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Existence and uniqueness of periodic solutions for odd-order
ordinary differential equations

by Yongxiang Li and He Yang (Lanzhou)

Abstract. The paper deals with the existence and uniqueness of 2π-periodic solutions
for the odd-order ordinary differential equation

u(2n+1) = f(t, u, u′, . . . , u(2n)),

where f : R×R2n+1 → R is continuous and 2π-periodic with respect to t. Some new con-
ditions on the nonlinearity f(t, x0, x1, . . . , x2n) to guarantee the existence and uniqueness
are presented. These conditions extend and improve the ones presented by Cong [Appl.
Math. Lett. 17 (2004), 727–732].

1. Introduction and main results. In this paper, we extend the ex-
istence and uniqueness results of [4] for periodic solutions of the odd-order
ordinary differential equation

(1.1) u(2n+1)(t) = f(t, u(t), u′(t), . . . , u(2n)(t)),

where n ≥ 1 is an integer, and f : R × R2n+1 → R is continuous and
2π-periodic with respect to t.

The existence and uniqueness of periodic solutions is an important topic
in the qualitative theory of ordinary differential equations. For first and
second order differential equations, the problem has been widely and deeply
investigated. In recent years, there has been increasing interest in the case
of higher order equations (see [1–5, 7–10] for more details). However, odd-
order equations are studied relatively rarely. In [5], Cong, Huang and Shi
considered the special odd-order differential equation

(1.2) u(2n+1)(t) +
n−1∑
i=0

ciu
(2i+1)(t) = g(t, u(t)),
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Under the condition that

m ≤ |gx(t, x)| ≤M, ∀(t, x) ∈ R× R
(where m and M are positive constants) and other assumptions they ob-
tained the existence and uniqueness of periodic solutions for (1.2). In [4],
Cong extended this work to the more general odd-order differential equa-
tion (1.1).

We recall some notations of [4]. Let ai, i = 0, 1, . . . , 2n, be positive con-
stants. Let Di be the subset of Ri+1 defined by

Di = {(x0, x1, . . . , xi) ∈ Ri+1 : |xj | < aj , j = 0, 1, . . . , i}
for i = 0, 1, . . . , 2n. Define

fi+1(t, xi+1, . . . , x2n) = sup
(x0,...,xi)∈Di

|f(t, x0, x1, . . . , x2n)|

for i = 0, 1, . . . , 2n− 1. In [4], under the following assumptions:

(H1) there exist positive constants b0, ci, i = 0, 1, . . . , 2n, such that for
|xi| ≥ ai and (xi+1, . . . , x2n) ∈ R2n−i,

(1.3) |fi/xi| ≤ ci, i = 1, . . . , 2n,

and for |x0| ≥ a0 and (x1, . . . , x2n) ∈ R2n,

(1.4) b0 ≤ f/x0 ≤ c0 or −c0 ≤ f/x0 ≤ −b0;

(H2) the constants b0 and ci satisfy the inequality

(1.5)
(

1 +
c0
b0

) 2n∑
i=1

2ici < 1,

Cong obtained the following result on existence of periodic solutions:

Theorem A. If conditions (H1) and (H2) above are satisfied, then equa-
tion (1.1) has a 2π-periodic solution.

Furthermore, replacing (H1) by the Lipschitz-type condition

(H3) there exist positive constants c0, c1, . . . , c2n such that

|f(t, x0, x1, . . . , x2n)− f(t, y0, y1, . . . , y2n)| ≤
2n∑
i=0

ci|xi − yi|

for any (t, x0, x1, . . . , x2n), (t, y0, y1, . . . , y2n) ∈ R×R2n+1, and there
exists a positive constant b0 < c0 such that b0 ≤ |fx0 | ≤ c0 on
R× R2n+1,

Cong obtained the following existence theorem:

Theorem B. Assume that f satisfies condition (H3) and the constants
b0 and ci satisfy condition (H2). Then equation (1.1) has a 2π-periodic so-
lution.
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The purpose of this paper is to improve Theorems A and B above. We
shall substantially weaken conditions (H1) and (H2) in the two theorems and
show that the periodic solution in Theorem B is unique. We shall replace
(H1) by the following growth condition:

(F1) There exist constants α 6= 0, β ∈ (0, |α|) and c1, . . . , c2n, M such
that

(1.6) |f(t, x0, x1, . . . , x2n)− αx0| ≤ β|x0|+
2n∑
i=1

ci|xi|+M

for any (t, x0, x1, . . . , x2n) ∈ R× R2n+1.

