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Monotone iteration for infinite systems of
parabolic equations with functional dependence

by ANNA PUDEEKO (Krakow)

Abstract. We consider the initial value problem for an infinite system of differential-
functional equations of parabolic type. General operators of parabolic type of second order
with variable coefficients are considered and the system is weakly coupled. The solu-
tions are obtained by the monotone iterative method. We prove theorems on weak partial
differential-functional inequalities as well the existence and uniqueness theorems in the
class of continuous bounded functions and in the class of functions satisfying a certain
growth condition.

1. Introduction. Let 7> 0 and 2 = {(¢t,z) : t € (0,T], x € R™}. Let
S be an infinite set of indices. Let B(.S) be the space of bounded mappings
v:S3i— v'€R endowed with the supremum norm

HUHB(S) = sup{\vi] :i€ S}t
For every nonempty set X C R we denote by Cg(X) the space of
mappings
w:X >z w(x) € B(S), where w(x):S3i— w'(x)eR,

and the functions w’ are continuous in X. For w we use the notation w =
{w'}ics as well.

Let f = {f'}ics and ¢ = {¢'}ics be given,
f': 02 x B(S) x Cs(2) — R,
¢ :R™ =R, €S,

Let u = {u'};cs where each u’ is an unknown function of the variables
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2 A. Pudetko

(t,z) = (t,z1,...,Tm), and set

i 0 i i - i 0 S { 9 g

We consider an infinite system of weakly coupled (!) semilinear parabolic
equations of reaction-diffusion-convection type of the form

(1) Fl(t,e) = f(t.2,ult,z),u), Q€S
together with the initial condition
(2) u(0,z) = p(x) for ze€R™.

This paper is a continuation of the author’s study of certain systems of
parabolic equations (cf. [9], [10]). The paper extends classical results on this
subject in two directions: differential-functional equations are considered and
the systems consist of infinitely many weakly coupled equations. Our aim is
to prove the existence and uniqueness of a solution for system (1) with the
initial condition (2). To obtain the solution we apply the so-called monotone
iterative method (cf. [8]).

We construct two sequences which approximate the desired solution uni-
formly and monotonically.

In this approach we have to impose certain conditions, namely the mono-
tonicity of the reaction functions in the last two variables. We also assume
the existence of a pair of sub- and supersolutions (so-called lower and upper
functions, respectively) for the problem in question.

These assumptions are not typical of existence theorems but the method
of sub- and supersolutions, coupled with the monotone iterative technique,
provides an effective and flexible mechanism that ensures theoretical as well
as constructive existence results for nonlinear problems (cf. [7]). The lower
and upper functions serve as bounds for solutions which are improved by a
monotone iterative process.

We use some results on differential inequalities to show that sequences
obtained by monotone iteration consist of sub- and supersolutions, as well
as to get their uniform convergence.

The first initial-boundary value problem for infinite systems of weakly
coupled differential-functional equations of parabolic type was dealt with
using the same monotone iterative technique in [2], [3].

The existence and uniqueness of the Cauchy problem for a parabolic
equation with functional dependence represented by a Hale type operator
and comparison principles for such a parabolic differential-functional initial
value problem were considered in [4] and [1], respectively.

(1) That is, every equation contains all unknown functions and derivatives of only one
unknown function.
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This paper is organized as follows. In the next section the necessary no-
tations are introduced. We also formulate our assumptions and auxiliary
lemmas. In Section 3 we state and prove comparison principles for bounded
continuous functions and a theorem on the existence and uniqueness of so-
lutions in that class of functions. The last section contains results analogous
to ones from Section 3, but for unbounded continuous functions satisfying a
certain growth condition.

2. Notations, definitions and assumptions. Throughout the paper,
we use the following notation. The Euclidean norm in R™ is denoted by
| - | and the norms in function spaces are denoted by || - || with appropriate
indices, in particular the supremum norm is denoted by || - [|o.

Let CBg(X) denote the space of functions w = {w'};cs such that w €
Cs(X) and each w’ is bounded on X, uniformly in i. This space, endowed
with the supremum norm

|wllo := sup{|w'(x)| : z € X, i € S},
is a Banach space. For w € CBS((_Z) and for a fixed t > 0 we define
[wllos := sup{|w'(t,z)| : (f,2) € 2, T <t, i€ S}

Let R > 0. Denote by DR the cylinder {(¢,2) : 37" 1x] <R},0<t<T}
Let I'p == {(t,z) : 2_7°, J = R%* 0<t<T} and let S% stand for the base
of Dp, i.e. the set {(f,z): > 7, x5 < R?, t=0}.

