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Monotone iteration for in�nite systems ofparaboli
 equations with fun
tional dependen
eby Anna Pudełko (Kraków)
Abstra
t. We 
onsider the initial value problem for an in�nite system of di�erential-fun
tional equations of paraboli
 type. General operators of paraboli
 type of se
ond orderwith variable 
oe�
ients are 
onsidered and the system is weakly 
oupled. The solu-tions are obtained by the monotone iterative method. We prove theorems on weak partialdi�erential-fun
tional inequalities as well the existen
e and uniqueness theorems in the
lass of 
ontinuous bounded fun
tions and in the 
lass of fun
tions satisfying a 
ertaingrowth 
ondition.1. Introdu
tion. Let T > 0 and Ω = {(t, x) : t ∈ (0, T ], x ∈ R

m}. Let
S be an in�nite set of indi
es. Let B(S) be the spa
e of bounded mappings
v : S ∋ i 7→ vi ∈ R endowed with the supremum norm

‖v‖B(S) := sup{|vi| : i ∈ S}.For every nonempty set X ⊂ R
m we denote by CS(X) the spa
e ofmappings

w : X ∋ x 7→ w(x) ∈ B(S), where w(x) : S ∋ i 7→ wi(x) ∈ R,and the fun
tions wi are 
ontinuous in X. For w we use the notation w =
{wi}i∈S as well.Let f = {f i}i∈S and ϕ = {ϕi}i∈S be given,

f i : Ω × B(S) × CS(Ω) → R,

ϕi : R
m → R, i ∈ S.Let u = {ui}i∈S where ea
h ui is an unknown fun
tion of the variables2000 Mathemati
s Subje
t Classi�
ation: Primary 35K15; Se
ondary 35K55, 35R10,35R45.Key words and phrases: in�nite systems, paraboli
 di�erential-fun
tional equations,Cau
hy problem, monotone iterative method, di�erential inequality.This work is partly supported by lo
al Grant No. 11.420.04.[1℄



2 A. Pudeªko
(t, x) = (t, x1, . . . , xm), and set
F i :=

∂

∂t
−Ai, Ai :=

m∑

j,k=1

ai
jk(t, x)

∂2

∂xj∂xk
+

m∑

j=1

bi
j(t, x)

∂

∂xj
+ ci(t, x).

We 
onsider an in�nite system of weakly 
oupled (1) semilinear paraboli
equations of rea
tion-di�usion-
onve
tion type of the form
(1) F i[ui](t, x) = f i(t, x, u(t, x), u), i ∈ S,together with the initial 
ondition
(2) u(0, x) = ϕ(x) for x ∈ R

m.This paper is a 
ontinuation of the author's study of 
ertain systems ofparaboli
 equations (
f. [9℄, [10℄). The paper extends 
lassi
al results on thissubje
t in two dire
tions: di�erential-fun
tional equations are 
onsidered andthe systems 
onsist of in�nitely many weakly 
oupled equations. Our aim isto prove the existen
e and uniqueness of a solution for system (1) with theinitial 
ondition (2). To obtain the solution we apply the so-
alled monotoneiterative method (
f. [8℄).We 
onstru
t two sequen
es whi
h approximate the desired solution uni-formly and monotoni
ally.In this approa
h we have to impose 
ertain 
onditions, namely the mono-toni
ity of the rea
tion fun
tions in the last two variables. We also assumethe existen
e of a pair of sub- and supersolutions (so-
alled lower and upperfun
tions, respe
tively) for the problem in question.These assumptions are not typi
al of existen
e theorems but the methodof sub- and supersolutions, 
oupled with the monotone iterative te
hnique,provides an e�e
tive and �exible me
hanism that ensures theoreti
al as wellas 
onstru
tive existen
e results for nonlinear problems (
f. [7℄). The lowerand upper fun
tions serve as bounds for solutions whi
h are improved by amonotone iterative pro
ess.We use some results on di�erential inequalities to show that sequen
esobtained by monotone iteration 
onsist of sub- and supersolutions, as wellas to get their uniform 
onvergen
e.The �rst initial-boundary value problem for in�nite systems of weakly
oupled di�erential-fun
tional equations of paraboli
 type was dealt withusing the same monotone iterative te
hnique in [2℄, [3℄.The existen
e and uniqueness of the Cau
hy problem for a paraboli
equation with fun
tional dependen
e represented by a Hale type operatorand 
omparison prin
iples for su
h a paraboli
 di�erential-fun
tional initialvalue problem were 
onsidered in [4℄ and [1℄, respe
tively.
(1) That is, every equation 
ontains all unknown fun
tions and derivatives of only oneunknown fun
tion.



In�nite systems of paraboli
 equations 3This paper is organized as follows. In the next se
tion the ne
essary no-tations are introdu
ed. We also formulate our assumptions and auxiliarylemmas. In Se
tion 3 we state and prove 
omparison prin
iples for bounded
ontinuous fun
tions and a theorem on the existen
e and uniqueness of so-lutions in that 
lass of fun
tions. The last se
tion 
ontains results analogousto ones from Se
tion 3, but for unbounded 
ontinuous fun
tions satisfying a
ertain growth 
ondition.2. Notations, de�nitions and assumptions. Throughout the paper,we use the following notation. The Eu
lidean norm in R
m is denoted by

| · | and the norms in fun
tion spa
es are denoted by ‖ · ‖ with appropriateindi
es, in parti
ular the supremum norm is denoted by ‖ · ‖0.Let CBS(X) denote the spa
e of fun
tions w = {wi}i∈S su
h that w ∈
CS(X) and ea
h wi is bounded on X, uniformly in i. This spa
e, endowedwith the supremum norm

‖w‖0 := sup{|wi(x)| : x ∈ X, i ∈ S},is a Bana
h spa
e. For w ∈ CBS(Ω) and for a �xed t ≥ 0 we de�ne
‖w‖0,t := sup{|wi(t̃, x)| : (t̃, x) ∈ Ω, t̃ ≤ t, i ∈ S}.Let R > 0. Denote by DR the 
ylinder {(t, x) :

∑m
j=1 x2

j ≤ R2, 0 ≤ t ≤ T}.Let ΓR := {(t, x) :
∑m

j=1 x2
j = R2, 0 ≤ t ≤ T} and let S0

R stand for the baseof DR, i.e. the set {(t, x) :
∑m

j=1 x2
j ≤ R2, t = 0}.The homogeneous system, i.e.