Condition (F1) is weaker than (H1). In fact, if (H1) holds, then setting

α =

{
(b0 + c0)/2 if f satisfies the first inequality of (1.4),
−(b0 + c0)/2 if f satisfies the second inequality of (1.4),

β = (c0 − b0)/2 and M = sup{|f(t, x0, x1, . . . , x2n)| : t ∈ [0, 2π]; |xi| ≤ ai,
i = 0, 1, . . . , 2n} + 1 (then 0 < β < |α|), from (1.3) and (1.4), we can
easily deduce (1.6). Moreover, we shall weaken (H2) to the following simple
condition:

(F2) the constants α, β and c1, . . . , c2n satisfy the inequality

(1.7) β/|α|+ c1 + · · ·+ c2n < 1.

In fact, under conditions (H1) and (H2), defining α and β as above, we have

1
1− β/|α|

(c1 + · · ·+ c2n) =
1
2

(
1 +

c0
b0

)
(c1 + · · ·+ c2n)(1.8)

<

(
1 +

c0
b0

)
(c1 + · · ·+ c2n)

<

(
1 +

c0
b0

) 2n∑
i=1

2ici < 1.

This implies that the inequality (1.7) holds. Therefore condition (F2) is
much weaker than (H2). Under condition (H1) or (H3), condition (F2) is
equivalent to

(H2)∗ the constants b0 and c0, c1, . . . , c2n satisfy the inequality

1
2

(
1 +

c0
b0

)
(c1 + · · ·+ c2n) < 1.

The main results of this paper are as follows:

Theorem 1. If conditions (F1) and (F2) hold, then equation (1.1) has
a 2π-periodic solution.



108 Y. X. Li and H. Yang

Clearly, Theorem 1 is an extension of Theorem A. Likewise, Theorem B
is improved by the following result.

Theorem 2. If the partial derivative fx0 of f(t, x0, x1, . . . , x2n) with
respect to x0 exists and conditions (H3) and (H2)∗ hold, then equation (1.1)
has a unique 2π-periodic solution.

If the partial derivatives fx0 , fx1 , . . . , fx2n exist, then from Theorem 2
and the differential mean value theorem, we have

Corollary 1. Suppose the partial derivatives fx0 , fx1 , . . . , fx2n exist. If
there exist positive constants b0, c0, c1, . . . , c2n such that

b0 ≤ |fx0 | ≤ c0, |fxi | ≤ ci for i = 1, . . . , 2n,

and the constants b0, c0, c1, . . . , c2n satisfy condition (H2)∗, then equation
(1.1) has a unique 2π-periodic solution.

In Theorem 1, if condition (F1) is modified as

(F1)∗ there exist constants α 6= 0, β ∈ (0, |α|) and c1, . . . , c2n,M such
that

|f(t, x0, x1, . . . , x2n)− αx0| ≤

√√√√β2x2
0 +

2n∑
i=1

c2ix
2
i +M

for any (t, x0, x1, . . . , x2n) ∈ R× R2n+1,

then condition (F2) can be further weakened to

(F2)∗ the constants c1, . . . , c2n satisfy the inequality

c1 + · · ·+ c2n < 1.

Theorem 3. If conditions (F1)∗ and (F2)∗ hold, then equation (1.1) has
a 2π-periodic solution.

Condition (F1)∗ is slightly stronger than (F1), but condition (F2)∗ is
independent of the constants α and β or b0 and c0, and it is much weaker
than (H2) and (F2). Similarly, (F1)∗ is also weaker than (H1). By Theorem 3,
we have

Corollary 2. If conditions (H1) and (F2)∗ hold, then equation (1.1)
has a 2π-periodic solution.

