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Uniqueness and weighted sharing of meromorphic functions

by Pulak Sahoo (Silda)

Abstract. We study the uniqueness of meromorphic functions using nonlinear dif-
ferential polynomials and the weighted value sharing method. Though the main concern
of the paper is to improve a recent result of L. Liu [Comput. Math. Appl. 56 (2008),
3236–3245], as a consequence of the main result we also improve and generalize some
former results of T. Zhang and W. Lu [Comput. Math. Appl. 55 (2008), 2981–2992],
A. Banerjee [Int. J. Pure Appl. Math. 48 (2008), 41–56] and a recent result of the present
author [Mat. Vesnik 62 (2010), 169–182].

1. Introduction, definitions and results. Let f and g be two non-
constant meromorphic functions defined in the open complex plane C. For
a ∈ C∪{∞} we say that f and g share the value a CM (counting multiplici-
ties) if f−a and g−a have the same set of zeros with the same multiplicities,
and we say that f and g share the value a IM (ignoring multiplicities) if we
do not consider the multiplicities.

It will be convenient to let E denote any set of positive real numbers
of finite linear measure, not necessarily the same at each occurrence. For a
non-constant meromorphic function h, we denote by T (r, h) the Nevanlinna
characteristic of h and by S(r, h) any quantity satisfying S(r, h) = o{T (r, h)}
(r → ∞, r 6∈ E). We denote by T (r) the maximum of T (r, f) and T (r, g).
The symbol S(r) denotes any quantity satisfying S(r) = o{T (r)} (r → ∞,
r 6∈ E).

Throughout this paper, we need the following definition:

Θ(a, f) = 1− lim sup
r→∞

N(r, a; f)
T (r, f)

,

where a is a value in the extended complex plane.
In 1959, Hayman [7] proved the following theorem.
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Theorem A. Let f be a transcendental meromorphic function and n
(≥ 3) be an integer. Then fnf ′ = 1 has infinitely many solutions.

To establish the corresponding uniqueness theorem, Fang and Hua [6]
proved the following theorem.

Theorem B. Let f(z) and g(z) be two non-constant entire functions,
n ≥ 6 be an integer. If fnf ′ and gng′ share 1 CM, then either f(z) = c1e

cz,
g(z) = c2e

−cz, where c1, c2 and c are three constants satisfying (c1c2)n+1c2 =
−1, or f(z) ≡ tg(z) for a constant t such that tn+1 = 1.

In 1997 Yang and Hua [16] generalized the above result and proved the
following theorem.

Theorem C. Let f(z) and g(z) be two non-constant meromorphic func-
tions, n ≥ 11 an integer and a ∈ C−{0}. If fnf ′ and gng′ share the value a
CM, then either f(z) = c1e

cz, g(z) = c2e
−cz, where c1, c2 and c are three

constants satisfying (c1c2)n+1c2 = −a2, or f(z) ≡ tg(z) for some (n+ 1)-th
root of unity t.

A considerable amount of research work has been devoted to the value
sharing of the particular type of differential polynomial as in Theorem C
(see [2], [11], [13]). In the meantime Fang [5] investigated the uniqueness of
entire functions corresponding to more general differential polynomials and
obtained the following results.

Theorem D. Let f(z) and g(z) be two non-constant entire functions,
and let n, k be two positive integers with n > 2k + 4. If [fn](k) and [gn](k)

share 1 CM, then either f(z) = c1e
cz, g(z) = c2e

−cz, where c1, c2 and c
are three constants satisfying (−1)k(c1c2)n(nc)2k = 1, or f(z) ≡ tg(z) for a
constant t such that tn = 1.

Theorem E. Let f(z) and g(z) be two non-constant entire functions,
and let n, k be two positive integers with n ≥ 2k + 8. If [fn(f − 1)](k) and
[gn(g − 1)](k) share 1 CM, then f(z) ≡ g(z).

Recently Bhoosnurmath and Dyavanal [4] extended Theorem D to mero-
morphic functions and proved the following.

Theorem F. Let f(z) and g(z) be two non-constant meromorphic func-
tions, and let n, k be two positive integers with n > 3k + 8. If [fn](k) and
[gn](k) share 1 CM, then the conclusion of Theorem D holds.

A natural question arises: Is it possible to relax in any way the nature
of sharing the value 1 in the above results?

It is worth mentioning that some investigations in this area have already
been carried out by Zhang and Lü [19]. To state the result we require the
following notion known as weighted sharing of values, introduced by I. Lahiri



Uniqueness and weighted sharing 129

[10, 11], which measures how close a shared value is to being shared CM or
to being shared IM.

Definition 1.1. Let k be a non-negative integer or infinity. For a ∈
C∪{∞} we denote by Ek(a; f) the set of all a-points of f where an a-point
of multiplicity m is counted m times if m ≤ k and k + 1 times if m > k. If
Ek(a; f) = Ek(a; g), we say that f , g share the value a with weight k.

The definition implies that if f , g share a value a with weight k, then z0
is an a-point of f with multiplicity m (≤ k) if and only if it is an a-point of
g with multiplicity m (≤ k), and z0 is an a-point of f with multiplicity m
(> k) if and only if it is an a-point of g with multiplicity n (> k), where m
is not necessarily equal to n.

We write f , g share (a, k) to mean that f , g share the value a with
weight k. Clearly if f , g share (a, k) then f , g share (a, p) for any integer p,
0 ≤ p < k. Also we note that f , g share a value a IM or CM if and only if
f , g share (a, 0) and (a,∞) respectively.

Zhang and Lü [19] proved the following theorem.