(3) F i[ui](t, x) = 0, i ∈ S,is a parti
ular 
ase of (1). Observe that it is a system of independent homoge-neous equations. The fundamental solutions Γ i(t, x; τ, ξ) of the homogeneousequations play an important role in our further 
onsiderations.We now formulate the 
ru
ial assumptions 
on
erning the 
oe�
ients ofthe operators {F i}i∈S , whi
h are su�
ient for the existen
e of the funda-mental solutions for the homogeneous system. These assumptions will be infor
e throughout the paper.We assume that(P) the operators F i, i ∈ S, are uniformly paraboli
 in Ω, i.e. there is
µ > 0 su
h that

m∑

j,k=1

ai
jk(t, x)ξjξk ≥ µ

m∑

j=1

ξ2
j

for all (t, x) ∈ Ω, ξ = (ξ1, . . . , ξm) ∈ R
m, and i ∈ S;



4 A. Pudeªko(H) the 
oe�
ients ai
jk(t, x), bi

j(t, x), ci(t, x), i ∈ S, j, k = 1, . . . , m, arebounded, 
ontinuous fun
tions in Ω su
h that ai
jk(t, x) = ai

kj(t, x)and satisfy the following uniform Hölder 
onditions with exponent α
(0 < α ≤ 1) in Ω with respe
t to x: there exists H > 0 su
h that

|ai
jk(t, x) − ai

jk(t, x
′)| ≤ H|x − x′|α,

|bi
j(t, x) − bi

j(t, x
′)| ≤ H|x − x′|α,

|ci(t, x) − ci(t, x′)| ≤ H|x − x′|α,for all (t, x), (t, x′) ∈ Ω, j, k = 1, . . . , m, and i ∈ S.Now, let us re
all a lemma on the existen
e of the fundamental solutionand its estimate, whose proof 
an be found in [5℄ or [6℄.
Lemma 1. If assumptions (P) and (H) hold then there exist the funda-mental solutions Γ i(t, x; τ, ξ) of the equations F i[ui](t, x) = 0, i ∈ S, and

|Γ i(t, x; τ, ξ)| ≤ c(t − τ)−m/2 exp

(
−µ∗|x − ξ|2

4(t − τ)

)
, i ∈ S,for some µ∗ < µ, where µ∗ depends on µ and H, whereas c depends on µ, α,

T and the 
hara
ter of 
ontinuity of ai
jk(t, x) in t.Let us noti
e that from the proof of this lemma and the above assump-tions on the 
oe�
ients of the operators F i, i ∈ S, it follows that the 
on-stants c and µ∗ are independent of i.From the above inequality it follows immediately that\

Rm

|Γ i(t, x; τ, ξ)| dξ ≤ C for i ∈ S, where C = c(4π/µ∗)m/2.The notation for 
onstants whi
h appear in Lemma 1 will be valid throughoutthe paper.If we strengthen the assumption on the prin
ipal 
oe�
ients of the op-erators {F i}i∈S then we obtain the positivity of the fundamental solution(
f. [6℄). Therefore, we will assume, instead of 
ondition (H), the following
ondition (Ht):(Ht) the 
oe�
ients ai
jk(t, x), bi

j(t, x), ci(t, x), i ∈ S, j, k = 1, . . . , m,are bounded, 
ontinuous fun
tions in Ω with ai
jk(t, x) = ai

kj(t, x)and satisfy the following uniform Hölder 
onditions with exponent α
(0 < α ≤ 1) in Ω: there exists H > 0 su
h that

|ai
jk(t, x) − ai

jk(t
′, x′)| ≤ H(|x − x′|α + |t − t′|α/2),

|bi
j(t, x) − bi

j(t, x
′)| ≤ H|x − x′|α,

|ci(t, x) − ci(t, x′)| ≤ H|x − x′|α,for all t, t′ ∈ [0, T ], x, x′ ∈ R
m, j, k = 1, . . . , m and i ∈ S.



In�nite systems of paraboli
 equations 5
Lemma 2. If assumptions (P) and (Ht) hold then the Γ i(t, x; τ, ξ) arepositive fun
tions.Using the fundamental solutions we 
an transform the di�erential prob-lem (1), (2) into the following asso
iated integral system:

(4) ui(t, x) =
\

Rm

Γ i(t, x; 0, ξ)ϕi(ξ)dξ

+

t\
0

\
Rm

Γ i(t, x; τ, ξ)f i(τ, ξ, u(τ, ξ), u)dξdτ for t > 0, x ∈ R
m.

In the spa
e CS(Ω) the following partial order is introdu
ed: for z, z̃ ∈
CS(Ω), the inequality z ≤ z̃ means that

zi(t, x) ≤ z̃i(t, x) for all (t, x) ∈ Ω and i ∈ S.Now, we re
all the de�nitions of subsolutions and supersolutions.
Definition. Fun
tions v = {vi}i∈S , w = {wi}i∈S su
h that vi, wi ∈

C1,2(Ω) for all i ∈ S satisfy the system of inequalities
F i[vi](t, x) ≤ f i(t, x, v(t, x), v) for (t, x) ∈ Ω, i ∈ S,

v(0, x) ≤ ϕ(x) for x ∈ R
m,

F i[wi](t, x) ≥ f i(t, x, w(t, x), w) for (t, x) ∈ Ω, i ∈ S,

w(0, x) ≥ ϕ(x) for x ∈ R
m.are 
alled, respe
tively, a subsolution and a supersolution for problem (1),(2) in Ω.This de�nition 
an be extended to the 
ase when v = {vi}i∈S and w =

{wi}i∈S are less regular, namely v, w ∈ CS(Ω). Then v = {vi}i∈S and w =
{wi}i∈S are 
alled a sub- and supersolution if they satisfy the inequalities
v ≤ T[v] and w ≥ T[w], respe
tively, where T = {Ti}i∈S is the right handside of (4), i.e.
T

i[v] =
\

Rm

Γ i(t, x; 0, ξ)ϕi(ξ) dξ +

t\
0

\
Rm

Γ i(t, x; τ, ξ)f i(τ, ξ, v(τ, ξ), v) dξ dτ.

