients by adjusting the power of the functions q and H_{1}. The coefficients of u^{6} and v^{6} in (3.7) give, respectively,

$$
\beta^{2} a^{3} b^{2}(a+1)^{3}=0, \quad \beta^{2} a^{2} b^{3}(b+1)^{3}=0 .
$$

Thus, $a=-1, b=-1$ and $\alpha^{2}=c \beta^{2}$. Therefore, M_{1} is a sphere.
Secondly, we study a quadric surface M_{1} in \mathbb{E}^{3} satisfying the linear equation

$$
\begin{equation*}
\alpha K+\beta K_{I I}=0 . \tag{3.8}
\end{equation*}
$$

By (3.1) and (3.4), equation (3.8) becomes

$$
\begin{equation*}
\beta^{2} q K_{2}^{2}-\alpha^{2} a^{6} b^{6} c^{6} \omega^{6}=0 . \tag{3.9}
\end{equation*}
$$

By inserting the functions q, ω and K_{2}, equation (3.9) becomes polynomial in u and v with constant coefficients. From the coefficients of u^{22} and v^{22}, we have, respectively,

$$
\frac{1}{4} \beta^{2} a^{15} b^{4} c^{2}(a+1)^{5}=0, \quad \frac{1}{4} \beta^{2} a^{4} b^{15} c^{2}(b+1)^{5}=0,
$$

so $a=-1$ and $b=-1$. In this case, from the coefficient of u^{12} in (3.9) we have $\alpha^{2}=c \beta^{2}$, which implies equation (3.9) holds identically. Thus, M_{1} is a sphere.

Thirdly, suppose that a quadric surface M_{1} in \mathbb{E}^{3} satisfies

$$
\begin{equation*}
\alpha H+\beta K_{I I}=0 . \tag{3.10}
\end{equation*}
$$

Then, by (3.2) and (3.4), equation (3.10) becomes

$$
\begin{equation*}
\left(\alpha a^{2} b^{2} c^{2} H_{1} \omega^{3}+2 \beta K_{2}\right)^{2} q^{5}-4 \alpha^{2} a^{4} b^{4} c^{2} H_{2}^{2} \omega^{6}=0 \tag{3.11}
\end{equation*}
$$

The coefficients of u^{30} and v^{30} in (3.11) give, respectively,

$$
\beta^{2} a^{19} b^{4} c^{2}(a+1)^{9}=0, \quad \beta^{2} a^{4} b^{19} c^{2}(b+1)^{9}=0 .
$$

Thus, $a=-1, b=-1$ because $a b c \neq 0$ and $\beta \neq 0$. In this case, the coefficient of u^{12} in (3.11) is given by $4 c^{11}(\alpha+\beta)^{2}$. Since $c \neq 0, \alpha=-\beta$. Then from the conditions of a, b, α and β, equation (3.11) clearly holds.

Fourthly, we consider a quadric surface M_{1} in \mathbb{E}^{3} satisfying

$$
\begin{equation*}
\alpha K+\beta H_{I I}=0 . \tag{3.12}
\end{equation*}
$$

By using (3.1) and (3.5), equation (3.12 can be written as

$$
\begin{equation*}
\beta^{2} c^{2} H_{1}^{2} q^{5}-\left(2 \beta H_{2}+2 \alpha a b c^{2} q^{2}\right)^{2}=0 \tag{3.13}
\end{equation*}
$$

and the coefficients of u^{14} and v^{14} in 3.13 give, respectively,

$$
\beta^{2} a^{7} b^{2} c^{2}(a+1)^{7}=0, \quad \beta^{2} a^{2} b^{7} c^{2}(b+1)^{7}=0
$$