The homogeneous system, i.e.
(3) Flu'](t,x) =0, i€,

is a particular case of (1). Observe that it is a system of independent homoge-
neous equations. The fundamental solutions I'(¢, x; 7, ) of the homogeneous
equations play an important role in our further considerations.

We now formulate the crucial assumptions concerning the coefficients of
the operators {F'};cs, which are sufficient for the existence of the funda-
mental solutions for the homogeneous system. These assumptions will be in
force throughout the paper.

We assume that

(P) the operators F*, i € S, are uniformly parabolic in £2, i.e. there is
> 0 such that

> tx£]£k>u25
7,k=1 j=1

for all (t,z) € 2, & = (&1,...,&m) €R™, and i € S;
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(H) the coefficients a§k(t,$), bé(t,a:), c(t,z),i €S, j,k=1,...,m, are
bounded, continuous functions in {2 such that a;k(t,x) = a?cj(t,m)
and satisfy the following uniform Holder conditions with exponent «
(0 < a < 1) in 2 with respect to z: there exists H > 0 such that

| (t, ) — aj(t,2")| < Hlzw — 2|7,
(@) — bi(t,a')] < Hlo - 2')°,
|Ci(t,$) - Ci(t7$/)| < H|‘T - $/|aa
for all (t,z), (t,2') € 2, j,k=1,...,m,and i € S.
Now, let us recall a lemma on the existence of the fundamental solution
and its estimate, whose proof can be found in [5] or [6].

LEMMA 1. If assumptions (P) and (H) hold then there exist the funda-
mental solutions I''(t,x;T,&) of the equations F'[u’|(t,x) =0, i € S, and
* 2
Pt gl < =) e L) e
for some p* < p, where p* depends on p and H, whereas ¢ depends on p, a,
T and the character of continuity of a;-k(t,x) in t.

Let us notice that from the proof of this lemma and the above assump-
tions on the coefficients of the operators F?, i € S, it follows that the con-
stants ¢ and p* are independent of <.

From the above inequality it follows immediately that

S Tt z;7,6)|dé < C forie S, where C = c(dn/u*)™/2.
Rm

The notation for constants which appear in Lemma 1 will be valid throughout

the paper.

If we strengthen the assumption on the principal coeflicients of the op-
erators {F'};cs then we obtain the positivity of the fundamental solution
(cf. [6]). Therefore, we will assume, instead of condition (H), the following
condition (Hy):

(H¢) the coefficients aé-k.(t,x), b;(t,x), c(t,x), i € S, J, k= 1,j..,m,
are bounded, continuous functions in 2 with a}(t,z) = aj;(t, z)
and satisfy the following uniform Hoélder conditions with exponent «
(0 < a < 1) in £2: there exists H > 0 such that

by (t ) — aly (¢, 2')| < H(jw — /| + [t — ]*/?),
b5 (¢, @) — b}(t,:v')| < Hlz — 2'|%,
i (t, ) — c(t, )| < H|x — 2|,
for all ¢, € [0,T], z,2’ e R™, jk=1,...,mand i€ S.
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LEMMA 2. If assumptions (P) and (H¢) hold then the I''(t,z;1,&) are
positive functions.

Using the fundamental solutions we can transform the differential prob-
lem (1), (2) into the following associated integral system:

(4)  W(ta)= | I'(t2;0,6)0' (€)de
Rm
t
—l—S S Tt ;7 &) fi(r, & u(r, €),u)dédr  for t >0, x € R™.
OR™

In the space Cs(£2) the following partial order is introduced: for z,Z €
Cs(£2), the inequality z < z means that

2i(t,x) < Z(t,z) forall (t,z) € 2 andic S.
Now, we recall the definitions of subsolutions and supersolutions.

DEFINITION. Functions v = {v'};cs, w = {w'}ics such that v',w' €
C12(02) for all i € S satisfy the system of inequalities

Fio')(t,z) < f't,z,v(t,x),v) for (t,x) € 2,i€ S,
v(0,2) < p(z) for z € R™,

Filw'|(t,z) > f'(t,z,w(t,z),w) for (t,z) € 2,i€ S,
w(0,z) > p(x) for z € R™.

are call_ed, respectively, a subsolution and a supersolution for problem (1),
(2) in £2.

This definition can be extended to the case when v = {U%}ieS and w =
{w'}ies are less regular, namely v,w € Cg(§2). Then v = {v'};es and w =
{w'};cs are called a sub- and supersolution if they satisfy the inequalities
v < T[v] and w > T[w], respectively, where T = {T%};cs is the right hand
side of (4), i.e.

