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On totally umbilical submanifolds of Finsler spaces

by Qun He, Wei Yang and Wei Zhao (Shanghai)

Abstract. The notion of a totally umbilical submanifold of a Finsler manifold is
introduced. Some Gauss equations are given and some results on totally umbilical sub-
manifolds of Riemannian manifolds are generalized. Totally umbilical submanifolds of
Randers spaces are studied; a rigidity theorem and an example are given.

1. Introduction. In recent decades, Finsler geometry has been rapidly
developed. The study of the geometry of submanifolds has also made some
progress ([HS1], [HS2], [S], [SST], [ST]). By using the Busemann–Hausdorff
volume form, Z. Shen ([S]) investigated the geometry of Finsler submani-
folds. Avoiding any connections in Finsler geometry, he introduced the no-
tions of mean curvature and normal curvature for Finsler submanifolds.
By using the Holmes–Thompson volume form, i.e., the volume form in-
duced from the projective sphere bundle of the Finsler manifold, Q. He and
Y. B. Shen ([HS1]) introduced the notions of another mean curvature and
the second fundamental form, which coincide with the usual notions in the
Riemannian case.

The usual approach in the geometry of submanifolds is to consider the
induced (resp. intrinsic) connections and to establish some equations re-
lated to the curvatures of submanifolds and the curvatures of the ambient
space. These equations are usually too complicated to use. In this paper,
first of all, we shall establish some straightforward equations and use them
to study totally umbilical submanifolds of Finsler manifolds, which are de-
fined by using the second fundamental form introduced in [HS1]. Secondly,
we shall study submanifolds of Randers spaces, give relations between to-
tally umbilical submanifolds of the Randers space (M̃, α̃ + β̃) and of the
Riemannian manifold (M̃, α̃), and obtain a rigidity theorem for complete
and connected totally umbilical submanifolds of a special Randers space.
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Lastly, an example of a totally umbilical submanifold of a Randers spaces
is given.

2. Finsler volume forms and minimal immersions. Let M be an
n-dimensional smooth manifold and π : TM →M be the natural projection.
A Finsler metric on M is a function F : TM → [0,∞) with the following
properties: (i) F is smooth on TM \ {0}; (ii) F (x, λy) = λF (x, y) for all
λ > 0; (iii) the induced quadratic form g is positive definite, where

(2.1) g := gij(x, y)dxi ⊗ dxj , gij :=
1
2

[F 2]yiyj .

Here and from now on, [F ]yi , [F ]yiyj mean ∂F
∂yi

, ∂2F
∂yi∂yj

, etc., and we shall use
the following convention of index ranges unless otherwise stated:

1 ≤ i, j, . . . ≤ n; n+ 1 ≤ a, b, . . . ≤ m; 1 ≤ α, β, . . . ≤ m (> n).

The projection π : TM → M gives rise to the pull-back bundle π∗TM
and its dual π∗T ∗M . We shall work on TM \{0} and rigidly use only objects
that are invariant under rescaling y 7→ λy (λ > 0), so that one may view
them as objects on the projective sphere bundle SM using homogeneous
coordinates (see also [BCS, p. 29, lines 31–39]).

In π∗T ∗M there is a global section ω = [F ]yidxi, called the Hilbert form,
whose dual is l = li ∂

∂xi
, li = yi/F , called the distinguished field. Set

(2.2) δyi =
1
F

(dyi +N i
jdx

j),
δ

δxj
=

∂

∂xj
−Nk

j

∂

∂yk
.

The volume element dVSM of SM with the Riemannian metric ĝ is

(2.3) dVSM = Ωdτ ∧ dx,
where

Ω := det
(
gij
F

)
, dx = dx1 ∧ · · · ∧ dxn,(2.4)

dτ :=
n∑
i=1

(−1)i−1yidy1 ∧ · · · ∧ d̂yi ∧ · · · ∧ dyn.(2.5)

The volume form of a Finsler n-manifold (M,F ) is defined by ([HS1])

(2.6) dVM := σ(x)dx, σ(x) :=
1

cn−1

�

SxM

Ω dτ,

where cn−1 denotes the volume of the unit Euclidean (n − 1)-sphere Sn−1,
SxM = {[y] | y ∈ TxM}. It is well known that there exists a unique Chern
connection ∇ on π∗TM with ∇ ∂

∂xj
= ωij

∂
∂xi

and ωij = Γ ijkdx
k, satisfying

(2.7)
d(dxi)− dxj ∧ ωij = 0,

dgij − gikωkj − gjkωki = 2Aijkδyk,
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where Aijk = FCijk and Cijk = 1
4 [F 2]yiyjyk are called the Cartan tensors.

