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On meromorphic functions with maximal defect sum

by Pham Duc Thoan and Le Thanh Tung (Hanoi)

Abstract. The purpose of this article is twofold. The first is to give necessary con-
ditions for the maximality of the defect sum. The second is to show that the class of
meromorphic functions with maximal defect sum is very thin in the sense that deforma-
tions of meromorphic functions with maximal defect sum by small meromorphic functions
are not meromorphic functions with maximal defect sum.

1. Introduction and main results. We set

|z| =
( n∑
j=1

|zj |2
)1/2

, ∀z = (z1, . . . , zn) ∈ Cn,

Sn(r) = {z ∈ Cn : |z| = r}, Bn(r) = {z ∈ Cn : |z| ≤ r},

d = ∂ + ∂, dc =
1

4π
(∂ − ∂),

ωn(z) = ddc log |z|2, σn(z) = dc log |z|2 ∧ ωn−1
n (z),

νn(z) = ddc|z|2.
Let f : Cn → P1(C) be a meromorphic function. For each a ∈ P1(C) with
f−1(a) 6= Cn, {

Zaf is the a-divisor of f,
Zaf (r) = Bn(r) ∩ Zaf .

Define
nf (r, a) = r2−2n

�

Za
f (r)

νn−1
n (z).

We define the counting function of f by

Nf (r, a) =
r�

1

nf (t, a)
t

dt.
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The proximity function of f is defined by

mf (r, a) =


�

Sn(r)

log+ 1
|f(z)− a|

σn(z), a 6=∞,

�

Sn(r)

log+ |f(z)|σn(z), a =∞.

The characteristic function of f is defined by

Tf (r) = mf (r,∞) +Nf (r,∞).

Then the first main theorem in value distribution theory states that

Tf (r) = mf (r, a) +Nf (r, a) +O(1).

We call the quantity

δ(a, f) = lim inf
r→∞

mf (r, a)
Tf (r)

= 1− lim sup
r→∞

Nf (r, a)
Tf (r)

the defect (or deficiency) of a with respect to f. Then 0 ≤ δ(a, f) ≤ 1. The
quantity

ρf = lim sup
r→∞

log Tf (r)
log r

is said to be the order of f , and the quantity

γf = lim inf
r→∞

log Tf (r)
log r

is the lower order of f.
For each z ∈ Cn, we define

Df (z) =
n∑
j=1

zjfzj (z),

where fzj is the partial differential of f with respect to zj .
The classical Nevanlinna theorem on the defect relation states that if

f : Cn → P1(C) is a meromorphic function, then
∑

a∈P1(C) δ(a, f) ≤ 2.
There is a natural question: What can we say about the class of mero-

morphic functions f such that
∑

a∈P1(C) δ(a, f) = 2? Much attention has
been given to this problem and several theorems on meromorphic mappings
with maximal defect sum have been obtained by various authors [JY], [TD],
[T1], [T2], [T3] (see the references therein for related subjects).

The purpose of this article is twofold. The first is to give necessary con-
ditions for the maximality of the defect sum. The second is to show that
the class of meromorphic functions with maximal defect sum is very thin in
the sense that deformations of meromorphic functions with maximal defect
sum by small meromorphic functions are not meromorphic functions with
maximal defect sum. Namely, we prove the following
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Theorem 1.1. Let f : C → P1(C) be a meromorphic function of finite
order. For each m ≥ 1 and z ∈ C, define gm(z) = f(zm) and hm(z) = fm(z).
Suppose that one of the following conditions is satisfied:

(i) There exists m0 ≥ 2 such that
∑

a∈C δ(a, gm0) = 2.
(ii) There exists a sequence {mi}∞i=1 ⊂ Z+ such that

∑
a∈C δ(a, hmi) = 2

for all i ≥ 1.

Then λ := ρf ∈ Z+ and λ equals the lower order of f.

Theorem 1.2. Let f : Cn → P1(C) be a meromorphic function of finite
order satisfying

λ := ρf /∈ Z and
∑
a∈C

δ(a, f) = 2.

Denote by A the set of all nonconstant meromorphic functions h : Cn →
P1(C) such that Th(r) = o(Tf (r)) and TDh

(r) = o(TDf
(r)). Then, for each

h ∈ A, we have ∑
a∈C

δ(a, f + h) ≤ 2− 2k(λ) < 2,

where k(λ) is a positive constant which depends only on λ.

