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Non-degenerate quadric surfaces of Weingarten type

by Dae Won Yoon (Jinju), Yılmaz Tunçer (Usak) and
Murat Kemal Karacan (Usak)

Abstract. We study quadric surfaces in Euclidean 3-space with non-degenerate sec-
ond fundamental form, and classify them in terms of the Gaussian curvature, the mean
curvature, the second Gaussian curvature and the second mean curvature.

1. Introduction. Let M be a surface in Euclidean 3-space E3. If M
has non-degenerate second fundamental form II, we can regard this form as
a new Riemannian (or pseudo-Riemannian) metric on M . In this case, we
can define the Gaussian curvature and mean curvature of (M, II ), denoted
by KII and HII respectively..

For X,Y ∈ {K,H,KII , HII }, X 6= Y , if M satisfies the Jacobi equation

Φ(X,Y ) = det

(
Xu Xv

Yu Yv

)
= 0

or a linear equation αX +βY = γ, then it said to be an (X,Y )-Weingarten
surface or an (X,Y )-linear Weingarten surface, respectively, where Xu =
∂X/∂u, Xv = ∂X/∂v and α, β, γ ∈ R.

The inner geometry of the second fundamental form has been a popular
research topic for a long time. W. Kühnel [11] and G. Stamou [13] investi-
gated ruled (X,Y )-Weingarten surfaces in Euclidean 3-space E3. C. Baik-
oussis and Th. Koufogiorgos [1] studied helicoidal (H,KII )-Weingarten sur-
faces. M. I. Munteanu and A. I. Nistor [12] and D. W. Yoon [17] classified
the polynomial translation (X,Y )-Weingarten surfaces in Euclidean 3-space,
and F. Dillen and W. Kühnel [4] and F. Dillen and W. Sodsiri [5, 6] gave a
classification of ruled (X,Y )-Weingarten surfaces in Minkowski 3-space E3

1,
where X,Y ∈ {K,H,KII }. D. Koutroufiotis [10] investigated closed ovaloid
(X,Y )-linear Weingarten surfaces in E3. D. W. Yoon [16] and D. E. Blair
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and Th. Koufogiorgos [2] classified ruled (X,Y )-linear Weingarten surfaces
in E3. Recently, M. H. Kim and D. W. Yoon [8] studied (K,H)-Weingarten
quadric surfaces in Euclidean 3-space.

An interesting geometric question is:

Classify all surfaces in Euclidean 3-space and a Minkowski 3-space sat-
isfying the condition

αX + βY = γ,

where X,Y ∈ {K,H,KII , HII }, X 6= Y and (α, β, γ) 6= (0, 0, 0).

In this paper, we contribute to the solution of the above question, by
studying it for quadric surfaces in Euclidean 3-space E3. We prove the fol-
lowing theorem:

Theorem 1.1. Let α and β be non-zero constants. Let M be a quadric
surface with non-degenerate second fundamental form in Euclidean 3-space
satisfying

αX + βY = 0,

where X ∈ {K,H}, Y ∈ {H,KII , HII }. Then M is an open part of an
ordinary sphere or a hyperbolic paraboloid.

2. Preliminaries. We describe a surface M in Euclidean 3-space E3 by

x(u, v) = (x1(u, v), x2(u, v), x3(u, v)).

Let n be the standard unit normal vector field on M defined by n =
xu × xv/‖xu × xv‖, where xu = ∂x(u, v)/∂u. Then the first fundamental
form I and the second fundamental form II of M are defined by

I = Edu2 + 2Fdudv +Gdv2, II = edu2 + 2fdudv + gdv2,

where

E = 〈xu,xu〉, F = 〈xu,xv〉, G = 〈xv,xv〉,
e = 〈xuu,n〉, f = 〈xuv,n〉, g = 〈xvv,n〉.

The Gaussian curvature K and the mean curvature H are given by

K =
eg − f2

EG− F 2
, H =

Eg − 2Ff +Ge

2(EG− F 2)
.

By Brioschi’s formula in Euclidean 3-space E3 (cf. [14]) we are able to
define KII of M by replacing the components of the first fundamental form
E,F,G by the components of the second fundamental form e, f, g, respec-
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tively ([1], [2], [12], [17] etc.). Then

KII =
1

(eg − f2)2

×


∣∣∣∣∣∣∣
−1

2evv + fuv − 1
2guu

1
2eu fu − 1

2ev

fv − 1
2gu e f

1
2gv f g

∣∣∣∣∣∣∣−
∣∣∣∣∣∣∣

0 1
2ev

1
2gu

1
2ev e f
1
2gu f g

∣∣∣∣∣∣∣
 .