The curvature 2-forms of the Chern connection ∇ are

(2.8) dωij − ωkj ∧ ωik = Ωi
j :=

1
2
R i
j kldx

k ∧ dxl + P i
j kldx

k ∧ δyl,

where R i
j kl = −R i

j lk and P i
j kl = P i

k jl are the hh-curvature and the hv-
curvature respectively. The Riemannian curvature tensor and the Landsberg
curvature tensor are defined by

(2.9) R i
j := R i

s jkl
slk, Lijk := −lsP i

s jk,

respectively, and we have

(2.10) Lijk = gilL
l
jk = Ȧijk,

where “·” denotes the covariant derivative along the Hilbert form. There is
another torsion-free Berwald connection b∇ defined by

(2.11) b∇ = ∇+ Ȧ, bΓ ijk = Γ ijk + Ȧijk.

It is obvious that ∇l = b∇l.
Let (M,F ) and (M̃, F̃ ) be Finsler manifolds, and f : M → M̃ be an

immersion. If F (x, y) = F̃ (f(x), df(y)) for all (x, y) ∈ TM \ {0}, then f is
called an isometric immersion. It is clear that

(2.12) gij(x, y) = g̃αβ(x̃, ỹ)fαi f
β
j

for the isometric immersion f : (M,F )→ (M̃, F̃ ), where

(2.13) x̃α = fα(x), ỹα = fαi y
i, fαi =

∂fα

∂xi
.

From (2.7)–(2.11), we have

Lemma 2.1 (see also [HS1]). Let b∇̃ be the pullback Berwald connection
on π∗(f−1TM̃) and h̃ = b∇̃df be the second fundamental form with respect
to the Berwald connection. For any X ∈ C(π∗TM), XH = Xi δ

δxi
denotes

the horizontal part of X. Then

(2.14)
h̃(X,Y ) = b∇̃X(dfY )− df(b∇XY ) = b∇̃XH (dfY )− df(b∇XHY ),

(b∇̃XH g̃)(U,W ) = 2Ã(U,W, h̃(l,X))− 2L̃(U,W, dfX),

for any U,W ∈ C(π∗ ◦ f−1(TM̃)) and X,Y ∈ C(π∗TM).

(2.14)1 can be rewritten as

(2.15) h̃αij = fαij − bΓ kijf
α
k + bΓ̃αβγf

β
i f

γ
j ,

where fαij = ∂2fα

∂xi∂xj
. Set

(2.16)
hα = h̃αijy

iyj = fαijy
iyj − fαk Gk + G̃α, hα = g̃αβh

β,

h :=
hα

F 2

∂

∂x̃α
, h∗ :=

1
F 2

hαdx̃
α,
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where Gk and G̃α are the geodesic coefficients for (M,F ) and (M̃, F̃ ), re-
spectively, and h is the normal curvature. Then we see easily that

(2.17) h̃αij =
1
2

[hα]yiyj , h̃αijy
j =

1
2

[hα]yi .

Lemma 2.2 (see also [HS3, Proposition 3.1]). Let f : (M,F ) → (M̃, F̃ )
be an immersion. Then

(2.18) (∇̃lH ∇̃ldf)(X) = dfR(X)− F̃ 2

F 2
R̃(dfX) + b∇̃XHh,

for any X ∈ C(π∗TM), where R = Rijdx
j ⊗ ∂

∂xi
.

