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Monotone iteration for in�nite systems ofparaboli equations with funtional dependeneby Anna Pudełko (Kraków)
Abstrat. We onsider the initial value problem for an in�nite system of di�erential-funtional equations of paraboli type. General operators of paraboli type of seond orderwith variable oe�ients are onsidered and the system is weakly oupled. The solu-tions are obtained by the monotone iterative method. We prove theorems on weak partialdi�erential-funtional inequalities as well the existene and uniqueness theorems in thelass of ontinuous bounded funtions and in the lass of funtions satisfying a ertaingrowth ondition.1. Introdution. Let T > 0 and Ω = {(t, x) : t ∈ (0, T ], x ∈ R

m}. Let
S be an in�nite set of indies. Let B(S) be the spae of bounded mappings
v : S ∋ i 7→ vi ∈ R endowed with the supremum norm

‖v‖B(S) := sup{|vi| : i ∈ S}.For every nonempty set X ⊂ R
m we denote by CS(X) the spae ofmappings

w : X ∋ x 7→ w(x) ∈ B(S), where w(x) : S ∋ i 7→ wi(x) ∈ R,and the funtions wi are ontinuous in X. For w we use the notation w =
{wi}i∈S as well.Let f = {f i}i∈S and ϕ = {ϕi}i∈S be given,

f i : Ω × B(S) × CS(Ω) → R,

ϕi : R
m → R, i ∈ S.Let u = {ui}i∈S where eah ui is an unknown funtion of the variables2000 Mathematis Subjet Classi�ation: Primary 35K15; Seondary 35K55, 35R10,35R45.Key words and phrases: in�nite systems, paraboli di�erential-funtional equations,Cauhy problem, monotone iterative method, di�erential inequality.This work is partly supported by loal Grant No. 11.420.04.[1℄



2 A. Pudeªko
(t, x) = (t, x1, . . . , xm), and set
F i :=

∂

∂t
−Ai, Ai :=

m∑

j,k=1

ai
jk(t, x)

∂2

∂xj∂xk
+

m∑

j=1

bi
j(t, x)

∂

∂xj
+ ci(t, x).

We onsider an in�nite system of weakly oupled (1) semilinear paraboliequations of reation-di�usion-onvetion type of the form
(1) F i[ui](t, x) = f i(t, x, u(t, x), u), i ∈ S,together with the initial ondition
(2) u(0, x) = ϕ(x) for x ∈ R

m.This paper is a ontinuation of the author's study of ertain systems ofparaboli equations (f. [9℄, [10℄). The paper extends lassial results on thissubjet in two diretions: di�erential-funtional equations are onsidered andthe systems onsist of in�nitely many weakly oupled equations. Our aim isto prove the existene and uniqueness of a solution for system (1) with theinitial ondition (2). To obtain the solution we apply the so-alled monotoneiterative method (f. [8℄).We onstrut two sequenes whih approximate the desired solution uni-formly and monotonially.In this approah we have to impose ertain onditions, namely the mono-toniity of the reation funtions in the last two variables. We also assumethe existene of a pair of sub- and supersolutions (so-alled lower and upperfuntions, respetively) for the problem in question.These assumptions are not typial of existene theorems but the methodof sub- and supersolutions, oupled with the monotone iterative tehnique,provides an e�etive and �exible mehanism that ensures theoretial as wellas onstrutive existene results for nonlinear problems (f. [7℄). The lowerand upper funtions serve as bounds for solutions whih are improved by amonotone iterative proess.We use some results on di�erential inequalities to show that sequenesobtained by monotone iteration onsist of sub- and supersolutions, as wellas to get their uniform onvergene.The �rst initial-boundary value problem for in�nite systems of weaklyoupled di�erential-funtional equations of paraboli type was dealt withusing the same monotone iterative tehnique in [2℄, [3℄.The existene and uniqueness of the Cauhy problem for a paraboliequation with funtional dependene represented by a Hale type operatorand omparison priniples for suh a paraboli di�erential-funtional initialvalue problem were onsidered in [4℄ and [1℄, respetively.
(1) That is, every equation ontains all unknown funtions and derivatives of only oneunknown funtion.