Corollary 2 is another extension of Theorem A.
Theorems 1–3 will be proved in the next section by using fixed-point

theorems in the Sobolev space W 2n,2(I), where I = [0, 2π]. We shall choose
an equivalent norm in W 2n,2(I) such that the Leray–Schauder fixed-point
theorem can be applied to the periodic problem for equation (1.1).
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2. Proof of the main results. Let I = [0, 2π] and H = L2(I) be the
usual Hilbert space with the norm ‖u‖2 = (

	2π
0 |u(t)|2 dt)1/2. For m ∈ N, let

Wm,2(I) be the usual Sobolev space with the norm ‖u‖m,2 =
√∑m

i=0 ‖u(i)‖22;

u ∈ Wm,2(I) means that u ∈ Cm−1(I), u(m−1)(t) is absolutely continuous
on I and u(m) ∈ L2(I).

Taking α 6= 0 and h ∈ L2(I), we consider the linear periodic boundary
value problem (LPBVP)

(2.1)

{
u(2n+1)(t)− αu(t) = h(t), 0 ≤ t ≤ 2π,

u(i)(0) = u(i)(2π), i = 0, 1, . . . , 2n.

From [8, Lemma 1] or a direct calculation, we know that LPBVP (2.1)
has a unique solution u := Sh ∈ W 2n+1,2(I) in the Carathéodory sense. If
h ∈ C(I), the solution is in C2n+1(I) and it is a classical solution. Moreover,
the solution operator of LPBVP (2.1), S : L2(I)→W 2n+1,2(I), is a bounded
linear operator.

It is well-known that ‖u‖α,2n,2 =
√
α2‖u‖22 + ‖u(2n)‖22 is an equivalent

norm in W 2n,2(I). For convenience, we use X to denote the Banach space
W 2n,2(I) endowed with the norm ‖u‖X = ‖u‖α,2n,2. By the compactness
of the Sobolev embedding W 2n+1,2(I) ↪→ C2n(I) and the continuity of
C2n(I) ↪→ W 2n,2(I), we see that S maps H into X and S : H → X is
a completely continuous operator.

Lemma 1. Let α 6= 0. Then

(a) The norm of the solution operator S : H → X of LPBVP (2.1)
satisfies ‖S‖L(H,X) ≤ 1.

(b) For every h∈H, the unique solution u∈W 2n+1,2(I) of LPBVP (2.1)
satisfies the inequality

(2.2) ‖u(m)‖2 ≤ ‖u(2n)‖2, m = 1, . . . , 2n− 1.

Proof. It is well-known that {eikt | k ∈ Z} is a completely orthogonal
system in H, where i is the imaginary unit. Hence every h ∈ H has the
Fourier series expansion

h(t) =
∞∑

k=−∞
ake

ikt,

where ak = (2π)−1
	2π
0 h(t)e−ikt dt (k = 0,±1,±2, . . .).

Let u = Sh. Then u ∈W 2n+1,2(I) is the unique solution of LPBVP (2.1),
and u and each u(m) (m = 1, . . . , 2n + 1) can be expressed by the Fourier
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series expansion. Let

u(t) =
∞∑

k=−∞
bke

ikt.

Then by the formula for Fourier coefficients we have

(2.3) u(m)(t) =
∞∑

k=−∞
(ki)mbkeikt, m = 1, . . . , 2n+ 1.

Therefore, h can also be expressed by

h(t) = u(2n+1)(t)− αu(t) =
∞∑

k=−∞
((ki)2n+1 − α)bkeikt.

By the uniqueness of Fourier series expansion,

((ki)2n+1 − α)bk = ak, k = 0,±1,±2, . . . .

Now by the Parseval equality, we have

‖S h‖2X = α2‖u‖22 + ‖u(2n)‖22 = 2π
∞∑

k=−∞
(α2|bk|2 + |(ki)2nbk|2)

= 2π
∞∑

k=−∞
(α2 + |(ki)2n|2)

∣∣∣∣ ak
(ki)2n+1 − α

∣∣∣∣2
= 2π

∞∑
k=−∞

α2 + k4n

α2 + k4n+2
|ak|2

≤ 2π
∞∑

k=−∞
|ak|2 = ‖h‖22.