Theorem G. Let f(z) and g(z) be two non-constant transcendental
meromorphic functions, and let n (≥ 1), k (≥ 1), l (≥ 0) be three inte-
gers. Suppose that [fn](k) and [gn](k) share (1, l). If l ≥ 2 and n > 3k + 8,
or l = 1 and n > 5k + 11, or l = 0 and n > 9k + 14, then the conclusion of
Theorem D holds.

Recently Banerjee [3] improved the above result of Zhang–Lü [19] by
reducing the lower bound of n. He proved the following theorem.

Theorem H. Let f(z) and g(z) be two transcendental meromorphic
functions and n (≥ 1), k (≥ 1), l (≥ 0) be three integers. Suppose that
[fn](k) and [gn](k) share (b, l) for a non-zero constant b. If l ≥ 2 and n >
3k + 8, or l = 1 and n > 4k + 9, or l = 0 and n > 9k + 14, then either
f(z) = c1e

cz, g(z) = c2e
−cz, where c1, c2 and c are three constants satisfying

(−1)k(c1c2)n(nc)2k = b2, or f(z) ≡ tg(z) for some nth root of unity t.

Regarding the above theorems it is natural to ask the following questions.

Question 1.2. What can be said about the relation between two non-const-
ant meromorphic functions f and g if {fn(µfm+λ)}(k) and {gn(µgm+λ)}(k)
share (1, l) where λ and µ are two constants such that |λ|+ |µ| 6= 0?

Question 1.3. What can be said about the relation between two non-const-
ant meromorphic functions f and g if {fn(f − 1)m}(k) and {gn(g− 1)m}(k)
share (1, l)?

Regarding the above-mentioned questions, most recently Liu [12] and
the present author [14] proved the following theorems respectively. For a
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positive integer m and a number µ, let m∗ = χµm, where χµ = 0 if µ = 0
and χµ = 1 if µ 6= 0.

Theorem I ([12]). Let f(z) and g(z) be two non-constant meromorphic
functions, let n, m and k be three positive integers, and let λ, µ be two
constants such that |λ|+ |µ| 6= 0. Let [fn(µfm + λ)](k) and [gn(µgm + λ)](k)

share (1, l), and one of the following conditions holds:

(a) l ≥ 2 and n > 3m∗ + 3k + 8;
(b) l = 1 and n > 4m∗ + 5k + 10;
(c) l = 0 and n > 6m∗ + 9k + 14.

Then

(i) when λµ 6= 0, if m ≥ 2 and δ(∞, f) > 3/(m + n), or m = 1 and
Θ(∞, f) > 3/(n+ 1), then f(z) ≡ g(z);

(ii) when λµ = 0, if f(z) 6=∞ and g(z) 6=∞, then either f(z) ≡ tg(z),
where t is a constant satisfying tn+m∗

= 1, or f(z) = c1e
cz, g(z) =

c2e
−cz, where c1, c2 and c are three constants satisfying

(−1)kλ2(c1c2)n+m∗
[(n+m∗)c]2k = 1

or
(−1)kµ2(c1c2)n+m∗

[(n+m∗)c]2k = 1.

Theorem J ([14]). Let f(z) and g(z) be two transcendental meromor-
phic functions, and let n (≥ 1), k(≥ 1) and m (≥ 0) be three integers. Let
[fn(f − 1)m](k) and [gn(g − 1)m](k) share (1, 0). Then one of the following
holds:

(i) when m = 0, if f(z) 6= ∞, g(z) 6= ∞ and n > 9k + 14, then either
f(z) = c1e

cz, g(z) = c2e
−cz, where c1, c2 and c are three constants

satisfying (−1)k(c1c2)n(nc)2k = 1, or f ≡ tg for a constant t such
that tn = 1;

(ii) when m = 1, n > 9k + 20 and Θ(∞, f) > 2/n, then either

[fn(f − 1)m](k)[gn(g − 1)m](k) ≡ 1,

or f ≡ g;
(iii) when m ≥ 2 and n > 9k + 4m+ 16, then either

[fn(f − 1)m](k)[gn(g − 1)m](k) ≡ 1,

or f ≡ g, or f and g satisfy the algebraic equation R(f, g) = 0,
where R(x, y) = xn(x− 1)m − yn(y − 1)m.

The possibility [fn(f−1)m](k)[gn(g−1)m](k) ≡ 1 does not arise for k = 1.

In the paper, we will prove the following theorem which will not only
improve Theorem I by reducing the lower bound of n, but also improve and
supplement Theorems G, H and J. This is the main result of the paper.
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Theorem 1.4. Let f(z) and g(z) be two non-constant transcendental
meromorphic functions, and let n (≥ 1), k (≥ 1), m (≥ 1) and l (≥ 0) be
four integers. Let P (z) = amz

m + · · ·+ a1z+ a0, where a0 ( 6= 0), a1, . . . , am
(6= 0) are complex constants. Let [fnP (f)](k) and [gnP (g)](k) share (1, l) and
one of the following conditions hold:

(a) l ≥ 2 and n > 3k +m+ 8;
(b) l = 1 and n > 4k + 3m/2 + 9;
(c) l = 0 and n > 9k + 4m+ 14.

Then either [fnP (f)](k)[gnP (g)](k) ≡ 1, or f(z) ≡ tg(z) for a constant t such
that td = 1, where d = gcd{n+m, . . . , n+m− i, . . . , n+ 1, n}, am−i 6= 0 for
some i = 0, 1, . . . ,m, or f and g satisfy the algebraic equation R(f, g) = 0,
where R(x, y) = xm(amxm + · · ·+ a1x+ a0)− ym(amym + · · ·+ a1y + a0).