In that 
ase one 
an say that the di�erential inequalities
F i[vi](t, x) ≤ f i(t, x, v(t, x), v), i ∈ S,are satis�ed in the integral sense (v ≤ T[v]).To end this se
tion we re
all a te
hni
al but useful lemma ([1℄, [4℄), whi
hwe use in Se
tion 4.
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Lemma 3. If 0 ≤ B < A then\

Rm

exp(−A|x − ξ|2 + B|ξ|2) dξ =

(
π

A − B

)m/2

exp

(
AB

A − B
|x|2

)
.This follows from the equality

−A|x − ξ|2 + B|ξ|2 =
n∑

i=1

AB

A − B
x2

i −
(√

A − B ξi −
A√

A − B
x2

i

)2

.Now, 
hanging variables as follows: zi =
√

A − B ξi − A√
A−B

x2
i , and makinguse of the fa
t that T

Rm
exp(−|z|2) dz = πm/2 yields the result.3. Bounded solutions. We begin this se
tion with a proposition on the
ontinuous dependen
e of bounded solutions of the Cau
hy problem on theright hand sides and initial values. In 
ase the right hand sides satisfy theLips
hitz 
ondition, this guarantees the uniqueness of a solution of problem(1), (2).

Proposition 1. Let f i = f i(t, x, s, p) be Lips
hitz 
ontinuous in s andin p (uniformly with respe
t to i ∈ S), i.e.
|f i(t, x, s, p) − f i(t, x, s̃, p̃)| ≤ L1‖s − s̃‖B(S) + L2‖p − p̃‖0,t.If v, w ∈ CS(Ω) satisfy

(5)
F i[vi](t, x) = f i(t, x, v(t, x), v),

F i[wi](t, x) = f i(t, x, w(t, x), w), i ∈ S,and there exists a nonnegative 
onstant M independent of i ∈ S su
h that
(6) |f i(t, x, s, p) − f i(t, x, s, p)| ≤ Mthen

‖v − w‖0,t ≤ C‖v(0, ·) − w(0, ·)‖0e
tCL +

t\
0

CMe(t−τ)CL dτprovided v − w ∈ CBS(Ω), where L = L1 + L2.Proof. Set z̃(t) := ‖z(t)‖B(S), where z(t) = {zi(t)}i∈S and
zi(t) = sup

x∈Rm, t≤t

|vi(t, x) − wi(t, x)| = ‖vi − wi‖0,t.Sin
e v, w satisfy (5), making use of (6) and of the Lips
hitz 
ontinuity of
f i in s and p we have
vi(t, x) − wi(t, x) =

\
Rm

Γ i(t, x; 0, ξ)[vi(0, ξ) − wi(0, ξ)] dξ

+

t\
0

\
Rm

Γ i(t, x; τ, ξ)[f i(τ, ξ, v(τ, ξ), v) − f i(τ, ξ, w(τ, ξ), w)] dξ dτ
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≤ Czi(0) +

t\
0

\
Rm

Γ i(t, x; τ, ξ)|f i(τ, ξ, v(τ, ξ), v) − f i(τ, ξ, w(τ, ξ), v)| dξ dτ

+

t\
0

\
Rm

Γ i(t, x; τ, ξ)|f i(τ, ξ, w(τ, ξ), v) − f i(τ, ξ, w(τ, ξ), w)| dξ dτ

+

t\
0

\
Rm

Γ i(t, x; τ, ξ)|f i(τ, ξ, w(τ, ξ), w) − f i(τ, ξ, w(τ, ξ), w)| dξ dτ

≤ Czi(0) +

t\
0

C(L1‖v(t, x) − w(t, x)‖B(S) + L2‖v − w‖0,τ + M) dτ

≤ Czi(0) +

t\
0

C[(L1 + L2)‖z(τ)‖B(S) + M ] dτ, i ∈ S.Therefore z̃ satis�es the integral inequality
z̃(t) ≤ Cz̃(0) +

t\
0

C[M + (L1 + L2)z̃(τ)] dτ.Thus, the Gronwall lemma yields
z̃(t) ≤ Cz̃(0)etC(L1+L2) +

t\
0

CMe(t−τ)C(L1+L2) dτ.

Remark 1. In parti
ular, if the right hand sides of (5) are equal and
v(0, x) = w(0, x) then Proposition 1 yields the uniqueness.Now, let us state a result 
on
erning weak partial di�erential-fun
tionalinequalities for an in�nite system of paraboli
 equations in the 
lass of 
on-tinuous bounded fun
tions. The Gronwall lemma will be our main tool inthe proof. This proposition plays a fundamental role in the proof of the maintheorem of this se
tion, i.e. Theorem 1.
Proposition 2. Let assumptions (P) and (Ht) hold. Let f i = f i(t, x,

s, p) be in
reasing in s and p, and satisfy , uniformly with respe
t to i ∈ S,the one-sided Lips
hitz 
ondition with respe
t to s and p, i.e.
f i(t, x, s, p) − f i(t, x, s̃, p) ≤ L1‖s − s̃‖B(S) + L2‖p − p̃‖0,tfor s ≥ s̃, p ≥ p̃.If v, w ∈ CBS(Ω) satisfy

(7)
F i[vi](t, x) ≤ f i(t, x, v(t, x), v),

F i[wi](t, x) ≥ f i(t, x, w(t, x), w), i ∈ S,then the initial inequality v(0, x) ≤ w(0, x) 
arries over to Ω.