Tl = | I'(t,2;0,9)¢' () de + | | T'(t, 257, f1 (7,6, 0(7,€),v) d€ dr.
R™ OR™

In that case one can say that the differential inequalities
Fol)(t, ) < fit,z,v(t,z),v), i8S,

are satisfied in the integral sense (v < T[v]).

To end this section we recall a technical but useful lemma ([1], [4]), which
we use in Section 4.
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LEMMA 3. If 0 < B < A then

m/2 A
[ expl-ale ¢+ BeP)ae = (75) (505 P

Rm

This follows from the equality

2
AB m2_<m&_L 2) .

n

—Alx — €12 + Bl¢]? = ‘
|‘T 5’ + |€| gt A—_—RB mmz
Now, changing variables as follows: z; = VA — B§; — \/% :L‘?, and making

use of the fact that {g,, exp(—|z|?) dz = 7"/2 yields the result.

3. Bounded solutions. We begin this section with a proposition on the
continuous dependence of bounded solutions of the Cauchy problem on the
right hand sides and initial values. In case the right hand sides satisfy the
Lipschitz condition, this guarantees the uniqueness of a solution of problem
(1), (2).

PROPOSITION 1. Let fi = fi(t,x,s,p) be Lipschitz continuous in s and
in p (uniformly with respect to i € S), i.e.

|t 2, 5,p) = f1(t,2,5,0)| < Lills = 5]l pes) + Lallp = Pllos.

If v,w € Cg(£2) satisfy

(5) f’[vl](t,x) = ]_”:(t,x,v(t,:n),v),

Fw'|(t,x) = f'(t, z,w(t,x),w), €S,

and there exists a nonnegative constant M independent of i € S such that
(6) |f(t,z,5,p) = Filt,@,5,p)] < M

then
t

lv = wllos < Cllv(0,) = w(0,)[loe’“" + | CMel =L dr
0

provided v — w € CBg(§2), where L = L1 + L.
Proof. Set Z(t) := ||z(t)| p(s), where z(t) = {z'(t) }ics and
Z(t)y= sup |o'(f,z) —w'(l,2)| = |v" — w'[os
rER™, i<t
Since v, w satisfy (5), making use of (6) and of the Lipschitz continuity of
f*in s and p we have

Vit x) —wi(t,x) = | Tt 2;0,8)[v'(0,8) — w'(0,€)] dg
Rm

+ 1§ w7, 1 (1,607, ), 0) = Filr & w(r,€), w) dg dr

0OR™
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t

<C0)+| | D't a1 (7.6 0(r,€),v) — (7, & w(T,€),v)| dé dr

OR™
t
+\ | Itz I (7 6 w(r, €),0) — F1(7, & w(r, €), w)| dé dr
0R™
t
+\ | Iz O (7 6 w(r, ), w) — Fi(7, & w(r, €), w)| dE dr
0OR™

< C2(0) + | O(Lalo(t, @) — w(t,x) | p(s) + Lallv — wllor + M) dr

< CZ(0) +\Cl(L1 + La)||2(7 e + M]dr, i€bS.

Therefore z satisfies the integral inequality
t
Z(t) < CZ(0) + | C[M + (Ly + Lo)Z(7)] dr.
0
Thus, the Gronwall lemma yields

Z(t) < CZ(0)etCEatla) 4 § CMet—CUFL) g7
0
REMARK 1. In particular, if the right hand sides of (5) are equal and
v(0,z) = w(0, z) then Proposition 1 yields the uniqueness.

Now, let us state a result concerning weak partial differential-functional
inequalities for an infinite system of parabolic equations in the class of con-
tinuous bounded functions. The Gronwall lemma will be our main tool in
the proof. This proposition plays a fundamental role in the proof of the main
theorem of this section, i.e. Theorem 1.

PROPOSITION 2. Let assumptions (P) and (H¢) hold. Let f' = fi(t,,
s,p) be increasing in s and p, and satisfy, uniformly with respect to i € S,
the one-sided Lipschitz condition with respect to s and p, i.e.

fi(t,:v,s,p) - fl(t,.’l?,g,p) < LIHS - gHB(S’) + L2||p —5”0,25
for s >'s, p=>p.
If v,w € CBs(12) satisfy

™ f?[vf]( x) i

Fluw'l(t, )

then the initial inequality v(0,

it @0t 2),0),
fit,z,w(t,z),w), ics,
x) <

w(0,z) carries over to §2.
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Proof. Set y(t) = {y*(t)}ics where y*(t) := max{0, 2*(t)} and
)= s () —w(F)

It is obvious that 0 < ¢%(t) < oo and z%(t) < yi(t) for all i € S. Let

I € CBg(£2) be the function whose every component is the constant function
equal to 1.