Let Bα
ij := 1

2 g̃
αβ[hβ]yiyj be the second fundamental form as defined in

[HS1]. Then

(2.19)

B(X,Y ) = h̃(X,Y ) + 2Ã(h̃(l,X), dfY )

+ 2Ã(h̃(l, Y ), dfX) + C̃#(dfX, dfY, h),

B(X, l) = h̃(X, l) + Ã(h, dfX),

where C̃# = F 2C̃λβγδ g̃
λα ∂

∂x̃α ⊗ dx̃
β ⊗ dx̃γ ⊗ dx̃δ, C̃λβγδ = ∂2g̃λβ

∂ỹγ∂ỹδ
. The trace

of B is H = (1/n) trg̃ B, which is called the mean curvature vector field in
[HS1]. From Ã = Ãαβγ

∂
∂x̃α ⊗dx̃

β⊗dx̃γ , the Cartan normal curvature operator
Ah : C(π∗TM)→ C(π∗ ◦ f−1(TM̃)) is defined by

(2.20) Ah(X) = Ã(h, dfX) for any X ∈ C(π∗TM).

Let (π∗TM)⊥ be the orthogonal complement of π∗TM in π∗ ◦ f−1(TM̃)
with respect to g̃, and let

V∗ = {ξ ∈ C(f∗T ∗M̃) | ξ(df(X)) = 0, ∀X ∈ C(TM)},
which are both called the normal bundle of f in [S].

We know that h,H,B(X,Y ) ∈ C(π∗TM)⊥ in [HS1]. Then from (2.16)
we have

(2.21) Gk = φkβ(fβijy
iyj + G̃β),

where φkβ = fαl g
lkg̃αβ. Let p⊥ : π∗◦f−1(TM̃)→ (π∗TM)⊥ be the orthogonal

projection with respect to g̃. Then (2.21) and (2.16) show that

(2.22) hβ = p⊥βα (fαijy
iyj + G̃α),

where p⊥βα := δβα − fβi φiα. Set

(2.23) µ =
1

cn−1σ

( �

SxM

hα
F 2

Ω dτ

)
dx̃α.

Then µ ∈ V∗, and it is called the mean curvature form of f . An isometric
immersion f : (M,F )→ (M̃, F̃ ) is called a minimal immersion if any com-
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pact domain of M is a critical point of its volume functional with respect
to any variation vector field.

Lemma 2.3 (see also [HS1, Theorem 2.2]). Let f : (M,F )→ (M̃, F̃ ) be
an isometric immersion. Then f is minimal if and only if µ = 0.

3. Gauss equations and totally umbilical submanifolds. First,
from Lemma 2.1, Lemma 2.2 and (3.8.3)–(3.8.5) in [BCS], we have

(∇̃lH ∇̃ldf)(X) = ∇̃lH [(∇̃ldf)(X)]− (∇̃ldf)(∇̃lHX)

= ∇̃lH [h̃(X, l)]− (∇̃ldf)(∇̃lHX)

= (∇̃lH h̃)(X, l) = (∇̃lHB)(X, l)− (∇̃lHAh)(X),

F̃yα(hαij)yk = − F̃y
α

F
(bP̃ α

β γδf
δ
kf

β
i f

γ
j −

bP l
i jkf

α
l )

=
1
F

(−2 ˙̃Aβγδf δkf
β
i f

γ
j + glsl

sbP l
i jk)

=
1
F

(−2 ˙̃Aβγδf δkf
β
i f

γ
j + 2Ȧijk).

From the formulas above, we have

Theorem 3.1 (Gauss equations). Let f : (M,F ) → (M̃, F̃ ) be an iso-
metric immersion. Then

K(X) = K̃(dfX) + g̃((∇̃lH h̃)(X, l)− b∇̃XHh, dfX)(3.1)

= K̃(dfX) + g̃((∇̃lHB)(X, l)− (∇̃lHAh)(X)− b∇̃XHh, dfX)

for any X ∈ C(π∗TM) satisfying X ⊥ l and ‖X‖ = 1, where h̃ and h are
defined in (2.16) and (2.18) respectively, and

(3.2) L(X,Y, Z) = L̃(dfX, dfY, dfZ) +
1
2
g̃((∇Y v h̃)(X,Z), dfl)

for any X,Y, Z ∈ C(π∗TM), where Y v = Fdxi(Y ) ∂
∂yi

.