It is said to be the second Gaussian curvature of M .
Next, we explain the second mean curvature HII of M in E3. Let ∇ and

∇̂ be the Levi-Civita connections of the metric tensors I = gijdx
idxj and

II = Lijdx
idxj , respectively, and let Γ k

ij and Γ̂ k
ij be the Christoffel symbols

of ∇ and ∇̂, respectively. The difference tensor T is defined by

Tk
ij = Γ̂ k

ij − Γ k
ij for all i, j, k ∈ {1, 2}.

It is known that

Γ k
ik = (ln

√
|det I|)|i, Γ̂ k

ik = (ln
√
|det II |)|i, Tk

ik = (ln
√
|K|)|i,

where Φ|i denotes the partial derivative ∂Φ/∂ui.

Let D be a bounded connected open set whose closure D is contained in
U ⊂ R2, let γ : D → R be a C2-function such that γ ≡ ∂γ/∂s ≡ ∂γ/∂t ≡ 0

on the boundary of D and let M̃ := x(D) be a portion of M determined by
x|D : D → E3. Let a ∈ R+. The normal variation ϕ : D × (−a, a) → E3 of

M̃ determined by γ is given by

ϕ(s, t, v) = x(s, t) + vγ(s, t)n(s, t)

for all (s, t) ∈ D and all v ∈ (−a, a). For all v ∈ (−a, a), define xv : D → E3

by

xv(s, t) = ϕ(s, t, v) for all (s, t) ∈ D.
If a is small enough, we can assume that Mv := xv(D) is a portion of
non-developable surface determined by xv with II -area Av

II is defined by

Av
II =

� �

D

√
|det II v| ds dt,

where II v = Lv
ijdx

idxj is the second fundamental form of Mv. By a straight-
forward computation, we get

∂

∂v

∣∣∣∣
v=0

Lv
ij = γKgij +∇iγ|j − 2γHLij ,

which implies

∂

∂v

∣∣∣∣
v=0

√
|det II v| =

(
1

2
Lij∇iγ|j − γH

)√
|det II |.
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The first variation of Av
II is

∂

∂v

∣∣∣∣
v=0

Av
II =

� �

D

(
1

2
Lij∇iγ|j − γH

)
dAII .

On the other hand,� �

D

Lij∇iγ|j dAII = −
� �

D

γ∇̂k(LijTk
ij) dAII .

Thus, we get,

∂

∂v

∣∣∣∣
v=0

Av
II = −

� �

D

γ

(
H +

1

2
Lij∇̂kTk

ij

)
dAII .

We define

HII := H +
1

2
Lij∇̂kTk

ij .

Furthermore,

Lij∇̂kTk
ij = Lij∇̂jT

k
ik = Lij∇̂j(ln

√
|K|)|i = ∆̂(ln

√
|K|),

where ∆̂ is the Laplacian with respect to II. It follows that ([7])

HII = H +
1

2
∆̂(ln

√
|K|)

= H − 1

2
√
|det(Lij)|

2∑
i,j

∂

∂xi

(√
|det(Lij)|Lij ∂

∂xj
(ln
√
|K|)

)
,

where {xi} is a rectangular coordinate system in E3. The quantity HII is
called the second mean curvature of M .

Now, we define a quadric surface in E3. A subset M of Euclidean 3-space
E3 is called a quadric surface if it is the set of points (x1, x2, x3) satisfying
the following equation of second degree:

3∑
i=1

aijxixj +

3∑
i=1

bixi + c = 0,

where aij , bi, c are all real numbers. Suppose that M is not a plane. Then
A = (aij) is not a zero matrix and we may assume without loss of generality
that it is symmetric. Possibly after applying a coordinate transformation in
E3, M is either a ruled surface, or one of the following two kinds ([3]):

(2.1) x23 − ax21 − bx22 = c, abc 6= 0,

or

(2.2) x3 =
a

2
x21 +

b

2
x22, a > 0, b > 0.
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If a surface satisfies (2.1), it is said to be a quadric surface of the first
kind, and a surface satisfying (2.2) is called a quadric surface of the second
kind.

3. Linear Weingarten quadric surfaces of the first kind. In this
section, we investigate quadric surfaces of the first kind satisfying

αX + βY = 0,

where X ∈ {K,H}, Y ∈ {H,KII , HII }.
Let M1 be a quadric surface of the first kind in E3 corresponding to

x3 > 0. Then M1 can be parametrized by

x(u, v) = (u, v, (c+ au2 + bv2)1/2).