Now, the Lipschitz conditions and the fact that f?, i € S, are increasing
in s and p yield

fi(t,x,v(t,x),v) — fit,z, w(t,z),w) ‘
= fz(tvx’ [w + (v - w)](t,az), [U} + (U - w)]) - fz(tvx’w(tvx)vw)

< fit,x, wit,z) + y(@)I(t,z),w + yI) — f(t,z,w(t, z), w)
< Lilly()ll Bes) + Lallylllos = (L1 + La2)|ly(t)] B(s)-

Since v, w satisfy (7), for all i € S we have

Vit e) —wi(t,x) = | I(ta;0,€)[0(0,€) — w'(0,6)] dé
Rm™

+§ | it mm O (6 0(r, ), 0) — fi(7, € w(r,€),w)) dé dr
OR™
t

< (L1 + La)lly (M) 5s) dr.
0

Thus, the function y(t) = [|y(t)||p(s) satisfies

t
§(t) <\ C(Ly + Lo)g(7) dr.
0
Now the Gronwall lemma yields y(t) = 0, which means that v(t,z) < w(t, z)
in (2. m

As a direct consequence of Proposition 2 we get the following corollary.

COROLLARY 1. Let u € CBg({2) and suppose that
Filull(t,z) <0  for (t,z) € 2, i€S,
u(0,2) <0 forxz e R™.
Then u(t,z) <0 for (t,x) € 2.
REMARK 2. If v and w are a subsolution and a supersolution for prob-

lem (1), (2) in {2, respectively, and u is any solution of this problem, then
Proposition 2 yields

v(t,x) <u(t,z) <w(t,x) for (t,x) € f2.
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Below in Theorem 1 we construct certain sequences of successive approx-
imations as solutions of some linear systems of differential equations. Let us
stress that Proposition 2 ensures the uniform convergence of these sequences
to the required solution of problem (1), (2).

Before formulating the theorem we introduce the following notation.

For every sufficiently smooth function (3, let v = P[] be the unique
solution of the initial value problem

Fl(t @) = f'(t,z,8(t,2),8), i€S,
¥(0,z) = p(x) for z € R™.

Now, let us formulate the following assumptions.

ASSUMPTIONS 1. All components f(t,z,s,p) of f = {f'};cs are
(Cf) continuous in 2 x B(S) x CBg(12); o

(By) uniformly bounded in 2 x B(S) x CBg({2);

(If) increasing with respect to s and p;
(
(

Hy) locally Hélder continuous with respect to x uniformly in ¢;
Ly) Lipschitz continuous with respect to s and p:

’fi(t7m757p) - fi(tjxjfsjﬁ)‘ < LlHS - g”B(S) + Lng _ﬁHOJf
for (t,z) € 12, 5,5 € B(S), p,p € Cs(£2).

REMARK 3. Since the functions f! = fi(¢,z,s,p), i € S, are increasing
in s and p and I'*(t, x; 7, ) is a positive function the operator P is increasing.

ASSUMPTION 2. There exists at least one pair vy = vo(t,x), wo =
wo(t,z) € CBg(§2) of a subsolution and a supersolution of problem (1),

(2) in 2 which are Holder continuous in z uniformly with respect to ¢.

Now, we state and prove the theorem on the existence and uniqueness of
solution of problem (1), (2) obtained by a simple iterative method, i.e. start-
ing from a subsolution vy and a supersolution wy we define v, := Plv,_1],
Wy, := Plwp—1], n=1,2,.... Thus, at each step we have an infinite system
of linear equations. The sequence of successive approximations converges to
the desired solution with power speed.

THEOREM 1. Let conditions (P) and (H¢) hold. Suppose that every com-
ponent @' of the initial data ¢ = {p'}ics is a bounded continuous function on
R™. Moreover, let Assumptions 1 and 2 hold. Consider the following infinite
system of linear equations:

(8) ]:Z[v;](t,x) = f’:(t,x,vnfl(t,w),vn,l),
9) Flwy](t,z) = f(t,x, wp—1(t, ), wp_1),

for (t,x) € 2, i € S, n = 1,2,... with the initial condition (2), and let
Ny = ||’LUO — 7)0”0 < o00. Then
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(i) there exist unique classical bounded solutions v, and wy, n=12...,
of systems (8) and (9) with the initial condition (2) in (2
(ii) vy and wy, n = 1,2,..., are respectively subsolutions and superso-
lutions for problem (1), (2) in {2;
(i) we have
vo(t, ) <+ Son(t, @) S vppa(t,z) <--
< Wt @) Swp(t,z) < - <wolt, @)

for(t,x)e'!_Z,nzl,'Z... _
(iv) limy,—oowl (¢, x) — vl (¢, z)] = 0 uniformly in §2, i € S;
(v) u(t,z) = limy— 00 Un(t, x) is a unique classical bounded solution of

problem (1), (2) in £2.