In [Ne1, p. 83] (see also [EF, p. 299]), R. Nevanlinna gave examples of
meromorphic functions f on C of finite order such that λ := ρf /∈ Z and∑

a δ(a, f) = 2.

2. Lemmas

Lemma 2.1 ([Y, Lemma 6]). Let f : Cn → P1(C) be a nonconstant
meromorphic function. Then, for each 1 ≤ j ≤ n, we have

mfzj /f
(r,∞) =

�

Sn(r)

log+

∣∣∣∣fzj

f
(z)
∣∣∣∣σn(z) = O(log rTf (r))

for all r outside a finite Lebesgue measure set. Moreover, if ρf < ∞, then
mfzj /f

= O(log r).

Lemma 2.2. Let f, g : Cn → P1(C) be nonconstant meromorphic func-
tions of finite order. Assume that ρf = λ, ρg = λ′ and λ > λ′. Then

(i) ρf+g = λ.
(ii) ρf ·g = λ.

Proof. (i) Fix ε > 0. Since ρf = λ, we have log Tf (r)/log r < λ+ ε for r
large enough. Hence Tf (r) < rλ+ε for r large enough. Similarly, Tg(r) <
rλ
′+ε for r large enough. This yields

Tf+g(r) ≤ Tf (r) + Tg(r) +O(1) < rλ+ε + rλ
′+ε +O(1).
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This implies that log Tf+g(r)/log r < λ+2ε for r large enough. Hence ρf+g ≤
λ+ 2ε for each ε > 0, i.e.,

(2.1) ρf+g ≤ λ.
Take 0 < ε < 1

2(λ − λ′). Since lim supr→∞ log Tf (r)/log r = λ, there exists
a sequence {rn} such that limn→∞ log Tf (rn)/log rn = λ. Hence there exists
n0 such that log Tf (rn)/log rn > λ− ε for all n > n0, and so Tf (rn) > rλ−εn

for all n > n0. On the other hand, we have

Tf (r)− Tg(r) +O(1) < Tf+g(r).

Hence Tf (rn)−Tg(rn) < Tf+g(r) +O(1), i.e. rλ−εn − rλ′+εn < Tf+g(r) +O(1).
This yields log Tf+g(rn)/log rn ≥ λ− ε for all n > n0. We get

lim sup
n→∞

log Tf+g(rn)
log rn

≥ λ− ε.

Hence ρf+g ≥ λ− ε for all ε > 0, i.e,

(2.2) ρf+g ≥ λ.
Combining (2.1) with (2.2) proves the assertion.

(ii) By the same argument, we also get ρf ·g = λ.

Lemma 2.3. Let f : Cn → P1(C) be a nonconstant meromorphic func-
tion of finite order. Then TDf

(r) ≤ 2Tf (r) + O(log rTf (r)), and hence
ρDf
≤ ρf .

Proof. We show that

(2.3) mDf
(r,∞) ≤ mf (r,∞) +O(log rTf (r)).

Indeed, we have
mDf

≤ mDf/f (r,∞) +mf (r,∞).

On the other hand,

Df

f
=
∑
zjfzj

f
=
∑

zj ·
fzj

f
.

Hence

mDf/f (r,∞) ≤
n∑
j=1

(mzj (r,∞) +mfzj /f
(r,∞)) +O(1)

≤ O(log rTf (r)) (by Lemma 2.1).

We now show that

(2.4) NDf
(r,∞) ≤ 2Nf (r,∞).

Indeed, since f = g/h (g, h are holomorphic on Cn),

Df =
hDg − gDh

h2
.



Meromorphic functions with maximal defect sum 119

This yields

NDf
(r,∞) ≤ Nh2(r, 0) = 2Nh(r, 0) ≤ 2Nf (r,∞).

From (2.3) and (2.4) we get

TDf
(r) = mDf

(r,∞) +NDf
(r,∞)

≤ mf (r,∞)+2Nf (r,∞)+O(log rTf (r))≤ 2Tf (r)+O(log rTf (r)).

