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A unicity theorem for plurisubharmonic functions

by Nguyen Quang Dieu (Hanoi)

Abstract. We give sufficient conditions for unicity of plurisubharmonic functions in
Cegrell classes.

1. Introduction. Let Ω be an open subset of Cn. An upper semicon-
tinuous function u : Ω → [−∞,∞) is said to be plurisubharmonic if the
restriction of u to each complex line is subharmonic (we allow the function
identically−∞ to be plurisubharmonic). We write PSH(Ω) (resp. PSH−(Ω))
for the cone of plurisubharmonic (resp. negative plurisubharmonic) functions
on Ω. The domain Ω is said to be hyperconvex if there exists a continuous
negative plurisubharmonic exhaustion function for Ω.

Let u, v ∈ PSH−(Ω) be such that limz→∂Ω u(z) = limz→∂Ω v(z) = 0.
In this note, we are aiming at sufficient conditions to ensure that u = v
near the boundary ∂Ω. Before formulating the main result, it is convenient
to recall the following concept. A compact subset K of Ω is said to be
holomorphically convex if for every z ∈ Ω \ K, there exists a holomorphic
function f on Ω such that ‖f‖K < |f(z)|.

We will prove the following.

Theorem A. Let Ω be a bounded hyperconvex domain in Cn. Let K ⊂ Ω
be a compact holomorphically convex subset of Ω. Let u1, u2 ∈ PSH−(Ω) be
such that the following conditions hold:

(a) limz→∂Ω u1(z) = limz→∂Ω u2(z) = 0.
(b) (ddcu1)n ≤ (ddcu2)n on Ω \K and

	
Ω(ddcu2)n <∞.

(c) u1 ≤ u2 on Ω \K.
(d)

	
K(ddcu1)n ≤

	
K(ddcu2)n.

Then u1 = u2 on Ω \K.
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Here (ddc)n is the complex Monge–Ampère operator, which can be de-
fined over the class of locally bounded plurisubharmonic functions (cf. [BT1],
[BT2]). Later on, this operator was extensively studied in [Dem], where
we can find extensions of (ddc)n to certain classes of non-locally bounded
plurisubharmonic functions. In particular, this operator can be well defined
in the class of negative plurisubharmonic functions which are bounded in
a neighborhood of the boundary (e.g., functions like u1, u2 in Theorem A).
See Lemma 3.3 in [Ce]. We refer the reader to [Ce] also for a comprehensive
account on the domain of definition of (ddc)n. Theorem A is inspired by
Theorem 2.4 in [BL], where the authors study a sort of unique continuation
of plurisubharmonic functions.

Theorem A can be used to give a sort of quasi-unicity property for poly-
nomial maps of n complex variables. Before turning to this result, we intro-
duce some notation. Given a polynomial map P := (p1, . . . , pn) : Cn → Cn,
we write Z(P ) for the common zero set of p1, . . . , pn; we also denote by
P(P ;λ) the polynomial polyhedron

{z ∈ Cn : |p1(z)| < λ, . . . , |pn(z)| < λ}.

Corollary B. Let P := (p1, . . . , pn), Q := (q1, . . . , qn) be proper poly-
nomial maps Cn → Cn. Assume that the following conditions are satisfied:

(a)
∏n
j=1 deg pj ≥

∏n
j=1 deg qj .

(b) There exists a > 0 such that P(P ; a) = P(Q; a) =: Ω and Ω is
connected.

(c) There exists ε > 0 such that P(P ; b) ⊂ P(Q; b) for every b ∈ (a−ε, a).

Then for every 1 ≤ j ≤ n there exists 1 ≤ k(j) ≤ n and a constant |λj | = 1
such that pj = λjqk(j).

By considering the two polynomial maps (z1, . . . , zn) and (z2
1 , . . . , z

2
n) we

see that assumption (a) is indispensable.

2. Proofs. Throughout this note, we will write Ω for a bounded hy-
perconvex domain in Cn. Recall that E0(Ω) is the Cegrell class of bounded
functions u ∈ PSH−(Ω) such that

lim
z→∂Ω

u(z) = 0 and
�

Ω

(ddcu)n <∞.

First, we need the following useful fact.

Lemma C. Let K be a compact holomorphically convex subset of Ω. Let
z0 ∈ Ω \K. Then there exist a neighborhood U of z0 and ψ ∈ E0(Ω) ∩ C(Ω)
such that ψ ≥ −1 on Ω, ψ ≡ −1 on a neighborhood of K and ψ is strictly
plurisubharmonic on U.
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Proof. First, we claim that there exists a continuous bounded plurisub-
harmonic function u on Ω such that

sup
z∈K

u < u(z0).

For this, we use the following argument due to Poletsky (see Lemma 4.1
in [Po]). Let ρ be a bounded negative continuous plurisubharmonic exhaus-
tion function for Ω. Choose 0 < ε < ε′ such that

K ∪ {z0} ⊂ {ρ < −ε′} ⊂ {ρ < −ε}.
Since K is holomorphically convex in Ω, we can find a bounded function
v ∈ PSH(Ω) ∩ C(Ω) and a constant α < −1 such that

−α < v|K < −1, v(z0) > −1.