Proof. (i) Starting from vg and wgy we define vy, w; as solutions of (8),
(9) with the initial condition (2), i.e. v;i = Plvg], w1 = Plwp]. Observe
that the systems in question have the following property: the ith equation
depends on the ith unknown function only, therefore since vy, wg satisfy
Assumption 2, the classical theorems on the existence and uniqueness of
solution of linear parabolic Cauchy problems (cf. [5] or [6]) assert that there
exist unique solutions v1,w; € CBs(f2) of the above problems and v; and
wy are Holder continuous with respect to x uniformly in ¢ (cf. [5]).

Next, we define by induction {v,}, {w,} as solutions of (8), (9) with the
initial condition (2), i.e. v, = Plop_1], wn = Plwn—_1].

The preceding reasoning shows that v,, w, exist and are uniquely de-
fined. Moreover, for each i € S, n=1,2,..., v’ w! are bounded, belong to
C12(£2) and are Holder continuous in x uniformly in ¢.

(ii) We now show, by induction, that the functions v, are subsolutions.
vp is a subsolution by Assumption 2. Suppose vy, is a subsolution of (1), (2)
in 2, i.e.

Fioil(t,z) < filt, z,va(t,z),v,) for (t,z) € 2, i €S,
v (0, 2) < () for x € R™.
From the definition of the operator P it follows that
Fioh )t @) = fi{(t, @, v(t,x),v,)  for (t,x) € 2, i €S,
Un41(0, ) = () for x € R™.

Thus, Corollary 1 yields
[Un — vpy1](t,2) <0 for (t,z) € 0,

ie.
vn(t,x) < Plun](t,x)  for (t,z) € 0.

Now, the monotonicity condition (Iy) implies
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fﬂi[vf’b-i-l](t’ ZL‘) - fi(tv z, UnJrl(tv 33‘), UnJrl)
= fit,z,vn(t, ), v0) — fit, 2, Plog](t, z), Plvg]) <0

for all i € S, (t,2) € £2. We conclude that v, 11 is a subsolution as well. The
proof that the w, are supersolutions is similar.

(iii) The monotonicity of the sequences {v,}, {w,} is a consequence
of the fact that v,, w, are subsolutions and supersolutions, respectively,
whereas the inequality v,, < w,, follows from the monotonicity of the operator
P and the fact that vy < wp.

(iv) We show by induction that m? (¢, z) = wi(t,x) — v (t,) > 0 is
estimated as follows:

[(L1 + Lo)t]"

(10) (@) < No ===,

n=0,1..., for (t,z) € 2,i€ S.

The inequality for mj) is obvious. Suppose it holds for m,. Condition (Ly)
yields

P[mﬁlﬂ](t,x) = fi(t,m,wn(t,x),wn) — fi(t,m,vn(t,m),vn)
< Lillma(t, )| p(s) + Lellmanllo.:
By the definitions of || - [[o+ and || - [|p(s) and the induction assumption
both ||my(t, )| p(s) and [[mn|lo,¢ are estimated by No[(L1 + L2)t]" /n!. Thus,
finally,
Ll +L2)n+1tn

in 2
n!

Filmi, 1 ](tz) < N

and m!,,(0,2) =0 for z € R™, i € S.
In order to apply the theorem on differential inequalities, consider the
comparison system
(Ll 4 Lz)n+1tn
n!
with the initial condition M (0,z) >0 for z € R™, i € S.
The functions M} (t,z) = No[(L1 + L2)t]"*/(n + 1)! are solutions of
the comparison problem, therefore, owing to Proposition 2, we get
[(Ly + Lo)t]™ !
(n+1)!
so, the induction step is proved. As a direct consequence of (10) we obtain

(11) lim [w? (t,2) —v%(t,2)] =0 uniformly in £2.

F[My,4](t, ) = No

n

for (t,x) € 2,1 € S,

my, 4 (t, @) < M, 4 (t, ) = No for (t,x) € 2,i € S,

(v) First, notice that, since {v,} and {w,} are bounded and monotone
sequences of continuous functions and (11) holds, there exist continuous
bounded functions v’ = u'(t, z) such that

(12) lim v’ (t,z) = u'(t,z), lim w’(t,z) = u'(t, z)
n—00 n—00
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uniformly in {2 for all i € S and the function u = {u'};cs satisfies the initial
condition (2).

Now, we prove that u satisfies (1). It is enough to show that w fulfills (1)
in any compact set contained in (2.