Denote the function c + au2 + bv2 by ω. Then, using the natural frame
{xu,xv} of M1 defined by xu = (1, 0, au/

√
ω) and xv = (0, 1, bv/

√
ω), the

components E,F and G of the first fundamental form I of the surface are

E = 1 + a2u2/ω, F = abuv/ω, G = 1 + b2v2/ω.

Moreover, the unit normal vector n of the surface M1 is given by

n = (−au/√q,−bv/√q,
√
ω/
√
q),

where q = a(a+ 1)u2 + b(b+ 1)v2 + c. From this, the components e, f and
g of the second fundamental form II are

e = q−1/2ω−1A0, f = q−1/2ω−1B0, g = q−1/2ω−1C0,

where A0 = a(bv2 + c), B0 = −abuv and C0 = b(au2 + c).

Hence, the Gaussian curvature K and the mean curvature H are

K =
1

q2
abc,(3.1)

H =
1

2q3/2
H1,(3.2)

where H1 = (a+ b)c+ (ab+ a2b)u2 + (ab+ ab2)v2.

To find the second Gaussian curvature, we must compute the derivatives
of the functions e, f and g with respect to u and v.

(3.3)

eu = q−3/2ω−2A1, ev = q−3/2ω−2A2, evv = q−5/2ω−3A3,

fu = q−3/2ω−2B1, fv = q−3/2ω−2B2, fuv = q−5/2ω−3B3,

gu = q−3/2ω−2C1, gv = q−3/2ω−2C2, guu = q−5/2ω−3C3,
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where

A1 = (abv2 + ac)(−a(a+ 1)uω − 2auq),

A2 = 2abvqω + (abv2 + ac)(−b(b+ 1)vω − 2bvq),

A3 = (−3b(b+ 1)vω − 4bvq)(2abvωq + (abv2 + ac)(−b(b+ 1)vω − 2bvq))

+ ωq(2abωq + ab2(b+ 1)v2ω − 6ab3(b+ 1)v4 − 2ab2v2q

− ab(b+ 1)cω − 6ab2(b+ 1)cv2 − 2abcq),

B1 = −abvωq + a2b(a+ 1)u2vω + 2a2bu2vq,

B2 = −abuωq + ab2(b+ 1)uv2ω + 2ab2uv2q,

B3 = (−3a(a+ 1)uω − 4auq)(−abuωq + ab2(b+ 1)uv2ω + 2ab2uv2q)

+ ωq(−abωq − 2a2(a+ 1)bu2ω − 2a2bu2q + ab2(b+ 1)v2ω

+ 2a2b2(b+ 1)u2v2 + 2ab2qv2 + 4a2(a+ 1)b2u2v2),

C1 = 2abuωq + (abu2 + bc)(−a(a+ 1)uω − 2auq),

C2 = (abu2 + bc)(−b(b+ 1)vω − 2bvq),

C3 = (−3a(a+ 1)uω − 4auq)(2abuωq + (abu2 + bc)(−a(a+ 1)uω − 2auq)

+ ωq(2abωq + a2(a+ 1)bu2ω − 6a3(a+ 1)bu4 − 2a2bu2q

− a(a+ 1)bcω − 6a2(a+ 1)bcu2 − 2abcq).

Thus, the second Gaussian curvature KII of M1 with the help of (3.3) turns
out to be

(3.4) KII =
1

a2b2c2q3/2ω3
K2,

where

K2 = abcω(−1
2A3 +B3 − 1

2C3) + 1
4A1B0C2

+ (B1 − 1
2A2)(B0B2 − 1

2B0C1 − 1
2A0C2)− 1

2A1C0(B2 − 1
2C1)

− 1
2A2B0C1 + 1

4A0C
2
1 + 1

4A
2
2C0.

By straightforward computation, the second mean curvature HII of M1 is

(3.5) HII =
1

2q3/2
H1 +

1

cq3/2
H2,

where

H2 =

(a4 + 2a3 + a2)u4 + (b4 + 2b3 + b2)v4 + (2a2b2 + 2a2b+ 2ab+ 2ab2)u2v2

+ (3ac+ 2a2c− a3c+ a2bc+ abc)u2 + (2b2c+ ab2c+ 3bc+ abc− b3c)v2

+ ac2 + bc2 + 2c2.
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First, we investigate (K,H)-linear Weingarten quadric surfaces of the
first kind in Euclidean 3-space.