8 A. PudeªkoProof. Set y(t) = {yi(t)}i∈S where yi(t) := max{0, zi(t)} and
zi(t) = sup

x∈Rm, t≤t

(vi(t, x) − wi(t, x)).It is obvious that 0 ≤ yi(t) < ∞ and zi(t) ≤ yi(t) for all i ∈ S. Let
I ∈ CBS(Ω) be the fun
tion whose every 
omponent is the 
onstant fun
tionequal to 1.Now, the Lips
hitz 
onditions and the fa
t that f i, i ∈ S, are in
reasingin s and p yield
f i(t, x, v(t, x), v)− f i(t, x, w(t, x), w)

= f i(t, x, [w + (v − w)](t, x), [w + (v − w)]) − f i(t, x, w(t, x), w)

≤ f i(t, x, w(t, x) + y(t)I(t, x), w + yI) − f i(t, x, w(t, x), w)

≤ L1‖y(t)‖B(S) + L2‖yI‖0,t = (L1 + L2)‖y(t)‖B(S).Sin
e v, w satisfy (7), for all i ∈ S we have
vi(t, x) − wi(t, x) =

\
Rm

Γ i(t, x; 0, ξ)[vi(0, ξ) − wi(0, ξ)] dξ

+

t\
0

\
Rm

Γ i(t, x; τ, ξ)[f i(τ, ξ, v(τ, ξ), v) − f i(τ, ξ, w(τ, ξ), w)] dξ dτ

≤
t\
0

C(L1 + L2)‖y(τ)‖B(S) dτ.Thus, the fun
tion ỹ(t) = ‖y(t)‖B(S) satis�es
ỹ(t) ≤

t\
0

C(L1 + L2)ỹ(τ) dτ.Now the Gronwall lemma yields ỹ(t) ≡ 0, whi
h means that v(t, x) ≤ w(t, x)in Ω.As a dire
t 
onsequen
e of Proposition 2 we get the following 
orollary.
Corollary 1. Let u ∈ CBS(Ω) and suppose that

F i[ui](t, x) ≤ 0 for (t, x) ∈ Ω, i ∈ S,

u(0, x) ≤ 0 for x ∈ R
m.Then u(t, x) ≤ 0 for (t, x) ∈ Ω.

Remark 2. If v and w are a subsolution and a supersolution for prob-lem (1), (2) in Ω, respe
tively, and u is any solution of this problem, thenProposition 2 yields
v(t, x) ≤ u(t, x) ≤ w(t, x) for (t, x) ∈ Ω.
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 equations 9Below in Theorem 1 we 
onstru
t 
ertain sequen
es of su

essive approx-imations as solutions of some linear systems of di�erential equations. Let usstress that Proposition 2 ensures the uniform 
onvergen
e of these sequen
esto the required solution of problem (1), (2).Before formulating the theorem we introdu
e the following notation.For every su�
iently smooth fun
tion β, let γ = P[β] be the uniquesolution of the initial value problem
F i[γi](t, x) = f i(t, x, β(t, x), β), i ∈ S,

γ(0, x) = ϕ(x) for x ∈ R
m.Now, let us formulate the following assumptions.

Assumptions 1. All 
omponents f i(t, x, s, p) of f = {f i}i∈S are
(Cf ) 
ontinuous in Ω × B(S) × CBS(Ω);
(Bf ) uniformly bounded in Ω × B(S) × CBS(Ω);
(If ) in
reasing with respe
t to s and p;
(Hf ) lo
ally Hölder 
ontinuous with respe
t to x uniformly in t;
(Lf ) Lips
hitz 
ontinuous with respe
t to s and p:

|f i(t, x, s, p) − f i(t, x, s̃, p̃)| ≤ L1‖s − s̃‖B(S) + L2‖p − p̃‖0,tfor (t, x) ∈ Ω, s, s̃ ∈ B(S), p, p̃ ∈ CS(Ω).

Remark 3. Sin
e the fun
tions f i = f i(t, x, s, p), i ∈ S, are in
reasingin s and p and Γ i(t, x; τ, ξ) is a positive fun
tion the operator P is in
reasing.
Assumption 2. There exists at least one pair v0 = v0(t, x), w0 =

w0(t, x) ∈ CBS(Ω) of a subsolution and a supersolution of problem (1),(2) in Ω whi
h are Hölder 
ontinuous in x uniformly with respe
t to t.Now, we state and prove the theorem on the existen
e and uniqueness ofsolution of problem (1), (2) obtained by a simple iterative method, i.e. start-ing from a subsolution v0 and a supersolution w0 we de�ne vn := P[vn−1],
wn := P[wn−1], n = 1, 2, . . . . Thus, at ea
h step we have an in�nite systemof linear equations. The sequen
e of su

essive approximations 
onverges tothe desired solution with power speed.
Theorem 1. Let 
onditions (P) and (Ht) hold. Suppose that every 
om-ponent ϕi of the initial data ϕ = {ϕi}i∈S is a bounded 
ontinuous fun
tion on

R
m. Moreover , let Assumptions 1 and 2 hold. Consider the following in�nitesystem of linear equations:

F i[vi
n](t, x) = f i(t, x, vn−1(t, x), vn−1),(8)

F i[wi
n](t, x) = f i(t, x, wn−1(t, x), wn−1),(9)for (t, x) ∈ Ω, i ∈ S, n = 1, 2, . . . with the initial 
ondition (2), and let