Consequently, we only need to prove it in Dp for any R > 0.

From (Iy) and (iii) it follows that f*(¢,z,v,—1(t,x),v,—1) are uniformly
bounded in Dp (with respect to n), therefore the solution v, (¢, x) of the
linear system

(13) F[v;](t,aj) = fi(t,x,vn,l(t,:z:),vn,l), 1€ 8,

with a suitable initial condition is Hoélder continuous with exponent o with

respect to z uniformly in ¢, with a constant independent of n (cf. [5]). Hence,

u(t, ) also satisfies the Holder condition with respect to x uniformly in ¢.
Now, consider the system

(14) Fl(t, ) = fi(t,z,u(t,x),u)  for (t,) € Dp, i € S,
with the conditions
(15) z(t,x) =u(t,x) on Ik,
(16) 2(0,x) = ¢(x) on S%.
As u(t,x) is Holder continuous with respect to = and conditions (Hy) and
(Ls) hold, the right hand sides of this system are continuous in Dg and
locally Hélder continuous with respect to x.

Thus, the classical existence and uniqueness theorems for linear parabolic
initial-boundary valued problems (cf. [6]) imply that there exists a unique

classical solution z(t,x) of the problem (14), (15), (16) in Dpg.
On the other hand, from (12) and (Ly) it follows that

lim fi(t,x, vp_1(t,x),vp_1) = f(t,z,u(t,z),u) uniformly in Dp.
n—oo

Moreover, the boundary values vy, (¢, x) converge uniformly to u(¢,x) on
I'p and the initial values are equal, so applying to systems (13) and (14)
the theorem on the continuous dependence of the solution on the right hand
sides and initial-boundary values (cf. [11]) we conclude that

lim v’ (t,z) = 2(t,z) uniformly in Dp.
n—oo

Thus 2(t,x) = u'(t,x) in D for all i € S, for arbitrary R > 0, which means
z(t,x) = u(t,z) for all (t,z) € 2, i.e. u(t,x) is a classical bounded solution
of problem (1), (2).

The uniqueness of the solution is a direct consequence of Remark 1.
Theorem 1 is proved. =

4. Unbounded solutions. This section contains a result (Proposition 3)
which is crucial in the proof of our theorem on the existence of unbounded
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solutions (Theorem 2). It yields weak partial differential inequalities for func-
tions which behave like |u?(¢, z)| < D exp(d|x|?). The result is obtained upon
assuming the right hand sides to satisfy the Lipschitz condition with respect
to s and a weighted Lipschitz condition with respect to p.

We denote by C'T the space of all positive, real-valued, continuous and

nondecreasing functions defined on the set [0, T]. For w € Cg(f2) we define
the following weighted norms depending on ¢ € C:

HwH27¢ = sSup Ssup |'l;} (t7$)| -
i€s (1a)en (]2 exp(g(t)][?)

w2, := sup sup _ |Q;’ (t, )| —
R i, PO explo@aP)

Let Eé’(b for ¢ € CT be the space of all functions w € Cg(§2) such that
ID>0V(t,x) e RVieS |w'(tz)| < Dexp(d(t)|z]?).

Obviously, Eg"b endowed with the norm || - ||2 4 is a Banach space.
Now, we state and prove the proposition mentioned above.

PROPOSITION 3. Let assumptions (P) and (H¢) hold. Let ¢ € CT satisfy
pro(r)

p* —4g(7)(t — 1)

where u* is the constant which appeared in Lemma 1. Let f' = fi(t,z,s,p) be

increasing in s and p and satisfy the following one-sided Lipschitz condition
uniformly with respect to i € S

fi(t,l‘, s,p) - fi(ta$7§7@
< Li|ls = 3|l sy + Lallp — Bllzgsld(t)]™? exp(é(t)|x]*)
for (t,x) € 2,5>35,p>Dp.

<P(t) for0<7<t<T,

If v,w e E§’¢ satisfy the system of inequalities
F'](t,x) < f'(t,z,0(t,2),v),
Flw'(t,z) > fi(tz,w(t,z),w), Q€S

then the initial inequality v(0,z) < w(0,z) carries over to the whole domain.