The possibility [fnP (f)](k)[gnP (g)](k) ≡ 1 does not occur for k = 1.

Corollary 1.5. Under the same condition of Theorem 1.4, we set
P (z) = µzm + λ, where λ and µ are two constants such that |λ| + |µ| 6= 0.
If

(a) l ≥ 2 and n > 3k +m∗ + 8,
(b) l = 1 and n > 4k + 3m∗/2 + 9, or
(c) l = 0 and n > 9k + 4m∗ + 14,

then the following statements are valid:

(i) when λµ 6= 0 and Θ(∞, f) > 2/(n+m− 1), then either

[fn(µfm + λ)](k)[gn(µgm + λ)](k) ≡ 1

or f(z) ≡ g(z) or f(z) ≡ −g(z);
(ii) when λµ = 0, if f(z) 6=∞ and g(z) 6=∞, then either f(z) ≡ tg(z),

where t is a constant satisfying tn+m∗
= 1, or f(z) = c1e

cz, g(z) =
c2e
−cz, where c1, c2 and c are three constants satisfying

(−1)kλ2(c1c2)n+m∗
[(n+m∗)c]2k = 1

or
(−1)kµ2(c1c2)n+m∗

[(n+m∗)c]2k = 1.

The possibility [fn(µfm + λ)](k)[gn(µgm + λ)](k) ≡ 1 does not arise for
k = 1 and the possibility f(z) ≡ −g(z) may arise only when both m and n
are even.

Corollary 1.6. Under the same condition of Theorem 1.4, if P (z) =
(z − 1)m (m ≥ 0), then the following statements are valid:

(i) when m = 0, if f(z) 6=∞, g(z) 6=∞, and either l ≥ 2, n > 3k+8, or
l = 1, n > 4k + 9, or l = 0, n > 9k + 14, then either f(z) = c1e

cz,
g(z) = c2e

−cz, where c1, c2 and c are three constants satisfying
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(−1)k(c1c2)n(nc)2k = 1, or f(z) ≡ tg(z) for a constant t such that
tn = 1;

(ii) when m = 1 and Θ(∞, f) > 2/n, then either

[fn(f − 1)m](k)[gn(g − 1)m](k) ≡ 1

or f(z) ≡ g(z) provided one of l ≥ 2, n > 3k + 9 or l = 1, n >
4k + 21/2 or l = 0, n > 9k + 18 holds;

(iii) when m ≥ 2 and either l ≥ 2, n > 3k + m + 8 or l = 1, n >
4k + 3m/2 + 9 or l = 0, n > 9k + 4m+ 14, then either

[fn(f − 1)m](k)[gn(g − 1)m](k) ≡ 1,

or f(z) ≡ tg(z) for a constant t such that td = 1, where d =
gcd{n + m, . . . , n + m − i, . . . , n + 1, n}, or f(z) and g(z) satisfy
the algebraic equation R(f, g) = 0, where R(x, y) = xn(x − 1)m −
yn(y − 1)m.

The possibility [fn(f−1)m](k)[gn(g−1)m](k) ≡ 1 does not arise for k = 1.

Remark 1.7. Corollary 1.6 is an improvement of Theorem G for l = 1
and m = 0.

Remark 1.8. Corollary 1.6 improves and supplements Theorem H.

Remark 1.9. Corollary 1.5 is an improvement of Theorem I.

Remark 1.10. Corollary 1.6 improves and supplements Theorem J.

Though the standard definitions and notations of value distribution the-
ory are available in [8], we explain some definitions and notations which are
used in the paper.

Definition 1.11 ([9]). For b ∈ C∪{∞} we denote by N(r, b; f | =1) the
counting function of simple b-points of f . For a positive integer p we denote
by N(r, b; f | ≤p) the counting function of those b-points of f (counted with
multiplicities) whose multiplicities are not greater than p. By N(r, b; f | ≤p)
we denote the corresponding reduced counting function. In an analogous
manner we define N(r, b; f | ≥p) and N(r, b; f | ≥p).

Definition 1.12 ([11]). Let k be a positive integer or infinity. We denote
by Nk(r, b; f) the counting function of b-points of f , where a b-point of
multiplicity m is counted m times if m ≤ k and k times if m > k. Then

Nk(r, b; f) = N(r, b; f) +N(r, b; f | ≥2) + · · ·+N(r, b; f | ≥k).

Clearly N1(r, b; f) = N(r, b; f).

Definition 1.13 ([3]). Let a, b ∈ C ∪ {∞} and p be a positive integer.
Then we denote by N(r, a; f | ≥p | g = b) (resp. N(r, a; f | ≥p | g 6= b))
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the reduced counting function of those a-points of f with multiplicities ≥ p
which are b-points (resp. not b-points) of g.

Definition 1.14 ([1, 2]). Let f and g be two non-constant meromorphic
functions such that f and g share the value 1 IM. Let z0 be a 1-point of f
with multiplicity p and also a 1-point of g with multiplicity q. We denote by
NL(r, 1; f) the counting function of those 1-points of f and g where p > q,
by N

1)
E (r, 1; f) the counting function of those 1-points of f and g where

p = q = 1, and by N
(2
E (r, 1; f) the counting function of those 1-points of f

and g where p = q ≥ 2; each point in these counting functions is counted
only once. In the same manner we can define NL(r, 1; g), N1)

E (r, 1; g) and
N

(2
E (r, 1; g).