N0 = ‖w0 − v0‖0 < ∞. Then



10 A. Pudeªko(i) there exist unique 
lassi
al bounded solutions vn and wn, n=1, 2, . . . ,of systems (8) and (9) with the initial 
ondition (2) in Ω;(ii) vn and wn, n = 1, 2, . . . , are respe
tively subsolutions and superso-lutions for problem (1), (2) in Ω;(iii) we have
v0(t, x) ≤ · · · ≤ vn(t, x) ≤ vn+1(t, x) ≤ · · ·

≤ wn+1(t, x) ≤ wn(t, x) ≤ · · · ≤ w0(t, x)for (t, x) ∈ Ω, n = 1, 2 . . .(iv) limn→∞[wi
n(t, x) − vi

n(t, x)] = 0 uniformly in Ω, i ∈ S;(v) u(t, x) = limn→∞ vn(t, x) is a unique 
lassi
al bounded solution ofproblem (1), (2) in Ω.Proof. (i) Starting from v0 and w0 we de�ne v1, w1 as solutions of (8),(9) with the initial 
ondition (2), i.e. v1 = P[v0], w1 = P[w0]. Observethat the systems in question have the following property: the ith equationdepends on the ith unknown fun
tion only, therefore sin
e v0, w0 satisfyAssumption 2, the 
lassi
al theorems on the existen
e and uniqueness ofsolution of linear paraboli
 Cau
hy problems (
f. [5℄ or [6℄) assert that thereexist unique solutions v1, w1 ∈ CBS(Ω) of the above problems and v1 and
w1 are Hölder 
ontinuous with respe
t to x uniformly in t (
f. [5℄).Next, we de�ne by indu
tion {vn}, {wn} as solutions of (8), (9) with theinitial 
ondition (2), i.e. vn = P[vn−1], wn = P[wn−1].The pre
eding reasoning shows that vn, wn exist and are uniquely de-�ned. Moreover, for ea
h i ∈ S, n = 1, 2, . . . , vi

n, wi
n are bounded, belong to

C1,2(Ω) and are Hölder 
ontinuous in x uniformly in t.(ii) We now show, by indu
tion, that the fun
tions vn are subsolutions.
v0 is a subsolution by Assumption 2. Suppose vn is a subsolution of (1), (2)in Ω, i.e.

F i[vi
n](t, x) ≤ f i(t, x, vn(t, x), vn) for (t, x) ∈ Ω, i ∈ S,

vn(0, x) ≤ ϕ(x) for x ∈ R
m.From the de�nition of the operator P it follows that

F i[vi
n+1](t, x) = f i(t, x, vn(t, x), vn) for (t, x) ∈ Ω, i ∈ S,

vn+1(0, x) = ϕ(x) for x ∈ R
m.Thus, Corollary 1 yields

[vn − vn+1](t, x) ≤ 0 for (t, x) ∈ Ω,i.e.
vn(t, x) ≤ P[vn](t, x) for (t, x) ∈ Ω.Now, the monotoni
ity 
ondition (If ) implies
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F i[vi

n+1](t, x) − f i(t, x, vn+1(t, x), vn+1)

= f i(t, x, vn(t, x), vn) − f i(t, x,P[vn](t, x),P[vn]) ≤ 0for all i ∈ S, (t, x) ∈ Ω. We 
on
lude that vn+1 is a subsolution as well. Theproof that the wn are supersolutions is similar.(iii) The monotoni
ity of the sequen
es {vn}, {wn} is a 
onsequen
eof the fa
t that vn, wn are subsolutions and supersolutions, respe
tively,whereas the inequality vn ≤ wn follows from the monotoni
ity of the operator
P and the fa
t that v0 ≤ w0.(iv) We show by indu
tion that mi

n(t, x) := wi
n(t, x) − vi

n(t, x) ≥ 0 isestimated as follows:
(10) mi

n(t, x) ≤ N0
[(L1 + L2)t]

n

n!
, n = 0, 1 . . . , for (t, x) ∈ Ω, i ∈ S.The inequality for mi

0 is obvious. Suppose it holds for mi
n. Condition (Lf )yields

F i[mi
n+1](t, x) = f i(t, x, wn(t, x), wn) − f i(t, x, vn(t, x), vn)

≤ L1‖mn(t, x)‖B(S) + L2‖mn‖0,t.By the de�nitions of ‖ · ‖0,t and ‖ · ‖B(S) and the indu
tion assumptionboth ‖mn(t, x)‖B(S) and ‖mn‖0,t are estimated by N0[(L1 + L2)t]
n/n!. Thus,�nally,

F i[mi
n+1](t, x) ≤ N0

(L1 + L2)
n+1tn

n!
in Ωand mi

n+1(0, x) = 0 for x ∈ R
m, i ∈ S.In order to apply the theorem on di�erential inequalities, 
onsider the
omparison system

F i[M i
n+1](t, x) = N0

(L1 + L2)
n+1tn

n!
for (t, x) ∈ Ω, i ∈ S,with the initial 
ondition M i

n+1(0, x) ≥ 0 for x ∈ R
m, i ∈ S.The fun
tions M i

n+1(t, x) = N0[(L1 + L2)t]
n+1/(n + 1)! are solutions ofthe 
omparison problem, therefore, owing to Proposition 2, we get

mi
n+1(t, x) ≤ M i

n+1(t, x) = N0
[(L1 + L2)t]

n+1

(n + 1)!
for (t, x) ∈ Ω, i ∈ S,so, the indu
tion step is proved. As a dire
t 
onsequen
e of (10) we obtain

(11) lim
n→∞

[wi
n(t, x) − vi

n(t, x)] = 0 uniformly in Ω.(v) First, noti
e that, sin
e {vn} and {wn} are bounded and monotonesequen
es of 
ontinuous fun
tions and (11) holds, there exist 
ontinuousbounded fun
tions ui = ui(t, x) su
h that
(12) lim

n→∞
vi
n(t, x) = ui(t, x), lim

n→∞
wi

n(t, x) = ui(t, x)