(17)

~ Proof. As in the proof of Proposition 2 we define y(t) = {y'(t)}ics, where
y'(t) == max{0, 2" (t)}, 2'(t) = sup,epm j<;(v'(t,2) — w'({,x)). It is obvious
that 0 < 3(t) < oo and z%(t) < yi(t) for all i € S. Let I € Eé’(b be the
constant function equal to 1.
We notice that the definitions of | - ||2,4+ and y(t) and the monotonicity
of ¢ yield
ly@®)ll5es) < [19ll2.6.6[00O) exp(o(t)]z]?).
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Combining the Lipschitz condition with the fact that f?, i € S, are increasing
in s and p we obtain

(18)  fi(t,x,v(t,x),0) = f'(t, 2, w(t,x),w)
=fit 2 [w+ (v = w)]t,2), [w+ (v -w)]) -
< St @, w(t ) +y (DI, @), w + yI) — f1(
< Lilly(®)llps) + Lallyllz.s.[6(6)]™? exp(e(t)|2]?)
< (L1 + L) |yll2, g1 [6(8)] ™2 exp(6(t) ).

Since v, w satisfy (17), making use of (18) and Lemma 1 we have, for all

1€ S,

' (t, ) —wi(t, )| < | T7(t2;0,)[0°(0,8) — w'(0,€)] d&

Rm™

itz w(t,z),w)

yx,w(t, z),w)

t

+\ Vit e )£ (. € u(r.€),0) — filr. € w(r,€), w)| dE dr
0R™
t

<| | @1+ Lo)llv = wlag T (t, 27,8 [6(7)] ™ exp((7) [¢[) d dr
0OR™
t

< (L + Lo) [ v = wllap - [o(r)]™? | et — 1)~/
0 RrR™

iz — &
exp (5 ) explo(r)le?) dear.

Now, Lemma 3 shows that

' (¢, 2) — '(t z)|

< (1 + L) {0 — | T>]m/2<t—f>-m/2(

Am(t — 1) )m/2
pr—4o(r)(t = 7)

0
()|l
X eXp<M* —4¢(7)(t — 7')) ar
o tro(r)  \™
< c(Ly +L2)§||U |2’¢’T<M* —4¢(7)(t—7)>

By the assumption on ¢ we have
’vi(t7 .%') - wi<t7 .ZL')’

<e(Ly + L2)< t

m/2
) (™ exp(é(t) ) { I — wllnr

0

47
w*
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Thus,
t

lv = wll2.g. < § (L1 + Lo) o = w2~ dr.
0

Now, the Gronwall lemma yields [|[v — wl[2,4+ = 0, so v(t,z) < w(t,x) in 2,
which completes the proof. »

As a direct consequence of Proposition 3 one gets the following corollary.
COROLLARY 2. Let u € E§’¢ and assume that
Filul(t,z) <0 for (t,x) € 2,i € S,
u(0,z) <0  forxz e R™.
Then u(t,z) <0 for (t,z) € 2.
REMARK 4. In particular, Proposition 3 shows that there exists at most

one solution of problem (1), (2) (in the integral sense) satisfying the growth
condition |u’(t,x)| < Dexp(¢(t)|z|?) for (t,x) € 2.

Now, we state a result similar to Theorem 1, but concerning functions
which behave like |u'(t,z)| < Dexp(¢(t)|x|?). But first, let us formulate
appropriate assumptions.

ASSUMPTIONS 3. All components f(t,z,s,p) of f = {f'};cs are
(Cy) continuous in £ x B(S) x E§’¢;
(Bf) exponentially bounded:

IMy >0Vie SY(t,z)e 2 |fi(t,x,0,0)| < Myexp(o(t)|z|?);

(If) increasing with respect to s and p;
(Hy) locally Holder continuous with respect to  uniformly in ¢;
(Ly) weighted Lipschitz continuous in the following sense:

|t s,p) = ['(t,2,5,D)]
< Lulls =3 5(s) + Lallp = Bll.g.4[6(0)] ™ exp(e(t)|2[*)
for (t,x) € £2, 5,5 € B(S), p,p € Cs(£2).

ASSUMPTION 4. There exists at least one pair vog=uvg(t, z), wo=wo(t, z)
€ E§’¢ of a subsolution and a supersolution of problem (1), (2) in £ which
are Holder continuous in z uniformly with respect to t.

THEOREM 2. Let assumptions (P) and (H¢) hold. Let ¢ € CT satisfy

po(r)
p* —4g(7)(t —7)
where y* is the constant which appeared in Lemma 1. Let f = {f'}ics satisfy
Assumptions 3. Moreover, let Assumption 4 hold and let all the components

<p(t) for0<7T<t<T,
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of the initial data ¢ = {¢'}ics be such that | o' (z)| < K exp(¢(0)|x|?) for all
xr € R™.
Consider the following infinite system of linear equations:
(19) Flon)(t,2) = ['(t 2, vn1 (t, ), vn-1),
(20) }—Z[ ](t ZZ?) fl(t’l‘awnfl(tvx)vwnfl)a
for (t,x) € 2,41 € S, n = 1,2,... with the initial condition (2), and let
Ny = ||’LUO — ’Uo”2 ¢ < O0. Then
(i) there exist unique classical solutions v, € Eg 29 and wy, € ES , =
1,2..., of systems (19) and (20) with the zmtzal condition (2) in £2;
(ii) vy and wp, n=1,2,..., are respectively subsolutions and superso-
lutions for problem (1), (2) in §2;
(iii) we have
UO(ta:L‘) <...< Un(t’x) < Un+1(t’x) <
< wn-‘rl(tvx) < wn(tax) << wo(tvx)

for (t,x) € 2, n=1,2,.