Definition 1.15 ([1, 2]). Let f and g be two non-constant meromorphic
functions such that f and g share the value 1 IM. Let z0 be a 1-point of f
with multiplicity p and also a 1-point of g with multiplicity q. For a positive
integer k, we denote by Nf>k(r, 1; g) the reduced counting function of those
1-points of f and g such that p > q = k. In an analogous way we can define
Ng>k(r, 1; f).

2. Lemmas. In this section we present some lemmas which will be
needed later.

Lemma 2.1 ([15]). Let f be a non-constant meromorphic function and
P (f) = a0 + a1f + a2f

2 + · · ·+ anf
n, where a0, a1, a2, . . . , an are constants

and an 6= 0. Then

T (r, P (f)) = nT (r, f) + S(r, f).

Lemma 2.2 ([8]). Let f be a non-constant meromorphic function, k be
a positive integer, and let c be a non-zero finite complex number. Then

T (r, f) ≤ N(r,∞; f) +N(r, 0; f) +N(r, c; f (k))−N(r, 0; f (k+1)) + S(r, f)

≤ N(r,∞; f) +Nk+1(r, 0; f) +N(r, c; f (k))−N0(r, 0; f (k+1))
+ S(r, f),

where N0(r, 0; f (k+1)) denotes the counting function which only counts those
points such that f (k+1) = 0 but f(f (k) − c) 6= 0.

Lemma 2.3 ([1]). Let f and g be two non-constant meromorphic func-
tions that share (1, 1). Then

2NL(r, 1; f) + 2NL(r, 1; g) +N
(2
E (r, 1; f)−Nf>2(r, 1; g)

≤ N(r, 1; g)−N(r, 1; g).
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Lemma 2.4 ([2]). Let f and g share (1, 1). Then

Nf>2(r, 1; g) ≤ 1
2
N(r, 0; f) +

1
2
N(r,∞; f)− 1

2
N⊕(r, 0; f ′) + S(r, f),

where N⊕(r, 0; f ′) denotes the counting function of those zeros of f ′ which
are not zeros of f(f − 1).

Lemma 2.5 ([2]). Let f and g be two non-constant meromorphic func-
tions that share (1, 0). Then

NL(r, 1; f) + 2NL(r, 1; g) +N
(2
E (r, 1; f)−Nf>1(r, 1; g)−Ng>1(r, 1; f)

≤ N(r, 1; g)−N(r, 1; g).

Lemma 2.6 ([17]). Let f and g be two non-constant meromorphic func-
tions sharing (1, 0). Then

NL(r, 1; f) ≤ N(r, 0; f) +N(r,∞; f) + S(r, f).

Lemma 2.7 ([2]). Let f and g share (1, 0). Then

(i) Nf>1(r, 1; g) ≤ N(r, 0; f) +N(r,∞; f)−N⊕(r, 0; f ′) + S(r, f),
(ii) Ng>1(r, 1; f) ≤ N(r, 0; g) +N(r,∞; g)−N⊕(r, 0; g′) + S(r, g),

where N⊕(r, 0; f ′) and N⊕(r, 0; g′) are defined as in Lemma 2.4.

Lemma 2.8 ([18]). Let f and g be two non-constant meromorphic func-
tions, and let p, k be two positive integers. Then

Np(r, 0; f (k)) ≤ Np+k(r, 0; f) + kN(r,∞; f) + S(r, f).

Lemma 2.9. Let f and g be two non-constant meromorphic functions,
and let n (≥ 1), m (≥ 1), k (≥ 1) be three integers. Let P (z) be defined as
in Theorem 1.4. Then

[fnP (f)](k)[gnP (g)](k) 6≡ 1

for k = 1 and n > 3m+ 2.

Proof. If possible, let

[fnP (f)](k)[gnP (g)](k) ≡ 1

for k = 1. That is,

fn−1Q(f)f ′gn−1Q(g)g′ ≡ 1,(2.1)

where Q(z) = bmz
m + bm−1z

m−1 + · · · + b1z + b0 with bj = (n + j)aj ,
j = 0, 1, . . . ,m. We write Q(z) as

Q(z) = bm(z − d1)l1(z − d2)l2 · · · (z − di)li · · · (z − ds)ls ,
where

∑s
i=1 li = m, 1 ≤ s ≤ m; di 6= dj , i 6= j, 1 ≤ i, j ≤ s; di’s are non-zero

constants and li’s are positive integers, i = 1, . . . , s.
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Let z0 be a zero of f with multiplicity p (≥ 1). Then z0 is a pole of g
with multiplicity q (≥ 1), say. Then from (2.1) we obtain

np− 1 = (n+m)q + 1,

i.e.,

mq + 2 = n(p− q).(2.2)

From (2.2) we get q ≥ (n− 2)/m and so we have

p ≥ 1
n

[
(n+m)(n− 2)

m
+ 2
]

=
n+m− 2

m
.

Let z1 be a zero of Q(f) with multiplicity p, and a zero of f − di of order qi
for i = 1, . . . , s. Then p = liqi for i = 1, . . . , s. Hence z1 is a pole of g with
multiplicity q, say. So from (2.1) we get

qili + qi − 1 = (n+m)q + 1 ≥ n+m+ 1,

i.e.,

qi ≥
n+m+ 2
li + 1

for i = 1, . . . , s. Since a pole of f is either a zero of gn−1Q(g) or a zero of g′,
we have

N(r,∞; f) ≤ N(r, 0; g) +
s∑
i=1

N(r, di; g) +N0(r, 0; g′) + S(r, f) + S(r, g)

≤
(

m

n+m− 2
+

m+ s

n+m+ 2

)
T (r, g) +N0(r, 0; g′)

+ S(r, f) + S(r, g),

where N0(r, 0; g′) denotes the reduced counting function of those zeros of g′

which are not zeros of gQ(g).
Then by the second fundamental theorem of Nevanlinna we get

sT (r, f) ≤ N(r,∞; f) +N(r, 0; f)(2.3)

+
s∑
i=1

N(r, di; f)−N0(r, 0; f ′) + S(r, f)

≤
(

m

n+m− 2
+

m+ s

n+m+ 2

)
{T (r, f) + T (r, g)}

+N0(r, 0; g′)−N0(r, 0; f ′) + S(r, f) + S(r, g).