From Theorem 3.1 and the fact that b∇̃XHh = (b∇̃XH h̃)(l, l), we deduce
easily

Proposition 3.2. Let f : (M,F )→ (M̃, F̃ ) be an isometric immersion.

(1) If (M̃, F̃ ) has constant flag curvature c, and the second fundamental
form h̃ with respect to the Berwald connection is parallel along the
horizontal directions, then (M,F ) also has the constant flag curva-
ture c.

(2) If (M̃, F̃ ) is a Landsberg manifold, and the second fundamental form
h̃ with respect to the Berwald connection is parallel along the vertical
directions, then (M,F ) is also a Landsberg manifold.
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An isometric immersion f : (M,F )→ (M̃, F̃ ) is called totally umbilical
if there exists a vector field v ∈ C((π ◦ f)∗TM̃) such that

(3.3) B(X,Y ) = g(X,Y )v

for any X,Y ∈ C(π∗TM).

Lemma 3.3. Let f : (M,F )→ (M̃, F̃ ) be an isometric immersion. Then
M is totally umbilical if and only if v = h = H and h∗ is independent of y.

Proof. Necessity: It is obvious that

H =
1
n

trg̃ B = v, h = B(l, l) = v.

So, (3.3) means Bα
ij = (1/F 2)hαgij . On the other hand, from (2.16), (2.17)

and (2.19), we see that

Bα
ijy

j = (h̃αij + 2Ãαβγ h̃
β
ikl

kfγj + 2Ãαβγ h̃
β
kjl

kfγi + C̃αβ γσh
βfγi f

σ
j )yj

= h̃αijy
j + C̃αβγh

βfγi ,

from which we have

[hα]yi = 2g̃αβB
β
ijy

j =
2
F 2

g̃αβh
βgijy

j = 2
1
F
hαFyi .

Hence, [
hα
F 2

]
yi

= F−3(F [hα]yi − 2Fyihα) = 0.

Conversely, if
[
hα
F 2

]
yi

= 0, then

(hα)yi = 2
1
F
hαFyi ,

(hα)yiyj =
2
F

(hαFyiyj + Fyi(hα)yj )−
2
F 2

hαFyiFyj

=
2
F 2

(FFyiyj + FyiFyj )hα =
2
F 2

gijhα.

So Bα
ij = (1/F 2)hαgij .

Similar to the Riemannian case, we have

Proposition 3.4. An isometric immersion f : (M,F ) → (M̃, F̃ ) is
totally umbilical minimal if and only if f is totally geodesic.

Proof. If f is a totally umbilical minimal immersion, then h∗ is indepen-
dent of y and

0 = µα =
1

cn−1σ

( �

SxM

1
F 2

hαΩ dτ

)
=
hα
F 2

,

from which we see that hα = 0, i.e., h = 0 and f is totally geodesic.
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Theorem 3.5. Any totally umbilical submanifold of a Landsberg mani-
fold with Ah = 0 is also a Landsberg manifold.

Proof. From (3.3), (2.20) and Lemma 3.3, we know that B(X,Y ) =
g(X,Y )h, and

C̃#(dfX, dfY, h) = 2Ã(h̃(l, Y ), dfX)

for any X,Y ∈ C(π∗TM). We infer from (2.19) that

h̃(X, l) = B(l,X)−Ah(X) = g(X, l)h,

h̃(X,Y ) = B(X,Y )− 2Ã(h̃(l,X), dfY )

− 2Ã(h̃(l, Y ), dfX)− C̃#(dfX, dfY, h)
= g(X,Y )h,

from which and (3.2) we have

L(X,Y, Z) = L̃(dfX, dfY, dfZ)+ g̃
(

1
2
A(X,Y, Z)h+g(X,Z)h̃(Y, l), dfl

)
= 0

for any X,Y, Z ∈ C(π∗TM).

Theorem 3.6. Let (M,F ) be an n-dimensional totally umbilical sub-
manifold of a locally Minkowski space (M̃, F̃ ) (n ≥ 3). If there exists a
function λ such that Ah(X) = λ(dfX−ω(X)l̃) for any X ∈ C(π∗TM), then
M has scalar flag curvature ‖h‖2 − lH(λ)− λ2.