(iv) u(t,z) = lim, 00 vn(t :U) is a unique classical solution of problem
(1), (2) in 2 satisfying the condition |u'(t,z)| < Dexp(¢(t)|x|?) for
(t,x) € 2

Proof. (i) As in the proof of Theorem 1, starting from vy and wg, we
define by induction the sequences {v,}, {wy} as solutions of (19), (20) with
the initial condition (2) in {2, i.e.

Un = P[UTL—l]a Wp = P['Un—l] forn=1,2,....

Here too, the ith equation depends on the ith unknown function only and
Assumption 4 holds, therefore the classical theorems on the existence and
uniqueness of solution for linear Cauchy problems assert that there exist
unique classical solutions v, wy, in E§’¢ of problems (19), (2) and (20), (2),
respectively (cf. [6]).

The proofs of steps (ii)—(iii) are analogous to those in Theorem 1, with
Corollary 1 replaced by Corollary 2 and on noticing that the inequalities (iii)
guarantee that u satisfies the desired growth condition.

(iv) First, we show that u(t,z) = limy, oo v, (¢, ) is continuous. To this
end we show by induction that mé (t,z) := wi (t,x) — v (¢, z) > 0 satisfies

UL /2 explo(0) o),

for (t,z) € 2, n=0,1,...,i€S.

The inequality for mé is obvious. Suppose it holds for m¢ . Similarly to
the proof of Theorem 1, the (Ly) condition yields
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Fimb 4]t 2) = fr it 2, wn(t,2),wn) — F1 (2, v0(t, 2), vn)
< Lillma(t, @)l 5(s) + Lallmnll2,6.:[6(6)]™? exp(¢(t) |2|)
< (L1 + La) [ mallzp.:[6(8)] ™2 exp(6(t)][*).
By the definitions of || - ||2,4+ and the induction assumption, ||m,|2.4: <
N()[(Ll + Lg)t]”/n'
Thus, finally,
Ll _|_L2 n+1tn ]
LS o2 explo)af?) in @2
and m},,(0,2) =0 forz € R™, i € S.
In order to apply the theorem on differential inequalities, consider the
comparison system

Filmi)(t,2) < Np &

(L1 + Lo)™H1em
n!

FM}](t x) = No

n

[G(6)]"™2 exp(g(t)]]?)

for (¢t,z) € £2, i € S, with the initial condition M ,(0,z) = 0 for z € R™,
i€ S.

Now, let us estimate the solution of this comparison system. Lemma 1,
Lemma 3 and the properties of ¢ yield

t
M (ta) <\ Tt 27, ) fi(r,€) dE dr

0R™
t

<0 0, e o) expote)et - )

0OR™
* 2
X exp(—%) d¢ dr

<c % (L1 + Lo)™*! S T o(T) ™3 (t — 7)T™/?
' 0
Ar(t —7) m/2 [* ()| z[2
(ree) = emn—)"
NO n t n 47‘((;5(7') m/2
< 0H<L1+L2) +1§)7’ <:U'* —4¢(T)(t—7')>

wro(r)|z|?
XexP(u*—4¢vxt—vo>dr

tn—i—l
< Ny

CESAG Ly)" Mo (t)]™? exp(o(t)|z[?).
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Therefore, owing to Proposition 3 we get

m%+1(t733) < MZ+1(t,fU) < No

(L1 + Lo)t]™*!
(n+1)!

(1)) exp(¢(t)]2]?),
for (t,z) € 2, i € S,

so, the induction step is proved. Thus, |[m,|l2,4 = [[Mnllo — 0 as n — oo
where

Tn = va|d(t)] ™2 exp(—o(t)|z]?),
Wy, = wn[6(1)] "™ exp(—¢(t)|z]?).

Therefore, as in the proof of Theorem 1 we conclude that u := lim,,_ .o Uy, is
continuous and consequently so is u = uexp(¢(t)|z|?).

To end the proof it is enough to repeat the proof of step (v) of The-

orem 1. Finally, the uniqueness of the solution is a direct consequence of
Proposition 3. =
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