Similarly

sT (r, g) ≤
(

m

n+m− 2
+

m+ s

n+m+ 2

)
{T (r, f) + T (r, g)}(2.4)

+N0(r, 0; f ′)−N0(r, 0; g′) + S(r, f) + S(r, g).
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Adding (2.3) and (2.4) we obtain(
s− 2m

n+m− 2
− 2(m+ s)
n+m+ 2

)
{T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),

which contradicts the fact that n > 3m+ 2. This proves the lemma.

Lemma 2.10 ([14]). Let f and g be two non-constant meromorphic func-
tions, and let n (≥ 1) and m (≥ 1) be two integers. If n ≥ m+ 3, then

[fn(f − 1)m]′[gn(g − 1)m]′ 6≡ 1.

Lemma 2.11. Let f and g be two non-constant meromorphic functions,
and let n (≥ 1) and m (≥ 1) be two integers. If λµ 6= 0 and n+m > 6, then

[fn(µfm + λ)]′[gn(µgm + λ)]′ 6≡ 1.

Proof. The lemma can be proved similarly to Lemma 8 in [14].

Lemma 2.12 ([3]). Let f , g be two non-constant meromorphic functions
and let k ≥ 1 and n > 3k + 8 be two integers. If [fn](k)[gn](k) ≡ b2, where
b ( 6= 0) is a constant, then f(z) = c1e

cz, g(z) = c2e
−cz, where c1, c2 and c

are three constants satisfying (−1)k(c1c2)n(nc)2k = b2.

Lemma 2.13. Let f , g be two non-constant meromorphic functions, and
let P (z) be defined as in Theorem 1.4. If F = fnP (f) and G = gnP (g), then
S(r, F ) and S(r,G) are replaceable by S(r, f) and S(r, g) respectively.

Proof. By Lemma 2.1, we have

T (r, F ) = T (r, fnP (f)) ≤ (n+m)T (r, f) + S(r, f).

Similarly
T (r,G) ≤ (n+m)T (r, g) + S(r, g).

This proves the lemma.

3. Proof of the main results

Proof of Theorem 1.4. We consider F (z) = fnP (f) and G(z) = gnP (g).
Then F (k) and G(k) share (1, l). Let

H =
(
F (k+2)

F (k+1)
− 2F (k+1)

F (k) − 1

)
−
(
G(k+2)

G(k+1)
− 2G(k+1)

G(k) − 1

)
.(3.1)

We assume that H 6≡ 0. Let l ≥ 1. Suppose that z0 be a simple 1-point
of F (k). Then z0 is a simple 1-point of G(k). So by a simple computation on
local expansions we see that z0 is a zero of H. Thus

N(r, 1;F (k) | =1) ≤ N(r, 0;H) ≤ T (r,H) +O(1)(3.2)
≤ N(r,∞;H) + S(r, F ) + S(r,G).

From (3.1) we know that poles of H possibly result from those zeros of
F (k+1) and G(k+1) which are not common 1-points of F (k) and G(k), from



Uniqueness and weighted sharing 137

poles of F and G, and from those common 1-points of F (k) and G(k) such
that each such point has different multiplicity relative to F (k) and G(k).
Thus

(3.3) N(r,∞;H)

≤ N(r,∞;F ) +N(r,∞;G) +N(r, 0;F (k) | ≥2)

+N(r, 0;G(k) | ≥2) +NL(r, 1;F (k)) +NL(r, 1;G(k))

+N⊗(r, 0;F (k+1)) +N⊗(r, 0;G(k+1)),

where N⊗(r, 0;F (k+1)) denotes the reduced counting function of those zeros
of F (k+1) which are not zeros of F (k)(F (k)−1). Now we consider the following
three cases.

Case 3.1. Let l ≥ 2. By (3.2) and (3.3) we obtain

(3.4) N(r, 1;F (k))

≤ N(r, 1;F (k) | =1) +N(r, 1;F (k) | ≥2)

≤ N(r,∞;F ) +N(r,∞;G) +N(r, 0;F (k) | ≥2)

+N(r, 0;G(k) | ≥2) +NL(r, 1;F (k)) +NL(r, 1;G(k))

+N(r, 1;F (k) | ≥2) +N⊗(r, 0;F (k+1))

+N⊗(r, 0;G(k+1)) + S(r, F ) + S(r,G).

From (3.4) and Lemma 2.2 we obtain

(3.5) T (r, F ) + T (r,G)

≤ 2N(r,∞;F ) + 2N(r,∞;G) +Nk+1(r, 0;F )

+Nk+1(r, 0;G) +N(r, 0;F (k) | ≥2) +N(r, 0;G(k) | ≥2)

+NL(r, 1;F (k)) +NL(r, 1;G(k)) +N(r, 1;F (k) | ≥2)

+N(r, 1;G(k)) +N⊗(r, 0;F (k+1)) +N⊗(r, 0;G(k+1))

−N0(r, 0;F (k+1))−N0(r, 0;G(k+1)) + S(r, F ) + S(r,G).