Lemma 2.4. Let f, g : Cn → P1(C) be nonconstant meromorphic func-
tions of finite order. Then one of the following two assertions holds:

(i) ρDf
= ρf .

(ii) ρD1/f
= ρ1/f .

Proof. By Lemma 2.3, we have ρDf
≤ ρf . If ρDf

= ρf , then the assertion
is proved.

Assume that ρDf
< ρf . Put f1 = 1/f. Then Df1 = −Df/f

2. On the
other hand, we have

ρf2 = ρf and hence ρ1/f2 = ρf

and
ρ−Df

= ρDf
< ρf .

By Lemma 2.2, we have ρ−Df/f2 = ρf = ρ1/f . Hence ρDf1
= ρf1 .

Lemma 2.5. The following mappings do not change the defect sum:

α : f 7→ 1/f and βa : f 7→ f + a, ∀a ∈ C.

Lemma 2.6 ([H]). Let a1, . . . , aq be q distinct points in C. Define

F (z) =
q∑
j=1

1
z − aj

and δ =
1
3

min
j<k
|aj − ak|.

Then

log+ |F (z)| ≥
q∑
j=1

log+ 1
|z − aj |

− q log+ 3q
δ
− log 3.

Lemma 2.7 ([JY]). Let f : Cn → P1(C) be a nonconstant meromor-
phic function and a1, . . . , aq be distinct points in C. Then

∑q
j=1mf (r, aj) ≤

mDf
(r, 0).

Lemma 2.8. Let f : Cn → P1(C) be a nonconstant meromorphic func-
tion such that δ(∞, f) = 0. Then∑

a∈C

δ(a, f) =
∑
a∈C

δ(a, f) ≤ 2δ(0, Df ).
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Proof. By Lemma 2.7, for each {aj}qj=1 ⊂ C, we have
q∑
j=1

mf (r, aj) ≤ mDf
(r, 0).

By Lemma 2.3, we have TDf
(r) ≤ 2Tf (r) +O(log rTf (r)). This yields

q∑
j=1

mf (r, aj)
Tf (r) +O(log rTf (r))

≤ 2 ·
mDf

(r, 0)
TDf

(r)
.

Hence
∑q

j=1 δ(aj , f) ≤ 2δ(0, Df ), i.e.
∑

a∈C δ(aj , f) ≤ 2δ(0, Df ). Thus,∑
a∈C

δ(aj , f) ≤ 2δ(0, Df ) (as δ(∞, f) = 0).

By the same argument as in Lemma 2.2, we have the following

Lemma 2.9. Let f, g : Cn → P1(C) be nonconstant meromorphic func-
tions of finite order satisfying ρf = λ and Tg(r) = o(Tf (r)). Then

(i) ρf+g = λ.
(ii) ρf.g = λ.

Lemma 2.10. Let f, h : Cn → P1(C) be nonconstant meromorphic func-
tions satisfying δ(∞, f) = 0 and Th(r) = o(Tf (r)). Put g = f + h. Then
δ(∞, g) = 0.

Proof. Since Th(r) = o(Tf (r)), it follows that

mg(r,∞) = mf (r,∞) + o(Tf (r)),
Tg(r) = Tf (r) + o(Tf (r)).

Hence

δ(∞, g) = lim inf
r→∞

mg(r,∞)
Tg(r)

= lim inf
r→∞

mf (r,∞) + o(Tf (r))
Tf (r) + o(Tf (r))

= lim inf
r→∞

mf (r,∞)
Tf (r)

= δ(∞, f) = 0.

Lemma 2.11 ([No]). Let g : Cn → P1(C) be a nonconstant meromorphic
function such that ρg = λ <∞. Then

(i) For each a1, a2 ∈ P1(C), we have

lim sup
r→∞

Ng(r, a1) +Ng(r, a2)
Tg(r)

≥ k(λ) :=
2Γ 4(3/4)|sinλπ|

π2λ+ Γ 4(3/4)|sinλπ|
.

(ii) If a1, a2 ∈ P1(C) are such that δ(a1, g) = δ(a2, g) = 1, then λ ∈ Z+

and λ equals the lower order of g.
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Lemma 2.12. Let f : Cn→ P1(C) be a nonconstant meromorphic function
of finite order. Define g = fm, where m ∈ Z+. Then Tg(r) = mTf (r), and
hence ρg = ρf .