Let β be the maximum of v on {z : ρ(z) = −ε}. Then β > −1. Consequently,
the function

ρ′ := 2
α+ β

ε′ − ε
max{ρ+ ε′, 0} − α

is smaller than v on {ρ < −ε′} and larger than v on {ρ = −ε}. It follows
that the function u equal to max{ρ′, v} on {ρ < −ε} and ρ′ on {ρ ≥ −ε}
is plurisubharmonic on Ω. The claim now follows since u is bounded on Ω
and u = v on {ρ < −ε′}.

Set
−∞ < a := sup

z∈K
u(z) < u(z0) < b := sup

z∈Ω
u(z) <∞.

Choose an increasing convex function χ : (−∞, b) → R such that χ(a) <
−1 < χ(b) < 0. Then for small ε > 0 we can find a small neighborhood U
of z0 such that the function û(z) := χ ◦ u(z) + ε|z|2 is continuous strictly
plurisubharmonic on U and

sup
K
û < −1 < inf

U
û < sup

Ω
û < 0.

Set ũ := max{û,−1}. Then ũ ∈ PSH−(Ω), ũ ≡ −1 on a neighborhood
of K, and ũ = u is strictly plurisubharmonic on U . Let B be an open ball
contained in Ω. It is well known that the relative extremal function

ρ′′(z) := sup{θ(z) : θ ∈ PSH−(Ω), θ|B ≤ −1}
belongs to C(Ω) ∩ E0(Ω). It follows that for A > 0 sufficiently large, ψ :=
max(Aρ′′, ũ) ∈ PSH−(Ω), ψ = ũ on U , ψ ≡ −1 on a neighborhood of K and
ψ = Aρ′′ on a small neighborhood of ∂Ω. By Stokes’ theorem we also have�

Ω

(ddcψ)n = An
�

Ω

(ddcρ′′)n <∞.

Thus ψ ∈ E0(Ω) ∩ C(Ω). The proof is complete.
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Now we are able to give

Proof of Theorem A. We proceed in two steps.

Step 1. We show that (u2 − u1)T = 0 on Ω \K, where

T :=
n−1∑
l=0

(ddcu1)l ∧ (ddcu2)n−l−1.

After linear changes of coordinates, it is enough to prove

(u2 − u1)ddc|z|2 ∧ T = 0 on Ω \K.
Fix z0 ∈ Ω\K. By Lemma C, there exists a small neighborhood U ⊂ Ω\K of
z0 and ψ ∈ E0(Ω) such that ψ ≡ −1 on a neighborhood of K and ψ is strictly
plurisubharmonic on U . Notice also that, by assumptions (a) and (b),

max{u1,−j} ↓ u1,
�

Ω

(ddc max{u1,−j})n =
�

Ω

(ddcu1)n <∞ ∀j ≥ 1.

Here the latter equality follows from Stokes’ theorem. This implies that
u1 ∈ F(Ω). See Section 4 in [Ce] for details on the Cegrell class F(Ω).
Similarly, we also have u2 ∈ F(Ω). By Corollary 5.6 in [Ce] we have

−∞ <
�

Ω

ψddcu1 ∧ T, −∞ <
�

Ω

ψddcu2 ∧ T.

These facts allow us to apply Cegrell’s integration by part formula (Corol-
lary 3.4 in [Ce]) to get

(1)

�

Ω

u1dd
cψ ∧ T =

�

Ω

ψddcu1 ∧ T,
�

Ω

u2dd
cψ ∧ T =

�

Ω

ψddcu2 ∧ T.

Since ψ = −1 on K, we have u1 ≤ u2 on Ω \K, and since ddcψ = 0 on a
neighborhood of K, we may apply (1) to obtain

0 ≤
�

U

(u2 − u1)ddcψ ∧ T ≤
�

Ω

(u2 − u1)ddcψ ∧ T

=
�

Ω

ψddc(u2 − u1) ∧ T =
�

Ω

ψ[(ddcu2)n − (ddcu1)n]

=
�

K

[(ddcu1)n − (ddcu2)n] +
�

Ω\K

ψ[(ddcu2)n − (ddcu1)n] ≤ 0.

Here the last equality follows from (b), (d) and the fact that ψ < 0 in Ω.
Since ψ is strictly plurisubharmonic on U we get (u2 − u1)ddc|z|2 ∧ T = 0
on U . The desired conclusion follows.