It is clear that

(3.6) Nk+1(r, 0;F ) +N(r, 0;F (k) | ≥2) +N⊗(r, 0;F (k+1))

≤ Nk+1(r, 0;F ) +N(r, 0;F (k) | ≥2 | F = 0)

+N(r, 0;F (k) | ≥2 | F 6= 0) +N⊗(r, 0;F (k+1))

≤ Nk+1(r, 0;F ) +N(r, 0;F | ≥k + 2) +N0(r, 0;F (k+1))

≤ Nk+2(r, 0;F ) +N0(r, 0;F (k+1)).

A similar result holds for G also. Again
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(3.7) N(r, 1;F (k) | ≥2) +NL(r, 1;F (k)) +NL(r, 1;G(k)) +N(r, 1;G(k))

≤ N(r, 1;G(k) | =2) + 2NL(r, 1;F (k)) + 2NL(r, 1;G(k))

+N
(3
E (r, 1;G(k)) +N(r, 1;G(k))

≤ N(r, 1;G(k)) ≤ T (r,G(k)) +O(1)

≤ T (r,G) + kN(r,∞;G) + S(r,G).

So from (3.5)–(3.7) we obtain

T (r, F ) ≤ Nk+2(r, 0;F ) +Nk+2(r, 0;G) + 2N(r,∞;F )
+ (k + 2)N(r,∞;G) + S(r, F ) + S(r,G).

From this and using Lemmas 2.1 and 2.13 we obtain

(n+m)T (r, f) ≤ (3k + 2m+ 8)T (r) + S(r).(3.8)

Similarly

(n+m)T (r, g) ≤ (3k + 2m+ 8)T (r) + S(r).(3.9)

From (3.8) and (3.9) we get

(n− 3k −m− 8)T (r) ≤ S(r),

which is a contradiction as n > 3k +m+ 8.

Case 3.2. Let l = 1. In view of Lemmas 2.3, 2.4, 2.8 and estimates (3.2)
and (3.3) we obtain

(3.10) N(r, 1;F (k)) +N(r, 1;G(k))

≤ N(r, 1;F (k) | =1) +NL(r, 1;F (k)) +NL(r, 1;G(k))

+N
(2
E (r, 1;F (k)) +N(r, 1;G(k))

≤ N(r, 1;F (k) | =1) +N(r, 1;G(k))−NL(r, 1;F (k))

−NL(r, 1;G(k)) +NF (k)>2(r, 1;G(k))

≤ N(r,∞;F ) +N(r,∞;G) +N(r, 0;F (k) | ≥2) +N(r, 0;G(k) | ≥2)

+
1
2
N(r, 0;F (k)) +

1
2
N(r,∞;F (k)) + T (r,G(k)) +N⊗(r, 0;F (k+1))

+N⊗(r, 0;G(k+1)) + S(r, F ) + S(r,G)

≤
(
k

2
+

3
2

)
N(r,∞;F ) + (k + 1)N(r,∞;G) +N(r, 0;F (k) | ≥2)

+N(r, 0;G(k) | ≥2) +
1
2
Nk+1(r, 0;F ) + T (r,G) +N⊗(r, 0;F (k+1))

+N⊗(r, 0;G(k+1)) + S(r, F ) + S(r,G).
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Using (3.6) and (3.10) we deduce from Lemma 2.2 that

T (r, F ) ≤ Nk+2(r, 0;F ) +Nk+2(r, 0;G) +
(
k

2
+

5
2

)
N(r,∞;F )

+ (k + 2)N(r,∞;G) +
1
2
Nk+1(r, 0;F ) + S(r, F ) + S(r,G).

From this and using Lemmas 2.1 and 2.13 we obtain

(n+m)T (r, f) ≤ (4k + 5m/2 + 9)T (r) + S(r).(3.11)

Similarly

(n+m)T (r, g) ≤ (4k + 5m/2 + 9)T (r) + S(r).(3.12)

From (3.11) and (3.12) we get

(n− 4k − 3m/2− 9)T (r) ≤ S(r),

which contradicts our assumption that n > 4k + 3m/2 + 9.

Case 3.3. Let l = 0. In this case (3.2) becomes

N
1)
E (r, 1;F (k)) ≤ N(r, 0;H) ≤ T (r,H) +O(1)(3.13)

≤ N(r,∞;H) + S(r, F ) + S(r,G).

Using Lemmas 2.5–2.8 and estimates (3.3), (3.6) and (3.13) we obtain

(3.14) N(r, 1;F (k)) +N(r, 1;G(k))

≤ N1)
E (r, 1;F (k)) +NL(r, 1;F (k)) +NL(r, 1;G(k))

+N
(2
E (r, 1;F (k)) +N(r, 1;G(k))

≤ N(r,∞;F ) +N(r,∞;G) +N(r, 0;F (k) | ≥2) +N(r, 0;G(k) | ≥2)

+NL(r, 1;F (k)) + T (r,G(k)) +NF (k)>1(r, 1;G(k)) +NG(k)>1(r, 1;F (k))

+N⊗(r, 0;F (k+1)) +N⊗(r, 0;G(k+1)) + S(r, F ) + S(r,G)

≤ (2k + 3)N(r,∞;F ) + (2k + 2)N(r,∞;G) +N(r, 0;F (k) | ≥2)

+N(r, 0;G(k) | ≥2) + 2Nk+1(r, 0;F ) +Nk+1(r, 0;G) + T (r,G)

+N⊗(r, 0;F (k+1)) +N⊗(r, 0;G(k+1)) + S(r, F ) + S(r,G)

≤ (2k + 3)N(r,∞;F ) + (2k + 2)N(r,∞;G) +Nk+1(r, 0;F )