Suppose that a quadric surface M1 in E3 satisfies the linear equation

(3.6) αK + βH = 0.

By (3.1) and (3.2), equation (3.6) becomes

(3.7) 4α2a2b2c2 − β2qH2
1 = 0.

The direct computation of the left hand side of (3.7) gives a polynomial in
u and v with constant coefficients by adjusting the power of the functions q
and H1. The coefficients of u6 and v6 in (3.7) give, respectively,

β2a3b2(a+ 1)3 = 0, β2a2b3(b+ 1)3 = 0.

Thus, a = −1, b = −1 and α2 = cβ2. Therefore, M1 is a sphere.

Secondly, we study a quadric surface M1 in E3 satisfying the linear equa-
tion

(3.8) αK + βKII = 0.

By (3.1) and (3.4), equation (3.8) becomes

(3.9) β2qK2
2 − α2a6b6c6ω6 = 0.

By inserting the functions q, ω and K2, equation (3.9) becomes poly-
nomial in u and v with constant coefficients. From the coefficients of u22

and v22, we have, respectively,

1
4β

2a15b4c2(a+ 1)5 = 0, 1
4β

2a4b15c2(b+ 1)5 = 0,

so a = −1 and b = −1. In this case, from the coefficient of u12 in (3.9) we
have α2 = cβ2, which implies equation (3.9) holds identically. Thus, M1 is
a sphere.

Thirdly, suppose that a quadric surface M1 in E3 satisfies

(3.10) αH + βKII = 0.

Then, by (3.2) and (3.4), equation (3.10) becomes

(3.11) (αa2b2c2H1ω
3 + 2βK2)

2q5 − 4α2a4b4c2H2
2ω

6 = 0.

The coefficients of u30 and v30 in (3.11) give, respectively,

β2a19b4c2(a+ 1)9 = 0, β2a4b19c2(b+ 1)9 = 0.

Thus, a = −1, b = −1 because abc 6= 0 and β 6= 0. In this case, the coefficient
of u12 in (3.11) is given by 4c11(α + β)2. Since c 6= 0, α = −β. Then from
the conditions of a, b, α and β, equation (3.11) clearly holds.

Fourthly, we consider a quadric surface M1 in E3 satisfying

(3.12) αK + βHII = 0.
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By using (3.1) and (3.5), equation (3.12) can be written as

(3.13) β2c2H2
1q

5 − (2βH2 + 2αabc2q2)2 = 0,

and the coefficients of u14 and v14 in (3.13) give, respectively,

β2a7b2c2(a+ 1)7 = 0, β2a2b7c2(b+ 1)7 = 0.

Thus, clearly, a = −1, b = −1. In this case, the surface M1 is a sphere. On
the other hand, from the values of a and b, equation (3.13) becomes

−4c8(α2 − cβ2) = 0.

From this, α2 = cβ2, thus equation (3.13) clearly holds.

Fifthly, we consider a quadric surface M1 in E3 satisfying

(3.14) αH + βHII = 0.

By using (3.2) and (3.5), equation (3.14) can be written as

(3.15) 4β2H2
2 − c2(α+ β)2H2

1q
5 = 0,

and the coefficients of u14 and v14 in (3.15) give, respectively

−a7b2c2(α+ β)2(a+ 1)7 = 0, −a2b7c2(α+ β)2(b+ 1)7 = 0,

which imply a = b = −1 or α = −β. If a = b = −1, then the coefficient of
the constant term in (3.15) is −4c9(α + β)2. From this, we get α = −β, in
which case equation (3.15) clearly holds. So, M1 is a sphere.

Consequently, we have the following theorem.

Theorem 3.1. Let α and β be non-zero constants. If M1 is a quadric
surface of the first kind with non-degenerate second fundamental form in
Euclidean 3-space satisfying the equation

αX + βY = 0,

where X ∈ {K,H}, Y ∈ {H,KII , HII }, then M1 is an open part of an
ordinary sphere.

Remark. The unit sphere with radius 1 satisfies K = −H = −KII =
−HII = 1.

4. Linear Weingarten quadric surfaces of the second kind. In
this section, we study quadric surfaces of the second kind satisfying

αX + βY = 0,

where X ∈ {K,H}, Y ∈ {H,KII , HII }.
Let x : U → E3 be a quadric surface of the second kind in E3. Then

x(u, v) =

(
u, v,

a

2
u2 +

b

2
v2
)
.
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From this, the components E,F and G of the first fundamental form are

E = 1 + a2u2, F = abuv, G = 1 + b2v2.