This means that ‖S‖L(H,X) ≤ 1, so (a) holds.

For every 1 ≤ m ≤ 2n, by (2.3) and the Parseval equality, we have

‖u(m)‖22 = 2π
∞∑

k=−∞
|(ki)mbk|2 = 2π

∞∑
k=−∞

k2m|bk|2

≤ 2π
∞∑

k=−∞
k4n|bk|2 = 2π

∞∑
k=−∞

|(ki)2nbk|2 = ‖u(2n)‖22.

This shows that conclusion (b) holds.

Proof of Theorem 1. Consider the (2n + 1)th-order periodic boundary
value problem (PBVP)

(2.4)

{
u(2n+1)(t) = f(t, u(t), u′(t), . . . , u(2n)(t)), 0 ≤ t ≤ 2π,
u(i)(0) = u(i)(2π), i = 0, 1, . . . , 2n.
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If PBVP (2.4) has a solution u ∈ C2n+1(I), then the 2π-periodic extension
of u is a 2π-periodic solution of (1.1). We now prove that PBVP (2.4) has
at least one solution in C2n+1(I) under conditions (F1) and (F2).

We define a mapping F : X → H by

(2.5) F (u)(t) := f(t, u(t), u′(t), . . . , u(2n)(t))− αu(t), u ∈ X.

From (1.6) and the properties of Carathéodory mappings it follows that
F : X → H is continuous and it maps every bounded set inX into a bounded
set in H. Hence, the composite mapping S ◦ F : X → X is completely
continuous. We use the Leray–Schauder fixed point theorem to show that
S◦F has a fixed point. For this, we consider the homotopic family of operator
equations

(2.6) u = λ (S ◦ F )(u), 0 < λ < 1.

We need to prove that the set of solutions of all equations (2.6) is bounded
in X.

Let u ∈ X be a solution of (2.6) for some λ ∈ (0, 1). Set h = λF (u).
Then by the definition of S, u = Sh ∈ W 2n+1,2(I) is the unique solution of
LPBVP (2.1). By Lemma 1(a), we have

(2.7) ‖u‖X = ‖Sh‖X ≤ ‖S‖L(X,H)‖h‖2 ≤ ‖h‖2 ≤ ‖F (u)‖2.

From (2.5), (1.6) and Lemma 1(b), we obtain

‖F (u)‖2 ≤ β‖u‖2 + c1‖u(1)‖2 + c2‖u(2)‖2 + · · ·+ c2n‖u(2n)‖2 +
√

2πM

≤ β‖u‖2 + (c1 + · · ·+ c2n) ‖u(2n)‖2 +
√

2πM

≤ (β/|α|+ c1 + · · ·+ c2n)‖u‖X +
√

2πM.

Combining this inequality with (2.7), it follows that

‖u‖X ≤
√

2πM
1− (β/|α|+ c1 + · · ·+ c2n)

=: C0.

This means that the set of solutions of equations (2.6) is bounded in X.
Therefore, by the Leray-Schauder fixed-point theorem [6], S ◦F has a fixed
point u0 ∈ X. Let h0 = F (u0). By the definition of S, u0 = Sh0 ∈
W 2n+1,2(I) is a solution of LPBVP (2.1) for h = h0. Since W 2n+1,2(I) ↪→
C2n(I), from (2.5) it follows that h0 ∈ C(I). Hence u0 ∈ C2n+1(I) is a classi-
cal solution of LPBVP (2.1), and by (2.5), it is also a solution of PBVP (2.4)
in C2n+1(I).

This completes the proof of Theorem 1.