Proof. From (2.19), for any X∈C(π∗TM) satisfying X ⊥ l and ‖X‖=1,
we have

h̃(X, l) = g(X, l)h− λ(dfX − ω(X)l̃) = −λdfX,
(∇̃lH h̃)(X, l) = −lH(λ)dfX + λ2dfX.

From (3.1), (3.2), (2.16) and (2.19), we obtain

K(X) = λ2 − lH(λ) + 2Ã(h, dfX, h̃(l,X)) + g̃(h, h̃(X,X))

= −λ2 − lH(λ) + g̃(h, h) + 4λÃ(dfX, dfX, h)− C̃#(dfX, dfX, h, h).

From Ah(X) = λ(dfX − ω(X)l̃), we obtain

C̃#(dfX, dfX, h, h) = 4λÃ(dfX, dfX, h) = 4λ2.

Hence,
K(X) = ‖h‖2 − lH(λ)− λ2.

4. Totally umbilical submanifolds in Randers spaces. Let f :
(M,F ) → (M̃, F̃ ) be an isometric immersion into a Randers (n + p)-space
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(M̃, F̃ ) with

F̃ = α̃+ β̃ =
√
ãαβ(x̃)ỹαỹβ + b̃α(x̃)ỹα,

‖β̃‖ =
√
ãαβ b̃αb̃β = b̃ (0 ≤ b̃ < 1).

Clearly, we have

(4.1) F = f∗F̃ = α+ β =
√
aijyiyj + biy

i,

where

(4.2) aij = ãαβf
α
i f

β
j , bi = b̃αf

α
i ,

which means (M,F ) is also a Randers n-space.

Lemma 4.1. Let f : (M,F ) → (M̃, α̃ + β̃) be an isometric immersion
into a Randers (n + p)-space, and let {na} be a local orthonormal frame
of the normal bundle TM⊥ of f with respect to the Riemannian metric α̃.
Denote

(4.3) ña =
√
α

F
[na − β̃(na)l̃].

Then {ña} is a local orthonormal frame of the normal bundle [π∗TM ]⊥ of
f with respect to g̃ỹ for ỹ = df(y) in (M̃, F̃ ).

Proof. Let na = nσa
∂
∂x̃σ and ña = ñσa

∂
∂x̃σ . Then from [BCS], we have

(4.4)

ñαa =
√
α

F
[nαa − β̃(na)l̃α] =

√
F

α
g̃αβ ãσβn

σ
a ,

g̃αβñ
α
af

β
i =

√
F

α
ãαβn

α
af

β
i = 0,

g̃(ña, ñb) = g̃αβñ
α
a ñ

β
b =

F

α
g̃ατ ãτσn

σ
a ãαµn

µ
b

= [nαa − β̃(na)l̃α]ãαβn
β
b = ãαβn

α
an

β
b

= 〈n,n〉α̃ = δab.

Let Gi and G̃α be the geodesic coefficients for (M,F ) and (M̃, F̃ ) with
respect to the Riemannian metrics α and α̃, respectively, and h̄ be the
normal curvature of f with respect to α̃, that is,

h̄α = fαijy
iyj − fαk G

k + G̃α.
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From (2.21), (2.22) and [BCS], we have

G̃α = G̃α + b̃β|γ ỹ
β ỹγ l̃α + (ãαβ − l̃αb̃β)(b̃β|γ − b̃γ|β)α̃ỹγ ,

G
k = fαl a

lkãαβ(fβijy
iyj + G̃β),

h̄α =
∑
a

(fβijy
iyj + G̃β)ãβσnσan

α
a .

Then, from (2.22) and (4.4), we have

(4.5)

hα =
∑
a

(fβijy
iyj + G̃β)g̃βσñσa ñ

α
a

=
∑
a

(fβijy
iyj + G̃β)ãβσnσa [nαa − β̃(na)l̃α]

= h̄α − α2β̃(h̄)l̃α −
∑
a

α(b̃β|γ − b̃γ|β)ỹβnγa[nαa − β̃(na)l̃α],

hα =
F

α

[
h̄α +

∑
a

αnδa(b̃δ|τ − b̃τ |δ)ỹτnβaaαβ
]
.