12 A. Pudeªkouniformly in Ω for all i ∈ S and the fun
tion u = {ui}i∈S satis�es the initial
ondition (2).Now, we prove that u satis�es (1). It is enough to show that u ful�lls (1)in any 
ompa
t set 
ontained in Ω.Consequently, we only need to prove it in DR for any R > 0.From (If ) and (iii) it follows that f i(t, x, vn−1(t, x), vn−1) are uniformlybounded in DR (with respe
t to n), therefore the solution vn(t, x) of thelinear system
(13) F i[vi

n](t, x) = f i(t, x, vn−1(t, x), vn−1), i ∈ S,with a suitable initial 
ondition is Hölder 
ontinuous with exponent α withrespe
t to x uniformly in t, with a 
onstant independent of n (
f. [5℄). Hen
e,
u(t, x) also satis�es the Hölder 
ondition with respe
t to x uniformly in t.Now, 
onsider the system
(14) F i[zi](t, x) = f i(t, x, u(t, x), u) for (t, x) ∈ DR, i ∈ S,with the 
onditions

z(t, x) = u(t, x) on ΓR,(15)

z(0, x) = ϕ(x) on S0
R.(16)As u(t, x) is Hölder 
ontinuous with respe
t to x and 
onditions (Hf ) and

(Lf ) hold, the right hand sides of this system are 
ontinuous in DR andlo
ally Hölder 
ontinuous with respe
t to x.Thus, the 
lassi
al existen
e and uniqueness theorems for linear paraboli
initial-boundary valued problems (
f. [6℄) imply that there exists a unique
lassi
al solution z(t, x) of the problem (14), (15), (16) in DR.On the other hand, from (12) and (Lf ) it follows that
lim

n→∞
f i(t, x, vn−1(t, x), vn−1) = f i(t, x, u(t, x), u) uniformly in DR.Moreover, the boundary values vn(t, x) 
onverge uniformly to u(t, x) on

ΓR and the initial values are equal, so applying to systems (13) and (14)the theorem on the 
ontinuous dependen
e of the solution on the right handsides and initial-boundary values (
f. [11℄) we 
on
lude that
lim

n→∞
vi
n(t, x) = zi(t, x) uniformly in DR.Thus zi(t, x) = ui(t, x) in DR for all i ∈ S, for arbitrary R > 0, whi
h means

z(t, x) = u(t, x) for all (t, x) ∈ Ω, i.e. u(t, x) is a 
lassi
al bounded solutionof problem (1), (2).The uniqueness of the solution is a dire
t 
onsequen
e of Remark 1.Theorem 1 is proved.4. Unbounded solutions. This se
tion 
ontains a result (Proposition 3)whi
h is 
ru
ial in the proof of our theorem on the existen
e of unbounded
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-tions whi
h behave like |ui(t, x)| ≤ D exp(d|x|2). The result is obtained uponassuming the right hand sides to satisfy the Lips
hitz 
ondition with respe
tto s and a weighted Lips
hitz 
ondition with respe
t to p.We denote by C+ the spa
e of all positive, real-valued, 
ontinuous andnonde
reasing fun
tions de�ned on the set [0, T ]. For w ∈ CS(Ω) we de�nethe following weighted norms depending on φ ∈ C+:
‖w‖2,φ := sup

i∈S
sup

(t,x)∈Ω

|wi(t, x)|
[φ(t)]m/2 exp(φ(t)|x|2) ,

‖w‖2,φ,t := sup
i∈S

sup
x∈Rm, t≤t

|wi(t, x)|
[φ(t)]m/2 exp(φ(t)|x|2) .Let E2,φ

S for φ ∈ C+ be the spa
e of all fun
tions w ∈ CS(Ω) su
h that
∃D ≥ 0 ∀(t, x) ∈ Ω ∀i ∈ S |wi(t, x)| ≤ D exp(φ(t)|x|2).Obviously, E2,φ

S endowed with the norm ‖ · ‖2,φ is a Bana
h spa
e.Now, we state and prove the proposition mentioned above.
Proposition 3. Let assumptions (P) and (Ht) hold. Let φ ∈ C+ satisfy

µ∗φ(τ)

µ∗ − 4φ(τ)(t − τ)
≤ φ(t) for 0 ≤ τ ≤ t ≤ T,where µ∗ is the 
onstant whi
h appeared in Lemma 1. Let f i = f i(t, x, s, p) bein
reasing in s and p and satisfy the following one-sided Lips
hitz 
onditionuniformly with respe
t to i ∈ S:

f i(t, x, s, p) − f i(t, x, s̃, p̃)

≤ L1‖s − s̃‖B(S) + L2‖p − p̃‖2,φ,t[φ(t)]m/2 exp(φ(t)|x|2)for (t, x) ∈ Ω, s ≥ s̃, p ≥ p̃.If v, w ∈ E2,φ
S satisfy the system of inequalities

(17)
F i[vi](t, x) ≤ f i(t, x, v(t, x), v),

F i[wi](t, x) ≥ f i(t, x, w(t, x), w), i ∈ S,then the initial inequality v(0, x) ≤ w(0, x) 
arries over to the whole domain.Proof. As in the proof of Proposition 2 we de�ne y(t) = {yi(t)}i∈S , where
yi(t) := max{0, zi(t)}, zi(t) = supx∈Rm, t≤t(v

i(t, x) − wi(t, x)). It is obviousthat 0 ≤ yi(t) < ∞ and zi(t) ≤ yi(t) for all i ∈ S. Let I ∈ E2,φ
S be the
onstant fun
tion equal to 1.We noti
e that the de�nitions of ‖ · ‖2,φ,t and y(t) and the monotoni
ityof φ yield

‖y(t)‖B(S) ≤ ‖y‖2,φ,t[φ(t)]m/2 exp(φ(t)|x|2).