Thus, clearly, $a=-1, b=-1$. In this case, the surface M_{1} is a sphere. On the other hand, from the values of a and b, equation (3.13) becomes

$$
-4 c^{8}\left(\alpha^{2}-c \beta^{2}\right)=0
$$

From this, $\alpha^{2}=c \beta^{2}$, thus equation (3.13) clearly holds.
Fifthly, we consider a quadric surface M_{1} in \mathbb{E}^{3} satisfying

$$
\begin{equation*}
\alpha H+\beta H_{I I}=0 \tag{3.14}
\end{equation*}
$$

By using (3.2) and (3.5), equation (3.14) can be written as

$$
\begin{equation*}
4 \beta^{2} H_{2}^{2}-c^{2}(\alpha+\beta)^{2} H_{1}^{2} q^{5}=0 \tag{3.15}
\end{equation*}
$$

and the coefficients of u^{14} and v^{14} in 3.15 give, respectively

$$
-a^{7} b^{2} c^{2}(\alpha+\beta)^{2}(a+1)^{7}=0, \quad-a^{2} b^{7} c^{2}(\alpha+\beta)^{2}(b+1)^{7}=0
$$

which imply $a=b=-1$ or $\alpha=-\beta$. If $a=b=-1$, then the coefficient of the constant term in $\sqrt{3.15}$ is $-4 c^{9}(\alpha+\beta)^{2}$. From this, we get $\alpha=-\beta$, in which case equation (3.15) clearly holds. So, M_{1} is a sphere.

Consequently, we have the following theorem.
Theorem 3.1. Let α and β be non-zero constants. If M_{1} is a quadric surface of the first kind with non-degenerate second fundamental form in Euclidean 3-space satisfying the equation

$$
\alpha X+\beta Y=0
$$

where $X \in\{K, H\}, Y \in\left\{H, K_{I I}, H_{I I}\right\}$, then M_{1} is an open part of an ordinary sphere.

Remark. The unit sphere with radius 1 satisfies $K=-H=-K_{I I}=$ $-H_{I I}=1$.
4. Linear Weingarten quadric surfaces of the second kind. In this section, we study quadric surfaces of the second kind satisfying

$$
\alpha X+\beta Y=0
$$

where $X \in\{K, H\}, Y \in\left\{H, K_{I I}, H_{I I}\right\}$.
Let $\mathbf{x}: U \rightarrow \mathbb{E}^{3}$ be a quadric surface of the second kind in \mathbb{E}^{3}. Then

$$
\mathbf{x}(u, v)=\left(u, v, \frac{a}{2} u^{2}+\frac{b}{2} v^{2}\right)
$$

From this, the components E, F and G of the first fundamental form are

$$
E=1+a^{2} u^{2}, \quad F=a b u v, \quad G=1+b^{2} v^{2} .
$$

We define a smooth function q as follows:

$$
q=\left\|\mathbf{x}_{u} \times \mathbf{x}_{v}\right\|^{2}=1+a^{2} u^{2}+b^{2} v^{2}
$$

so the unit normal vector field \mathbf{n} of so M_{2} is

$$
\begin{equation*}
\mathbf{n}=\frac{1}{\sqrt{q}}(-a u,-b v, 1) . \tag{4.1}
\end{equation*}
$$

The components of the second fundamental form on M_{2} are

$$
e=a / \sqrt{q}, \quad f=0, \quad g=b / \sqrt{q} .
$$

On the other hand, the Gaussian curvature K and the mean curvature H are

$$
\begin{equation*}
K=\frac{a b}{q^{2}}, \quad H=\frac{1}{2 q^{3 / 2}} H_{1}, \tag{4.2}
\end{equation*}
$$

where $H_{1}=a^{2} b u^{2}+a b^{2} v^{2}+a+b$. By definitions, the second Gaussian curvature $K_{I I}$ and the second mean curvature $H_{I I}$ are

$$
\begin{equation*}
K_{I I}=\frac{1}{2 q^{3 / 2}} K_{2}, \quad H_{I I}=\frac{1}{q^{3 / 2}}\left(\frac{1}{2} H_{1}-H_{2}\right), \tag{4.3}
\end{equation*}
$$

where $K_{2}=\left(a^{2} b-a^{3}\right) u^{2}+\left(a b^{2}-b^{3}\right) v^{2}+a+b$ and $H_{2}=\left(a^{3}-a^{2} b\right) u^{2}+$ $\left(b^{3}-a b^{2}\right) v^{2}-a-b$.