From the formulas above, we see that

Proposition 4.2. Let f : (M,α + β) → (M̃, α̃ + β̃) be an isometric
immersion into a Randers (n+ p)-space. If β̃ is a closed 1-form, then

(4.6) h =
α2

F 2
[h̄− β̃(h̄)l̃], h∗ =

α

F
h̄∗,

where h̄∗ = (h̄α/α2)dx̃α. Hence (M,α+ β) is a totally geodesic submanifold
of (M̃, α̃+ β̃) iff (M,α) is a totally geodesic submanifold of (M̃, α̃).

Theorem 4.3. Let f : (M,α+β)→ (M̃, α̃+ β̃) be an isometric immer-
sion into a Randers (n+ p)-space with closed 1-form β̃. Then (M,α+ β) is
totally umbilical if and only if either (M,α+β) is a totally geodesic subman-
ifold of (M̃, α̃ + β̃), or β = 0 and (M,α) is a totally umbilical submanifold
of (M̃, α̃).

Proof. From Lemma 3.3 and (4.6), we know that Hα = hα/F
2 is inde-

pendent of y, and

h̄α = αFHα = Hα

(
1
2
α2 +

1
2
F 2 − 1

2
β2

)
, (h̄α)yiyj = Hα(aij + gij − bibj).

Since h̄αij = aαβ
(

1
2 h̄β

)
yiyj

is the second fundamental form with respect to
Riemannian connections, it is independent of y, which implies that

0 = [h̄αij ]yk =
1
2
aαβHβ(2Cijk) = aαβHβCijk.

Thus, either H = 0 or C = 0.
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If H = h = 0, then (M,α + β) is a totally geodesic submanifold of
(M̃, α̃+ β̃).

If C = 0, then M is a Riemannian manifold with F = α, so h̄∗ is in-
dependent of y iff h∗ is independent of y. From Lemma 4.1, we know that
(M,α) is a totally umbilical submanifold of (M̃, α̃) iff (M,F ) is a totally
umbilical submanifold of (M̃, F̃ ).

From Theorem 4.3 and Proposition 4.2, we immediately deduce

Theorem 4.4. Let (V n+1, α̃+ β̃) be a Randers space, where α̃ is a Eu-
clidean metric and β̃ is a closed 1-form. Then any complete and connected
n-dimensional totally umbilical submanifold of (V n+1, α̃+ β̃) must be either
a plane or a Euclidean sphere. The latter case happens only when there exist
a point x̃0 and a function λ(x̃) on V n+1 such that β̃ = λ(x̃)d(‖x̃ − x̃0‖2α̃)
and the sphere is centered at x̃0.

Example 4.5. Let (V n+1, F̃ ) be a Randers manifold with F̃ = α̃ + β̃,
where

α̃ =
√∑

α

(ỹα)2, β̃ =
∑
α

bx̃αdx̃α√∑
α(x̃α)2

where b is a constant and 0 < |b| < 1. Then dβ̃ = 0.
Let

M =
{
x̃ ∈ V n+1

∣∣∣ ∑
α

(x̃α − x̃α0 )2 = r2
}
,

and f : (M,F ) ↪→ (V n+1, F̃ ) be an isometric immersion. It is obvious that∑
α

(fα − x̃α0 )fαi = 0.

Then the unit normal vector with respect to α̃ is n = (1/r)(f − x̃0), and the
unit normal vector with respect to F̃ is ñ =

√
α/F [n− β̃(n)l̃].

Let F = α+ β, where

α =
√∑

α

fαi f
α
j y

iyj , β =
∑
α

fαi
bx̃αyi√∑
α(x̃α)2

.

It is obvious that β = 0 for any x ∈M if and only if x̃0 = 0. It is well known
that (M,α) is a totally umbilical submanifold of (V n+1, α̃) in any case. But
from Theorem 4.3, we see that (M,F ) is a totally umbilical submanifold of
(V n+1, α̃+ β̃) if and only if x̃0 = 0.
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