14 A. PudeªkoCombining the Lips
hitz 
ondition with the fa
t that f i, i ∈ S, are in
reasingin s and p we obtain
(18) f i(t, x, v(t, x), v)− f i(t, x, w(t, x), w)

= f i(t, x, [w + (v − w)](t, x), [w + (v − w)]) − f i(t, x, w(t, x), w)

≤ f i(t, x, w(t, x) + y(t)I(t, x), w + yI) − f i(t, x, w(t, x), w)

≤ L1‖y(t)‖B(S) + L2‖y‖2,φ,t[φ(t)]m/2 exp(φ(t)|x|2)
≤ (L1 + L2)‖y‖2,φ,t[φ(t)]m/2 exp(φ(t)|x|2).Sin
e v, w satisfy (17), making use of (18) and Lemma 1 we have, for all

i ∈ S,

|vi(t, x) − wi(t, x)| ≤
\

Rm

Γ i(t, x; 0, ξ)|vi(0, ξ) − wi(0, ξ)| dξ

+

t\
0

\
Rm

Γ i(t, x; τ, ξ)|f i(τ, ξ, v(τ, ξ), v) − f i(τ, ξ, w(τ, ξ), w)| dξ dτ

≤
t\
0

\
Rm

(L1 + L2)‖v − w‖2,φ,τΓ i(t, x; τ, ξ)[φ(τ)]m/2 exp(φ(τ)|ξ|2) dξ dτ

≤ (L1 + L2)

t\
0

‖v − w‖2,φ,τ [φ(τ)]m/2
\

Rm

c(t − τ)−m/2

× exp

(
−µ∗|x − ξ|2

4(t − τ)

)
exp(φ(τ)|ξ|2) dξ dτ.Now, Lemma 3 shows that

|vi(t, x) − wi(t, x)|

≤ c(L1 + L2)

t\
0

‖v − w‖2,φ,τ [φ(τ)]m/2(t − τ)−m/2

(
4π(t − τ)

µ∗ − 4φ(τ)(t − τ)

)m/2

× exp

(
µ∗φ(τ)|x|2

µ∗ − 4φ(τ)(t − τ)

)
dτ

≤ c(L1 + L2)

t\
0

‖v − w‖2,φ,τ

(
4πφ(τ)

µ∗ − 4φ(τ)(t − τ)

)m/2

× exp

(
µ∗φ(τ)|x|2

µ∗ − 4φ(τ)(t − τ)

)
dτ.By the assumption on φ we have

|vi(t, x) − wi(t, x)|

≤ c(L1 + L2)

(
4π

µ∗

)m/2

[φ(t)]m/2 exp(φ(t)|x|2)
t\
0

‖v − w‖2,φ,τ dτ.
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‖v − w‖2,φ,t ≤

t\
0

(L1 + L2)‖v − w‖2,φ,τ dτ.Now, the Gronwall lemma yields ‖v − w‖2,φ,t ≡ 0, so v(t, x) ≤ w(t, x) in Ω,whi
h 
ompletes the proof.As a dire
t 
onsequen
e of Proposition 3 one gets the following 
orollary.
Corollary 2. Let u ∈ E2,φ

S and assume that
F i[ui](t, x) ≤ 0 for (t, x) ∈ Ω, i ∈ S,

u(0, x) ≤ 0 for x ∈ R
m.Then u(t, x) ≤ 0 for (t, x) ∈ Ω.

Remark 4. In parti
ular, Proposition 3 shows that there exists at mostone solution of problem (1), (2) (in the integral sense) satisfying the growth
ondition |ui(t, x)| ≤ D exp(φ(t)|x|2) for (t, x) ∈ Ω.Now, we state a result similar to Theorem 1, but 
on
erning fun
tionswhi
h behave like |ui(t, x)| ≤ D exp(φ(t)|x|2). But �rst, let us formulateappropriate assumptions.
Assumptions 3. All 
omponents f i(t, x, s, p) of f = {f i}i∈S are
(Cf ) 
ontinuous in Ω × B(S) × E2,φ

S ;
(Bf ) exponentially bounded:

∃M0 ≥ 0 ∀i ∈ S ∀(t, x) ∈ Ω |f i(t, x, 0, 0)| ≤ M0 exp(φ(t)|x|2);
(If ) in
reasing with respe
t to s and p;
(Hf ) lo
ally Hölder 
ontinuous with respe
t to x uniformly in t;
(Lf ) weighted Lips
hitz 
ontinuous in the following sense:

|f i(t, x, s, p) − f i(t, x, s̃, p̃)|
≤ L1‖s − s̃‖B(S) + L2‖p − p̃‖2,φ,t[φ(t)]m/2 exp(φ(t)|x|2)for (t, x) ∈ Ω, s, s̃ ∈ B(S), p, p̃ ∈ CS(Ω).

Assumption 4. There exists at least one pair v0 =v0(t, x), w0 =w0(t, x)

∈ E2,φ
S of a subsolution and a supersolution of problem (1), (2) in Ω whi
hare Hölder 
ontinuous in x uniformly with respe
t to t.

Theorem 2. Let assumptions (P) and (Ht) hold. Let φ ∈ C+ satisfy
µ∗φ(τ)

µ∗ − 4φ(τ)(t − τ)
≤ φ(t) for 0 ≤ τ ≤ t ≤ T,where µ∗ is the 
onstant whi
h appeared in Lemma 1. Let f = {f i}i∈S satisfyAssumptions 3. Moreover , let Assumption 4 hold and let all the 
omponents



16 A. Pudeªkoof the initial data ϕ = {ϕi}i∈S be su
h that |ϕi(x)| ≤ K exp(φ(0)|x|2) for all
x ∈ R

m.Consider the following in�nite system of linear equations:
F i[vi

n](t, x) = f i(t, x, vn−1(t, x), vn−1),(19)

F i[wi
n](t, x) = f i(t, x, wn−1(t, x), wn−1),(20)for (t, x) ∈ Ω, i ∈ S, n = 1, 2, . . . with the initial 
ondition (2), and let

N0 = ‖w0 − v0‖2,φ < ∞. Then(i) there exist unique 
lassi
al solutions vn ∈ E2,φ
S and wn ∈ E2,φ