Proof. It is easy to see that

Ng(r,∞) = Nfm(r,∞) = mNf (r,∞),

mg(r,∞) =
�

Sn(r)

log+ |fm(z)|σn(z)

= m
�

Sn(r)

log+ |f(z)|σn(z) = m ·mf (r,∞).

Hence Tg(r) = Ng(r,∞) +mg(r,∞) = mTf (r).

Lemma 2.13. Let f : Cn→P1(C) be a nonconstant meromorphic function.
Define g = fm, where m ∈ Z+. Then

TDg(r) ≤ m+ 1
m

Tg(r) +O(log rTf (r)).

Proof. By the same argument as in Lemma 2.3, we get

mDg(r,∞) ≤ mg(r,∞) +O(log rTg(r)).

We show that

(2.5) NDg(r,∞) ≤ m+ 1
m

Ng(r,∞).

Indeed, assume that f = f0/f1. Then g = fm0 /f
m
1 and

Dg = m ·
fm−1
0 (f1Df0 − f0Df1)

fm+1
1

.

Hence, every pole of Dg is a zero of f1 and also a pole of g. This implies

the multiplicity of pole of Dg

the multiplicity of pole of g
≤ m+ 1

m
.

Thus, we have (2.5).

Lemma 2.14. Let f : Cn → P1(C) be a nonconstant meromorphic func-
tion of finite order. Then there exists a meromorphic function f1 : Cn →
P1(C) of finite order such that∑

a∈C

δ(a, f1) =
∑
a∈C

δ(a, f) and
{
ρf1 = ρDf1

,

δ(∞, f1) = 0.

Proof. Consider two cases.

Case 1: δ(∞, f) = 0. If ρf = ρDf
, then the assertion is proved. If

ρf 6= ρDf
, then we choose a ∈ C such that δ(a, f) = 0. Hence ρf−a 6=
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ρD(f−a). By Lemma 2.4, we have ρ 1
f−a

= ρD 1
f−a

. Put f1 = 1
f−a . Then

ρf1 = ρDf1
and δ(∞, f1) = δ(a, f) = 0.

Case 2: δ(∞, f) 6= 0. Choose a ∈ C such that δ(a, f) = 0. Replacing f
by 1

f−a , we return to Case 1. Since the transformations in the proof do not
change the defect sum, Lemma 2.14 is proved.

3. Proofs of theorems

3.1. Proof of Theorem 1.1. (i) It suffices to prove the case m0 = 2.
In fact, we have

mg(r, a) =


�

|z|=r

log+ |g(z)| dc log |z|2 if a =∞

�

|z|=r

log+ 1
|g(z)− a|

dc log |z|2 if a 6=∞

=


1
2

�

|z|=r

log+ |f(z2)| dc log |z2|2 if a =∞

1
2

�

|z|=r

log+ 1
|f(z2)− a|

dc log |z2|2 if a 6=∞

=
1
2
mf (r2, a).

On the other hand, since ng(r, a) = 2nf (r2, a), we get

Ng(r, a) =
r�

1

ng(t, a)
t

dt =
r�

1

nf (t2, a)
t2

dt2 =
r2�

1

nf (t, a)
t

dt = Nf (r2, a).

Hence

δ(a, g) = lim inf
r→∞

mg(r, a)
mg(r, a) +Ng(r, a)

= lim inf
r→∞

1

1 + Ng(r,a)
mg(r,a)

= lim inf
r→∞

1

1 + 2Nf (r2,a)

mf (r2,a)

=
1

1 + 2
(

1
δ(a,f) − 1

) =
δ(a, f)

2− δ(a, f)
≤ δ(a, f).

Equality holds if and only if δ(a, f) = 0 or δ(a, f) = 1. Hence
∑

a∈C δ(a, g) ≤∑
a∈C δ(a, f) ≤ 2. Equality holds if and only if{∑

a∈C δ(a, f) = 2,
∀a : δ(a, f) = 0 or δ(a, f) = 1.

By Lemma 2.11, the assertion is proved.
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(ii) Suppose the contrary. By Lemma 2.7, for each {aj}qj=1 ⊂ C, we get

q∑
j=1

mhm(r, aj) ≤ mDhm
(r, 0).