Step 2. We show u1 = u2 onΩ\K. Assume towards a contradiction that
there exists a ∈ Ω \K such that u1(a) < u2(a). Since K is holomorphically
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convex in Ω, we can find a small ball B ⊂ Ω \K around the point a and a
(non-constant) holomorphic function f on Ω such that f(B)∩f(K) = ∅. Let
Z be the set of points x ∈ Ω such that the complex hypersurface {z ∈ Ω :
f(z) = f(x)} is smooth. By Sard’s theorem, the set Ω \ Z has Lebesgue
measure zero. Thus we may choose a point ξ ∈ Z∩B such that u1(ξ) < u2(ξ).

Denote by Sξ the connected component of {z ∈ Ω : f(z) = f(ξ)} that
contains ξ. Then Sξ ∩K = ∅.

It follows from Step 1 that

(u2 − u1)(ddcu1)n−1 = 0 on Ω \K.

Denote by u′1, u
′
2 the restrictions of u1, u2 to Sξ. Now we apply the slicing

theory of Bedford–Taylor (see Section 4 in [BT2], in particular the remark
following Corollary 4.3) to obtain

(u′2 − u′1)(ddcu′1)n−1 = 0 on Sξ.

Since u1, u2 are not locally bounded on Ω, we cannot directly apply Bedford–
Taylor’s results. Instead, we follow their method: first we notice that the for-
mula is obvious when u1, u2 are smooth, and then, by using Proposition 5.1
in [Ce] on the continuity of the complex Monge–Ampère operator in F(Ω),
we get the desired equality (see [BT2, p. 149] for a similar argument).

Since u′1 ≤ u′2 on Sξ we infer
�

{u′
1<u

′
2}

(ddcu′1)n−1 = 0.

Notice that Ω contains no compact complex variety of positive dimension,
so ∂(Sξ ∩Ω) ⊂ ∂Ω. Therefore

lim
z→∂(Sξ∩Ω), z∈Sξ

(u′1(z)− u′2(z)) = 0.

An application of the comparison principle to the smooth complex hyper-
surface Sξ (see Corollary 3.7.5 in [Kl]) yields u′1 = u′2 on Sξ. In particular,

u1(ξ) = u′1(ξ) = u′2(ξ) = u2(ξ).

This contradicts the choice of ξ. The proof is complete.

Remark. If we suppose that u1 ≤ u2 entirely on Ω then Theorem A is
a direct consequence of Lemma C and Lemma 3.5 in [ACCH]. Indeed, let
z0 be an arbitrary point in Ω \ K. Choose ψ ∈ E0(Ω) such that ψ ≥ −1,
ψ|K = −1 and ψ is strictly plurisubharmonic near z0. By Lemma 3.5 in
[ACCH] we have

1
n!

�

Ω

(u2 − u1)n(ddcψ)n +
�

Ω

(−ψ)(ddcu2)n ≤
�

Ω

(−ψ)(ddcu1)n.
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By assumptions on u1, u2 and the choice of ψ we get
	
Ω(u2−u1)n(ddcψ)n = 0.

In particular, this implies u1(z0) = u2(z0).

Proof of Corollary B. Since the polynomial maps P,Q : Cn → Cn are
proper we deduce that Ω is bounded. Hence Ω is a hyperconvex domain.
Set

u = max{log |p1|, . . . , log |pn|}, v = max{log |q1|, . . . , log |qn|}.
According to Proposition 4.12 in [Dem] we have

(ddcu)n =
∑

λ∈Z(P )

mλδλ.

Here δλ is the Dirac mass at λ and mλ is the multiplicity of Z(P ) at λ. Set
K := P(P ; a− ε). It follows that

�

Cn
(ddcu)n =

�

K

(ddcu)n =
∑

λ∈Z(P )

mλ =
n∏
j=1

deg pj .

Here the last equality follows from Bézout’s theorem. In the same way we
obtain �

Cn
(ddcv)n =

�

K

(ddcv)n =
n∏
j=1

deg qj .

Combining the above equality with (a) we get
	
K(ddcu)n ≥

	
K(ddcv)n. On

the other hand, note that (ddcu)n = (ddcv)n = 0 on Ω \K. It also follows
from (b) and (c) that u = v on ∂Ω and u ≥ v on Ω \K. Therefore, we may
apply Theorem A to u− log a, v − log a and obtain u = v on Ω \K.

Next, we set

U = {z ∈ Ω \K : |pi(z)| 6= |pj(z)|, |qi(z)| 6= |qj(z)| for all i 6= j}.
Since P,Q : Cn → Cn are proper, we deduce that U is open and dense in
Ω \K. Fix 1 ≤ j ≤ n, and choose z0 ∈ U such that |pj(z0)| = u(z0). Then
there exists k(j) such that |qk(j)(z0)| = v(z0). By continuity, we can find a
small neighborhood V of z in U such that

|pj(z)| = u(z) = v(z) = |qk(j)(z)| ∀z ∈ V.
Observe that the map ϕ := pj/qk(j) : Cn \ {qk(j) = 0} → C is either open or
constant. Since ϕ maps an open subset of V onto the unit circle, we infer
that ϕ must be constant. Thus pj ≡ λjqk(j) for some constant |λj | = 1. The
proof is complete.
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