We define a smooth function q as follows:

q = ‖xu × xv‖2 = 1 + a2u2 + b2v2,

so the unit normal vector field n of so M2 is

(4.1) n =
1
√
q

(−au,−bv, 1).

The components of the second fundamental form on M2 are

e = a/
√
q, f = 0, g = b/

√
q.

On the other hand, the Gaussian curvature K and the mean curvature H
are

(4.2) K =
ab

q2
, H =

1

2q3/2
H1,

where H1 = a2bu2 + ab2v2 + a + b. By definitions, the second Gaussian
curvature KII and the second mean curvature HII are

(4.3) KII =
1

2q3/2
K2, HII =

1

q3/2

(
1

2
H1 −H2

)
,

where K2 = (a2b − a3)u2 + (ab2 − b3)v2 + a + b and H2 = (a3 − a2b)u2 +
(b3 − ab2)v2 − a− b.

Firstly, we suppose that M2 satisfies the equation αK + βH = 0. Then
from (4.2) we have

4α2a2b2 − β2qH2
1 = 0.

Since the above equation depends on the variables u and v, all the coefficients
of the powers of u and v must vanish. For the leading coefficients of u6

and v6, we have −β2a6b2 = 0 and −β2a2b6 = 0 respectively, which imply
a = 0 or b = 0. This is a contradiction. Therefore, there is no (K,H)-linear
Weingarten quadric surface.

Secondly, we study quadric surfaces M2 in E3 satisfying αK+βKII = 0.
By (4.2) and (4.3), we obtain

(4.4) β2qK2
2 − 4α2a2b2 = 0.

The coefficient of u6 in (4.4) is β2a6(a − b)2, which implies a = b. In this
case, equation (4.4) becomes

4β2b4u2 + 4β2b4v2 + 4β2b2 − 4α2b4 = 0.

Therefore, αb = 0 and βb = 0, a contradiction. Thus, there is no (K,KII )-
linear Weingarten quadric surface.
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Thirdly, we suppose that a quadric surface M2 in E3 satisfies αH +
βKII = 0. Then, by (4.2) and (4.3), we get

(αa2b− βa3 + βa2b)u2 + (αab2 + βab2 − βb3)v2 + αa+ αb+ βa+ βb = 0,

which easily implies a = −b and α = −2β. Thus, the implicit equation of
M2 is given by z = a

2x
2 − a

2y
2, that is, a hyperbolic paraboloid.

Fourthly, we consider a quadric surface M2 in E3 satisfying αK + βHII

= 0. By using (4.2) and (4.3), we obtain

(4.5) 4α2a2b2q − β2(qH1 − 2H2)
2 = 0,

and the coefficient of u8 in (4.5) gives −β2a8b2 = 0. In this case, we have
βab = 0, which is a contradiction. Therefore, there is no (K,HII )-linear
Weingarten quadric surface.

Fifthly, we consider a quadric surface M2 in E3 satisfying αH+βHII = 0.
By using (4.2) and (4.3), we obtain

(4.6) (α+ β)qH1 − 2βH2 = 0.

From the coefficient of u4 in (4.6), we have a4b(α + β) = 0, which implies
α = −β. In this case, equation (4.6) becomes

(−2βa3 + 2βa2b)u2 + (−2βb3 + 2βab2)v2 + 2βa+ 2βb = 0,

which implies a = b = 0, a contradiction.

Consequently, we have the following theorems.

Theorem 4.1. Let α and β be non-zero constants. If M2 is a quadric
surface of the second kind with non-degenerate second fundamental form
in Euclidean 3-space satisfying αH + βKII = 0, then M2 is an open part
of a hyperbolic paraboloid. Furthermore, the hyperbolic paraboloid satisfies
KII = 2H.

Theorem 4.2. Let α and β be non-zero constants. There is no quadric
surface of the second kind with non-degenerate second fundamental form in
Euclidean 3-space satisfying αK+βH = 0, αK+βKII = 0, αK+βHII = 0
or αH + βHII = 0.

Combining Theorems 3.1, 4.1, 4.2 and the result of [5], we obtain the
following

Theorem 4.3 (Characterization). Let α and β be non-zero constants.
Let M be a quadric surface with non-degenerate second fundamental form
in Euclidean 3-space satisfying

αX + βY = 0,

where X ∈ {K,H}, Y ∈ {H,KII , HII }. Then M is an open part of an
ordinary sphere or a hyperbolic paraboloid.
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