+Nk+2(r, 0;F ) +Nk+2(r, 0;G) + T (r,G) +N0(r, 0;F (k+1))

+N0(r, 0;G(k+1)) + S(r, F ) + S(r,G).
Using Lemma 2.2 we get

T (r, F ) ≤ (2k + 4)N(r,∞;F ) + (2k + 3)N(r,∞;G) + 2Nk+1(r, 0;F )
+Nk+2(r, 0;F ) +Nk+1(r, 0;G)
+Nk+2(r, 0;G) + S(r, F ) + S(r,G).
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In view of Lemmas 2.1 and 2.13 we obtain

(n+m)T (r, f) ≤ (9k + 5m+ 14)T (r) + S(r).(3.15)

Similarly

(n+m)T (r, g) ≤ (9k + 5m+ 14)T (r) + S(r).(3.16)

Combining (3.15) and (3.16) we get

(n− 9k − 4m− 14)T (r) ≤ S(r),

a contradiction since n > 9k + 4m+ 14.

We now assume that H ≡ 0. That is,

F (k+2)

F (k+1)
− 2F (k+1)

F (k) − 1
≡ G(k+2)

G(k+1)
− 2G(k+1)

G(k) − 1
.

Integrating both sides of the above equality twice we get

1
F (k) − 1

≡ BG(k) +A−B
G(k) − 1

,(3.17)

where A (6= 0) and B are constants. From (3.17) it is clear that F (k) and
G(k) share 1 CM and hence F (k) and G(k) share (1, 2). Thus n > 3k+m+8.
Now we consider the following three cases.

Case I. Let B 6= 0 and A = B.
If B = −1, from (3.17) we obtain F (k)G(k) ≡ 1. That is,

[fnP (f)](k)[gnP (g)](k) ≡ 1.(3.18)

Also, by Lemma 2.9, (3.18) does not occur for k = 1.
Let B 6= −1. Then from (3.17) we get

1
F (k)

≡ BG(k)

(1 +B)G(k) − 1
.

This together with Lemma 2.8 gives

N

(
r,

1
1 +B

;G(k)

)
≤ kN(r,∞; f) +Nk+1(r, 0;F ).(3.19)

Using Lemmas 2.2 and 2.13 we deduce from (3.19) that

T (r,G) ≤ N(r,∞;G) +Nk+1(r, 0;G) +N

(
r,

1
1 +B

;G(k)

)
−N0(r, 0;G(k+1)) + S(r,G)

≤ N(r,∞; g) +Nk+1(r, 0;G) + kN(r,∞; f) +Nk+1(r, 0;F )
+S(r, F ) + S(r,G)

≤ (2k +m+ 1)T (r, f) + (k +m+ 2)T (r, g) + S(r, f) + S(r, g).
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Thus by Lemma 2.1 we obtain

(n− 3k −m− 3)T (r, g) ≤ S(r, g),

a contradiction.

Case II. Let B 6= 0 and A 6= B.
If B = −1, from (3.17) we have

F (k) =
A

−G(k) +A+ 1
.

Therefore

N

(
r,∞;

A

−G(k) +A+ 1

)
= N(r,∞; f).

By Lemmas 2.2, 2.13 and using the same argument as in Case I, we arrive
at a contradiction.

If B 6= −1, from (3.17) we have

F (k) −
(

1 +
1
B

)
≡ −A

B2

(
G(k) + (A−B)/B

) .
Therefore

N

(
r, 0;G(k) +

A−B
B

)
= N(r,∞; f).

Again by Lemmas 2.2, 2.13 and proceeding as above we reach a contradic-
tion.

Case III. Now we assume that B = 0. Then (3.17) becomes

(3.20) F (k) =
1
A
G(k) + 1− 1

A
,

i.e.,

(3.21) F =
1
A
G+ ϕ(z),

where ϕ(z) is a polynomial of degree ≤ k. Let ϕ(z) 6≡ 0. Then in view
of Lemmas 2.1, 2.13 and the fact that f is transcendental, by the second
fundamental theorem of Nevanlinna we get

(3.22) (n+m)T (r, f) +O(1) = T (r, F )

≤ N(r,∞;F ) +N(r, 0;F ) +N(r, ϕ(z);F ) + S(r, F )

≤ N(r,∞; f) +N(r, 0;F ) +N(r, 0;G) + S(r, F )
≤ (m+ 2)T (r, f) + (m+ 1)T (r, g) + S(r, f).

It is clear from (3.21) that

T (r, f) = T (r, g) + S(r, f).
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This together with (3.22) gives

(n−m− 3)T (r, f) ≤ S(r, f),

which is impossible. Hence ϕ(z) ≡ 0. From equations (3.20) and (3.21)
together with the fact that F (k) and G(k) share 1 CM it follows that A = 1
and so F ≡ G. That is,

fnP (f) ≡ gnP (g).(3.23)

This gives

(3.24) fn(amfm + am−1f
m−1 + · · ·+ a1f + a0)

= gn(amgm + am−1g
m−1 + · · ·+ a1g + a0).

Let h = f/g. If h is a constant, then by putting f = gh in (3.24) we get

amg
m(hn+m − 1) + am−1g

m−1(hn+m−1 − 1) + · · ·
+ a1g(hn+1 − 1) + a0(hn − 1) = 0,

which implies hd = 1, where d = gcd{n+m, . . . , n+m− i, . . . , n}, am−i 6= 0
for some i = 0, 1, . . . ,m. Thus f ≡ tg for a constant t such that td = 1,
d = gcd{n+m, . . . , n+m− i, . . . , n}, am−i 6= 0 for some i = 0, 1, . . . ,m.