By using Lemma 2.13, we get TDhm
(r) ≤ m+1

m Thm(r). Hence

q∑
j=1

mhm(r, ai)
Thm(r)

≤ m+ 1
m

·
mDhm

(r, 0)
TDhm

(r)

⇒
q∑
j=1

δ(aj , hm) ≤ m+ 1
m

· δ(0, Dhm) ≤ m+ 1
m

⇒
∑
a∈C

δ(a, hm) ≤ m+ 1
m

⇒
∑
a∈C

δ(a, hm) ≤ m+ 1
m

+ δ(∞, hm).

Thus, if δ(∞, hm) < 1, then there is m1 large enough such that∑
a∈C

δ(a, hm) ≤ m+ 1
m

+ δ(∞, hm) < 2, ∀m ≥ m1.

This is a contradiction. Hence δ(∞, hm) = 1. This implies that δ(∞, f) =
δ(∞, hm) = 1.

By replacing f by 1/f and by repeating the above argument, we have
δ(∞, 1/f) = 1, i.e. δ(0, f) = 1, and hence δ(∞, f) = δ(0, f) = 1. This
contradicts Lemma 2.11.

3.2. Proof of Theorem 1.2. By Lemma 2.14, we only need to consider
meromorphic functions f : Cn → P1 satisfying δ(∞, f) = 0 and ρf = ρDf

.

Since δ(∞, f) = 0 and by Lemma 2.8, we have

2 =
∑
a∈C

δ(a, f) ≤ 2δ(0, Df ) = 2− 2 lim sup
NDf

(r, 0)
TDf

(r)
.

Hence lim supNDf
(r, 0)/TDf

(r) = 0.
Suppose that h ∈ A. Put g = f + h. Then Dg = Df + Dh. By Lemmas

2.9 and 2.10, we have ρg = ρDg = λ and δ(∞, g) = 0. Again by Lemma 2.8,∑
a∈C

δ(a, g) ≤ 2δ(0, Dg) = 2− 2 lim sup
NDg(r, 0)
TDg(r, 0)

.
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We have

NDg(r, 0) = NDf+Dh
(r, 0) ≥ NDf/Dh

(r,−1)−NDh
(r,∞)

≥ NDf/Dh
(r,−1)−O(TDf

(r)).

On the other hand, since TDh
(r) = o

(
TDf

(r)
)
, we get

TDg(r) = TDf
(r) + o(TDf

(r)),

TDf/Dh
(r) = TDf

(r) + o(TDf
(r)).

This yields TDg(r) = TDf/Dh
(r) + o(TDf

(r)). Put f1 = Df/Dh. Then

lim sup
NDg(r, 0)
TDg(r, 0)

≥ lim sup
Nf1(r,−1) + o(TDf

(r))
Tf1(r) + o(TDf

(r))
(∗)

= lim sup
Nf1(r,−1)
Tf1(r)

.

We see that

Nf1(r, 0) ≤ NDf
(r, 0) +NDh

(r,∞) ≤ NDf
(r, 0) + o(TDf

(r)),

Tf1(r) = TDf
(r) + o(TDf

(r)).

Hence

lim sup
Nf1(r, 0)
Tf1(r)

≤ lim sup
NDf

(r, 0) + o(TDf
(r))

TDf
(r) + o(TDf

(r))

= lim sup
NDf

(r, 0)
TDf

(r)
= 0.

Thus, we have

lim sup
Nf1(r,−1)
Tf1(r)

= lim sup
Nf1(r,−1)
Tf1(r)

+ lim sup
Nf1(r, 0)
Tf1(r)

≥ lim sup
Nf1(r,−1) +Nf1(r, 0)

Tf1(r)
≥ k(λ)

(by Lemma 2.9 we have ρf1 = λ). Combining this with (∗) we obtain
lim supNDg(r, 0)/TDg(r) ≥ k(λ). Since λ /∈ Z, this implies that

k(λ) =
2Γ 4(3/4)|sinλπ|

π2λ+ Γ 4(3/4)|sinλπ|
> 0.

Hence ∑
a∈C

δ(a, g) ≤ 2− 2 lim sup
NDg(r, 0)
TDg(r)

≤ 2− 2k(λ) < 2.
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