Proof of Theorem 2. First, we show that (H3) implies (F1). From the
inequality b0 ≤ |fx0 | ≤ c0 in (H3) we know that fx0 does not change sign. Set
α = b0+c0

2 sgn(fx0), β = (c0 − b0)/2 and M = max{|f(t, 0, . . . , 0)| : t ∈ R}.
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For (t, x0, x1, . . . , x2n) ∈ R× R2n+1, by (H3) we have

|f(t, x0, x1, . . . , x2n)− f(t, 0, x1, . . . , x2n)− αx0| = |fx0 − α| · |x0| ≤ β|x0|,

|f(t, 0, x1, . . . , x2n)− f(t, 0, 0, . . . , 0)| ≤
2n∑
i=1

ci|xi|,

|f(t, 0, 0, . . . , 0)| ≤M.

Summing these inequalities we obtain

(2.8) |f(t, x0, x1, . . . , x2n)− αx0| ≤ β|x0|+
2n∑
i=1

ci|xi|+M.

Hence, (F1) holds. From (H2)∗ and (1.8) we see that (F2) holds. By Theo-
rem 1, PBVP (2.4) has a solution.

Now, let u1, u2 ∈ C2n+1(I) be two solutions of PBVP (2.4). Then ui =
S(F (ui)), i = 1, 2. From (H3) and (2.5), using a similar argument to (2.8),
we obtain

(2.9) |F (u2)(t)− F (u1)(t)| ≤ β|u2(t)− u1(t)|+
2n∑
i=1

ci|u(i)
2 (t)− u(i)

1 (t)|

for t ∈ I. Since u2−u1 is the solution of LPBVP (2.1) for h = F (u2)−F (u1),
by (2.9) and Lemma 1(b) we have

‖F (u2)− F (u1)‖2 ≤ β‖u2 − u1‖2 +
2n∑
i=1

ci‖u(i)
2 − u

(i)
1 ‖2

≤ β‖u2 − u1‖2 +
( 2n∑
i=1

ci

)
‖u(2n)

2 − u(2n)
1 ‖2

≤ (β/|α|+ c1 + · · ·+ c2n)‖u2 − u1‖X .
From this and Lemma 1(a), it follows that

‖u2 − u1‖X ≤ ‖S(F (u2)− F (u1))‖X(2.10)
≤ ‖S‖L(X,H)‖F (u2)− F (u1)‖2
≤ (β/|α|+ c1 + · · ·+ c2n)‖u2 − u1‖X .

Since β/|α| + c1 + · · · + c2n < 1, from (2.10) we see that ‖u2 − u1‖X = 0,
that is, u2 = u1. Therefore, PBVP (2.4) has only one solution. Equivalently,
equation (1.1) has a unique 2π-periodic solution.

The proof of Theorem 2 is complete.

Proof of Theorem 3. Since (F1)∗ implies (F1), by the argument in the
proof of Theorem 1 the mapping F : X → H defined by (2.5) is continuous
and it maps every bounded set in X into a bounded set in H. Hence the
mapping S ◦ F : X → X is completely continuous.
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Consider the family of operator equations (2.6). Let u ∈ X be a solution
of (2.6) for some λ ∈ (0, 1). Set h = λF (u). Then (2.7) is valid. Let r =
max{β/|α|, c1 + · · ·+ c2n}. By (F2)∗, r ∈ (0, 1). Since u = S h ∈W 2n+1,2(I)
is the unique solution of LPBVP (2.1), using (2.5), (F1)∗ and Lemma 1(b),
we have

‖F (u)‖2 ≤
√
β2‖u‖22 + c21‖u(1)‖22 + · · ·+ c22n‖u(2n)‖22 +

√
2πM

≤
√
β2‖u‖22 + (c21 + · · ·+ c22n)‖u(2n)‖22 +

√
2πM

≤
√
β2‖u‖22 + (c1 + · · ·+ c2n)2 ‖u(2n)‖22 +

√
2πM

≤
√
r2(α2‖u‖22 + ‖u(2n)‖22) +

√
2πM

= r‖u‖X +
√

2πM.

From this inequality and (2.7), we obtain

‖u‖X ≤
√

2πM
1− r

:= C1.

That is, the set of solutions for equations (2.6) is bounded in X. Therefore,
by the Leray–Schauder fixed-point theorem, S ◦ F has a fixed point, whose
2π-periodic extension is a 2π-periodic solution of (1.1).

The proof of Theorem 3 is complete.
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