Firstly, we suppose that M_{2} satisfies the equation $\alpha K+\beta H=0$. Then from (4.2) we have

$$
4 \alpha^{2} a^{2} b^{2}-\beta^{2} q H_{1}^{2}=0 .
$$

Since the above equation depends on the variables u and v, all the coefficients of the powers of u and v must vanish. For the leading coefficients of u^{6} and v^{6}, we have $-\beta^{2} a^{6} b^{2}=0$ and $-\beta^{2} a^{2} b^{6}=0$ respectively, which imply $a=0$ or $b=0$. This is a contradiction. Therefore, there is no (K, H)-linear Weingarten quadric surface.

Secondly, we study quadric surfaces M_{2} in \mathbb{E}^{3} satisfying $\alpha K+\beta K_{I I}=0$. By (4.2) and 4.3), we obtain

$$
\begin{equation*}
\beta^{2} q K_{2}^{2}-4 \alpha^{2} a^{2} b^{2}=0 . \tag{4.4}
\end{equation*}
$$

The coefficient of u^{6} in (4.4) is $\beta^{2} a^{6}(a-b)^{2}$, which implies $a=b$. In this case, equation (4.4) becomes

$$
4 \beta^{2} b^{4} u^{2}+4 \beta^{2} b^{4} v^{2}+4 \beta^{2} b^{2}-4 \alpha^{2} b^{4}=0 .
$$

Therefore, $\alpha b=0$ and $\beta b=0$, a contradiction. Thus, there is no ($K, K_{I I}$)linear Weingarten quadric surface.

Thirdly, we suppose that a quadric surface M_{2} in \mathbb{E}^{3} satisfies $\alpha H+$ $\beta K_{I I}=0$. Then, by (4.2) and 4.3 , we get

$$
\left(\alpha a^{2} b-\beta a^{3}+\beta a^{2} b\right) u^{2}+\left(\alpha a b^{2}+\beta a b^{2}-\beta b^{3}\right) v^{2}+\alpha a+\alpha b+\beta a+\beta b=0
$$

which easily implies $a=-b$ and $\alpha=-2 \beta$. Thus, the implicit equation of M_{2} is given by $z=\frac{a}{2} x^{2}-\frac{a}{2} y^{2}$, that is, a hyperbolic paraboloid.

Fourthly, we consider a quadric surface M_{2} in \mathbb{E}^{3} satisfying $\alpha K+\beta H_{I I}$ $=0$. By using 4.2 and 4.3), we obtain

$$
\begin{equation*}
4 \alpha^{2} a^{2} b^{2} q-\beta^{2}\left(q H_{1}-2 H_{2}\right)^{2}=0 \tag{4.5}
\end{equation*}
$$

and the coefficient of u^{8} in (4.5) gives $-\beta^{2} a^{8} b^{2}=0$. In this case, we have $\beta a b=0$, which is a contradiction. Therefore, there is no $\left(K, H_{I I}\right)$-linear Weingarten quadric surface.

Fifthly, we consider a quadric surface M_{2} in \mathbb{E}^{3} satisfying $\alpha H+\beta H_{I I}=0$. By using (4.2) and (4.3), we obtain

$$
\begin{equation*}
(\alpha+\beta) q H_{1}-2 \beta H_{2}=0 \tag{4.6}
\end{equation*}
$$

From the coefficient of u^{4} in (4.6), we have $a^{4} b(\alpha+\beta)=0$, which implies $\alpha=-\beta$. In this case, equation (4.6) becomes

$$
\left(-2 \beta a^{3}+2 \beta a^{2} b\right) u^{2}+\left(-2 \beta b^{3}+2 \beta a b^{2}\right) v^{2}+2 \beta a+2 \beta b=0
$$

which implies $a=b=0$, a contradiction.
Consequently, we have the following theorems.
Theorem 4.1. Let α and β be non-zero constants. If M_{2} is a quadric surface of the second kind with non-degenerate second fundamental form in Euclidean 3-space satisfying $\alpha H+\beta K_{I I}=0$, then M_{2} is an open part of a hyperbolic paraboloid. Furthermore, the hyperbolic paraboloid satisfies $K_{I I}=2 H$.