In�nite systems of paraboli equations 3This paper is organized as follows. In the next setion the neessary no-tations are introdued. We also formulate our assumptions and auxiliarylemmas. In Setion 3 we state and prove omparison priniples for boundedontinuous funtions and a theorem on the existene and uniqueness of so-lutions in that lass of funtions. The last setion ontains results analogousto ones from Setion 3, but for unbounded ontinuous funtions satisfying aertain growth ondition.2. Notations, de�nitions and assumptions. Throughout the paper,we use the following notation. The Eulidean norm in R
m is denoted by

| · | and the norms in funtion spaes are denoted by ‖ · ‖ with appropriateindies, in partiular the supremum norm is denoted by ‖ · ‖0.Let CBS(X) denote the spae of funtions w = {wi}i∈S suh that w ∈
CS(X) and eah wi is bounded on X, uniformly in i. This spae, endowedwith the supremum norm

‖w‖0 := sup{|wi(x)| : x ∈ X, i ∈ S},is a Banah spae. For w ∈ CBS(Ω) and for a �xed t ≥ 0 we de�ne
‖w‖0,t := sup{|wi(t̃, x)| : (t̃, x) ∈ Ω, t̃ ≤ t, i ∈ S}.Let R > 0. Denote by DR the ylinder {(t, x) :

∑m
j=1 x2

j ≤ R2, 0 ≤ t ≤ T}.Let ΓR := {(t, x) :
∑m

j=1 x2
j = R2, 0 ≤ t ≤ T} and let S0

R stand for the baseof DR, i.e. the set {(t, x) :
∑m

j=1 x2
j ≤ R2, t = 0}.The homogeneous system, i.e.

(3) F i[ui](t, x) = 0, i ∈ S,is a partiular ase of (1). Observe that it is a system of independent homoge-neous equations. The fundamental solutions Γ i(t, x; τ, ξ) of the homogeneousequations play an important role in our further onsiderations.We now formulate the ruial assumptions onerning the oe�ients ofthe operators {F i}i∈S , whih are su�ient for the existene of the funda-mental solutions for the homogeneous system. These assumptions will be infore throughout the paper.We assume that(P) the operators F i, i ∈ S, are uniformly paraboli in Ω, i.e. there is
µ > 0 suh that

m∑

j,k=1

ai
jk(t, x)ξjξk ≥ µ

m∑

j=1

ξ2
j

for all (t, x) ∈ Ω, ξ = (ξ1, . . . , ξm) ∈ R
m, and i ∈ S;



4 A. Pudeªko(H) the oe�ients ai
jk(t, x), bi

j(t, x), ci(t, x), i ∈ S, j, k = 1, . . . , m, arebounded, ontinuous funtions in Ω suh that ai
jk(t, x) = ai

kj(t, x)and satisfy the following uniform Hölder onditions with exponent α
(0 < α ≤ 1) in Ω with respet to x: there exists H > 0 suh that

|ai
jk(t, x) − ai

jk(t, x
′)| ≤ H|x − x′|α,

|bi
j(t, x) − bi

j(t, x
′)| ≤ H|x − x′|α,

|ci(t, x) − ci(t, x′)| ≤ H|x − x′|α,for all (t, x), (t, x′) ∈ Ω, j, k = 1, . . . , m, and i ∈ S.Now, let us reall a lemma on the existene of the fundamental solutionand its estimate, whose proof an be found in [5℄ or [6℄.
Lemma 1. If assumptions (P) and (H) hold then there exist the funda-mental solutions Γ i(t, x; τ, ξ) of the equations F i[ui](t, x) = 0, i ∈ S, and

|Γ i(t, x; τ, ξ)| ≤ c(t − τ)−m/2 exp

(
−µ∗|x − ξ|2

4(t − τ)

)
, i ∈ S,for some µ∗ < µ, where µ∗ depends on µ and H, whereas c depends on µ, α,