If h is not a constant, then from (3.24) we can say that f and g satisfy
the algebraic equation R(f, g) = 0, where

R(x, y) = xn(amxm + am−1x
m−1 + · · ·+ a1x+ a0)

− yn(amym + am−1y
m−1 + · · ·+ a1y + a0).

This completes the proof of Theorem 1.4.

Proof of Corollary 1.5. By (3.18) we have

[fn(µfm + λ)](k)[gn(µgm + λ)](k) ≡ 1.(3.25)

We consider the following subcases.

Subcase (i). We assume that λ = 0 and µ 6= 0. Since f(z) 6= ∞ and
g(z) 6=∞, by (3.25) and Lemma 2.12 we obtain f(z) = c1e

cz, g(z) = c2e
−cz,

where c1, c2 and c are constants satisfying (−1)kµ2(c1c2)n+m[(n+m)c]2k = 1.
A similar result holds for λ 6= 0 and µ = 0.

Subcase (ii). Let λµ 6= 0. Then by Lemma 2.11 we see that (3.25) does
not arise for m ≥ 1 and k = 1.

Again from (3.23) we have

fn(µfm + λ) ≡ gn(µgm + λ).(3.26)

If λµ = 0, then from |λ| + |µ| 6= 0 we get f(z) = tg(z), where t is a
constant such that tn+m∗

= 1.
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If λµ 6= 0, then we suppose that h = f/g. Let h 6≡ 1 and h 6≡ −1. Then
from (3.26) we obtain

gm = −λ
µ

1− hn

1− hn+m
.

Hence

fm = −λ
µ

1 + h+ · · ·+ hn−1

1 + h+ · · ·+ hn+m−1
hm.

If m ≥ 1, then from the above it follows that

T (r, f) =
n+m− 1

m
T (r, h) + S(r, f).

Since a pole of f with multiplicity p must be a zero of the equation hn+m−1
= 0 with multiplicity mp, by the second fundamental theorem of Nevanlinna
we deduce that

N(r,∞; f) =
1
m

n+m−1∑
j=1

N(r, αj ;h) ≥ n+m− 3
m

T (r, h) + S(r, f),

where αj (6= 1) (j = 1, . . . , n+m− 1) are distinct roots of hn+m− 1 = 0. So

Θ(∞, f) = 1− lim sup
r→∞

N(r,∞; f)
T (r, f)

≤ 2
n+m− 1

,

which contradicts the fact that Θ(∞, f) > 2/(n + m − 1). Thus f ≡ g or
f ≡ −g. Clearly the case f ≡ −g may arise only when both n and m are
even integers.

This proves Corollary 1.5.

Proof of Corollary 1.6. By (3.18) we have

[fn(f − 1)m](k)[gn(g − 1)m](k) ≡ 1.(3.27)

Let m = 0. Since f(z) 6= ∞ and g(z) 6= ∞, by (3.27) and Lemma 2.12 we
obtain f(z) = c1e

cz, g(z) = c2e
−cz, where c1, c2 and c are three constants

satisfying (−1)k(c1c2)n(nc)2k = 1.
Again by Lemma 2.10, (3.27) does not arise for k = 1 and m ≥ 1. By

(3.23),

fn(f − 1)m ≡ gn(g − 1)m.(3.28)

Now we consider the following three subcases.

Subcase (i). Let m = 0. Then from (3.28) we get f ≡ tg for a constant
t such that tn = 1.

Subcase (ii). Let m = 1. Then from (3.28) we obtain

fn(f − 1) ≡ gn(g − 1).(3.29)
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Suppose f 6≡ g. Let h = f/g be a constant. Then from (3.29) it follows
that h 6= 1, hn 6= 1, hn+1 6= 1 and g = (1 − hn)/(1 − hn+1) = constant,
a contradiction. So we suppose that h is not a constant. Since f 6≡ g, we
have h 6≡ 1 and so g = (1− hn)/(1− hn+1) and f = (1− hn)h/(1− hn+1).
Thus it follows that

T (r, f) = nT (r, h) + S(r, f).

By the second fundamental theorem of Nevanlinna

N(r,∞; f) =
n∑
j=1

N(r, αj ;h) ≥ (n− 2)T (r, h) + S(r, f),

where αj (6= 1) (j = 1, . . . , n) are distinct roots of the equation hn+1−1 = 0.
So

Θ(∞, f) = 1− lim sup
r→∞

N(r,∞; f
T (r, f)

≤ 2/n,

which contradicts our assumption that Θ(∞, f) > 2/n. Thus f ≡ g.
Subcase (iii). Suppose that m ≥ 2. Then from (3.28) we get

(3.30) fn[fm + · · ·+ (−1)i mCm−ifm−i + · · ·+ (−1)m]

= gn[gm + · · ·+ (−1)i mCm−igm−i + · · ·+ (−1)m].

Let h = f/g. If h is a constant, then substituting f = gh in (3.30) we obtain

gn+m(hn+m − 1) + · · ·+ (−1)i mCm−ign+m−i(hn+m−i − 1)
+ · · ·+ (−1)mgn(hn − 1) = 0,

which implies hd = 1, where d = gcd{n+m, . . . , n+m−i, . . . , n+1, n}. Thus
f ≡ tg for a constant t such that td = 1, d = gcd{n+m, . . . , n+m− i, . . . ,
n+ 1, n}.

If h is not a constant, from (3.28) we see that f and g satisfy the algebraic
equation R(f, g) = 0, where R(x, y) = xn(x− 1)m − yn(y − 1)m.

This completes the proof of Corollary 1.6.
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