S , n =
1, 2 . . . , of systems (19) and (20) with the initial 
ondition (2) in Ω;(ii) vn and wn, n = 1, 2, . . . , are respe
tively subsolutions and superso-lutions for problem (1), (2) in Ω;(iii) we have

v0(t, x) ≤ · · · ≤ vn(t, x) ≤ vn+1(t, x) ≤ · · ·
≤ wn+1(t, x) ≤ wn(t, x) ≤ · · · ≤ w0(t, x)for (t, x) ∈ Ω, n = 1, 2, . . . ;(iv) u(t, x) = limn→∞ vn(t, x) is a unique 
lassi
al solution of problem

(1), (2) in Ω satisfying the 
ondition |ui(t, x)| ≤ D exp(φ(t)|x|2) for
(t, x) ∈ Ω.Proof. (i) As in the proof of Theorem 1, starting from v0 and w0, wede�ne by indu
tion the sequen
es {vn}, {wn} as solutions of (19), (20) withthe initial 
ondition (2) in Ω, i.e.

vn = P[vn−1], wn = P[vn−1] for n = 1, 2, . . . .Here too, the ith equation depends on the ith unknown fun
tion only andAssumption 4 holds, therefore the 
lassi
al theorems on the existen
e anduniqueness of solution for linear Cau
hy problems assert that there existunique 
lassi
al solutions vn, wn in E2,φ
S of problems (19), (2) and (20), (2),respe
tively (
f. [6℄).The proofs of steps (ii)�(iii) are analogous to those in Theorem 1, withCorollary 1 repla
ed by Corollary 2 and on noti
ing that the inequalities (iii)guarantee that u satis�es the desired growth 
ondition.(iv) First, we show that u(t, x) = limn→∞ vn(t, x) is 
ontinuous. To thisend we show by indu
tion that mi

n(t, x) := wi
n(t, x) − vi

n(t, x) ≥ 0 satis�es
mi

n(t, x) ≤ N0
[(L1 + L2)t]

n

n!
[φ(t)]m/2 exp(φ(t)|x|2),

for (t, x) ∈ Ω, n = 0, 1, . . . , i ∈ S.The inequality for mi
0 is obvious. Suppose it holds for mi

n. Similarly tothe proof of Theorem 1, the (Lf ) 
ondition yields
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F i[mi

n+1](t, x) = f i(t, x, wn(t, x), wn) − f i(t, x, vn(t, x), vn)

≤ L1‖mn(t, x)‖B(S) + L2‖mn‖2,φ,t[φ(t)]m/2 exp(φ(t)|x|2)
≤ (L1 + L2)‖mn‖2,φ,t[φ(t)]m/2 exp(φ(t)|x|2).By the de�nitions of ‖ · ‖2,φ,t and the indu
tion assumption, ‖mn‖2,φ,t ≤

N0[(L1 + L2)t]
n/n!.Thus, �nally,

F i[mi
n+1](t, x) ≤ N0

(L1 + L2)
n+1tn

n!
[φ(t)]m/2 exp(φ(t)|x|2) in Ωand mi

n+1(0, x) = 0 for x ∈ R
m, i ∈ S.In order to apply the theorem on di�erential inequalities, 
onsider the
omparison system

F i[M i
n+1](t, x) = N0

(L1 + L2)
n+1tn

n!
[φ(t)]m/2 exp(φ(t)|x|2)for (t, x) ∈ Ω, i ∈ S, with the initial 
ondition M i

n+1(0, x) = 0 for x ∈ R
m,

i ∈ S.Now, let us estimate the solution of this 
omparison system. Lemma 1,Lemma 3 and the properties of φ yield
M i

n+1(t, x) ≤
t\
0

\
Rm

Γ i(t, x; τ, ξ)f i(τ, ξ) dξ dτ

≤
t\
0

\
Rm

N0

n!
(L1 + L2)

n+1τn [φ(τ)]m/2 exp(φ(τ)|ξ|2)c(t − τ)−m/2

× exp

(
−µ∗|x − ξ|2

4(t − τ)

)
dξ dτ

≤ c
N0

n!
(L1 + L2)

n+1
t\
0

τn[φ(τ)]m/2(t − τ)−m/2

×
(

4π(t − τ)

µ∗ − 4φ(τ)(t − τ)

)m/2

exp

(
µ∗φ(τ)|x|2

µ∗ − 4φ(τ)(t − τ)

)
dτ

≤ c
N0

n!
(L1 + L2)

n+1
t\
0

τn

(
4πφ(τ)

µ∗ − 4φ(τ)(t − τ)

)m/2

× exp

(
µ∗φ(τ)|x|2

µ∗ − 4φ(τ)(t − τ)

)
dτ

≤ N0
tn+1

(n + 1)!
(L1 + L2)

n+1[φ(t)]m/2 exp(φ(t)|x|2).



18 A. PudeªkoTherefore, owing to Proposition 3 we get
mi

n+1(t, x) ≤ M i
n+1(t, x) ≤ N0

[(L1 + L2)t]
n+1

(n + 1)!
[φ(t)]m/2 exp(φ(t)|x|2),for (t, x) ∈ Ω, i ∈ S,so, the indu
tion step is proved. Thus, ‖mn‖2,φ = ‖m̃n‖0 → 0 as n → ∞where

m̃n = w̃n − ṽn,

ṽn = vn[φ(t)]−m/2 exp(−φ(t)|x|2),
w̃n = wn[φ(t)]−m/2 exp(−φ(t)|x|2).Therefore, as in the proof of Theorem 1 we 
on
lude that ũ := limn→∞ ṽn is
ontinuous and 
onsequently so is u = ũ exp(φ(t)|x|2).To end the proof it is enough to repeat the proof of step (v) of The-orem 1. Finally, the uniqueness of the solution is a dire
t 
onsequen
e ofProposition 3.
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