Theorem 4.2. Let α and β be non-zero constants. There is no quadric surface of the second kind with non-degenerate second fundamental form in Euclidean 3-space satisfying $\alpha K+\beta H=0, \alpha K+\beta K_{I I}=0, \alpha K+\beta H_{I I}=0$ or $\alpha H+\beta H_{I I}=0$.

Combining Theorems 3.1, 4.1, 4.2 and the result of [5], we obtain the following

Theorem 4.3 (Characterization). Let α and β be non-zero constants. Let M be a quadric surface with non-degenerate second fundamental form in Euclidean 3-space satisfying

$$
\alpha X+\beta Y=0
$$

where $X \in\{K, H\}, Y \in\left\{H, K_{I I}, H_{I I}\right\}$. Then M is an open part of an ordinary sphere or a hyperbolic paraboloid.

Acknowledgements. The authors are grateful to the referee for his/her useful comments which improved the first version of the paper.

References

[1] C. Baikoussis and Th. Koufogiorgos, On the inner curvature of the second fundamental form of helicoidal surfaces, Arch. Math. (Basel) 68 (1997), 169-176.
[2] D. E. Blair and Th. Koufogiorgos, Ruled surfaces with vanishing second Gaussian curvature, Monatsh. Math. 113 (1992), 177-181.
[3] B.-Y. Chen and F. Dillen, Quadrics of finite type, J. Geom. 38 (1990), 16-22.
[4] F. Dillen, F. and W. Kühnel, Ruled Weingarten surfaces in Minkowski 3-space, Manuscripta Math. 98 (1999), 307-320.
[5] F. Dillen and W. Sodsiri, Ruled surfaces of Weingarten type in Minkowski 3-space, J. Geom. 83 (2005), 10-21.
[6] F. Dillen and W. Sodsiri, Ruled surfaces of Weingarten type in Minkowski 3-space II, J. Geom. 84 (2005), 37-44.
[7] E. Glässner, Über die Minimalfl̈̈chen der zweiten Fundamentalform, Monatsh. Math. 78 (1974), 193-214.
[8] M. H. Kim and D. W. Yoon, Weingarten quadric surfaces in a Euclidean 3-space, Turkish J. Math. 35 (2011), 479-485.
[9] Th. Koufogiorgos and T. Hasanis, A characteristic property of the sphere, Proc. Amer. Math. Soc. 67 (1977), 303-305.
[10] D. Koutroufiotis, Two characteristic properties of the sphere, Proc. Amer. Math. Soc. 44 (1974), 176-178.
[11] W. Kühnel, Ruled W-surfaces, Arch. Math. (Basel) 62 (1994), 475-480.
[12] M. I. Munteanu and A. I. Nistor, Polynomial translation Weingarten surfaces in 3-dimensional Euclidean space, in Differential Geometry (Santiago de Compostella, 2008), World Sci. 2009), 316-320.
[13] G. Stamou, Regelfächen vom Weingarten-Typ, Colloq. Math. 79 (1999), 77-84.
[14] D. J. Struik, Differential Geometry, Addison-Wesley, Reading, MA, 1961.
[15] S. Verpoort, The geometry of the second fundamental form: Curvature properties and variational aspects, PhD Thesis, Katholieke Univ. Leuven, 2008.
[16] D. W. Yoon, Some properties of the helicoid as ruled surfaces, JP J. Geom. Topology 2 (2002), 141-147.
[17] D. W. Yoon, Polynomial translation surfaces of Weingarten type in Euclidean 3space, Centr. Eur. J. Math. 8 (2010), 430-436.

Dae Won Yoon
Department of Mathematics Education
and RINS
Gyeongsang National University
Jinju 660-701, South Korea
E-mail: dwyoon@gnu.ac.kr

Yılmaz Tunçer, Murat Kemal Karacan
Department of Mathematics
Faculty of Sciences and Arts
Usak University
1 Eylul Campus
64200, Usak, Turkey
E-mail: yilmaz.tuncer@usak.edu.tr
murat.karacan@usak.edu.tr

[^0]: 2010 Mathematics Subject Classification: Primary 53A05; Secondary 53B25.
 Key words and phrases: Gaussian curvature, mean curvature, second Gaussian curvature, second mean curvature, quadric surface, Weingarten surface.