T and the harater of ontinuity of ai
jk(t, x) in t.Let us notie that from the proof of this lemma and the above assump-tions on the oe�ients of the operators F i, i ∈ S, it follows that the on-stants c and µ∗ are independent of i.From the above inequality it follows immediately that\

Rm

|Γ i(t, x; τ, ξ)| dξ ≤ C for i ∈ S, where C = c(4π/µ∗)m/2.The notation for onstants whih appear in Lemma 1 will be valid throughoutthe paper.If we strengthen the assumption on the prinipal oe�ients of the op-erators {F i}i∈S then we obtain the positivity of the fundamental solution(f. [6℄). Therefore, we will assume, instead of ondition (H), the followingondition (Ht):(Ht) the oe�ients ai
jk(t, x), bi

j(t, x), ci(t, x), i ∈ S, j, k = 1, . . . , m,are bounded, ontinuous funtions in Ω with ai
jk(t, x) = ai

kj(t, x)and satisfy the following uniform Hölder onditions with exponent α
(0 < α ≤ 1) in Ω: there exists H > 0 suh that

|ai
jk(t, x) − ai

jk(t
′, x′)| ≤ H(|x − x′|α + |t − t′|α/2),

|bi
j(t, x) − bi

j(t, x
′)| ≤ H|x − x′|α,

|ci(t, x) − ci(t, x′)| ≤ H|x − x′|α,for all t, t′ ∈ [0, T ], x, x′ ∈ R
m, j, k = 1, . . . , m and i ∈ S.



In�nite systems of paraboli equations 5
Lemma 2. If assumptions (P) and (Ht) hold then the Γ i(t, x; τ, ξ) arepositive funtions.Using the fundamental solutions we an transform the di�erential prob-lem (1), (2) into the following assoiated integral system:

(4) ui(t, x) =
\

Rm

Γ i(t, x; 0, ξ)ϕi(ξ)dξ

+

t\
0

\
Rm

Γ i(t, x; τ, ξ)f i(τ, ξ, u(τ, ξ), u)dξdτ for t > 0, x ∈ R
m.

In the spae CS(Ω) the following partial order is introdued: for z, z̃ ∈
CS(Ω), the inequality z ≤ z̃ means that

zi(t, x) ≤ z̃i(t, x) for all (t, x) ∈ Ω and i ∈ S.Now, we reall the de�nitions of subsolutions and supersolutions.
Definition. Funtions v = {vi}i∈S , w = {wi}i∈S suh that vi, wi ∈

C1,2(Ω) for all i ∈ S satisfy the system of inequalities
F i[vi](t, x) ≤ f i(t, x, v(t, x), v) for (t, x) ∈ Ω, i ∈ S,

v(0, x) ≤ ϕ(x) for x ∈ R
m,

F i[wi](t, x) ≥ f i(t, x, w(t, x), w) for (t, x) ∈ Ω, i ∈ S,

w(0, x) ≥ ϕ(x) for x ∈ R
m.are alled, respetively, a subsolution and a supersolution for problem (1),(2) in Ω.This de�nition an be extended to the ase when v = {vi}i∈S and w =

{wi}i∈S are less regular, namely v, w ∈ CS(Ω). Then v = {vi}i∈S and w =
{wi}i∈S are alled a sub- and supersolution if they satisfy the inequalities
v ≤ T[v] and w ≥ T[w], respetively, where T = {Ti}i∈S is the right handside of (4), i.e.
T

i[v] =
\

Rm

Γ i(t, x; 0, ξ)ϕi(ξ) dξ +

t\
0

\
Rm

Γ i(t, x; τ, ξ)f i(τ, ξ, v(τ, ξ), v) dξ dτ.

In that ase one an say that the di�erential inequalities
F i[vi](t, x) ≤ f i(t, x, v(t, x), v), i ∈ S,are satis�ed in the integral sense (v ≤ T[v]).To end this setion we reall a tehnial but useful lemma ([1℄, [4℄), whihwe use in Setion 4.
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Lemma 3. If 0 ≤ B < A then\

Rm

exp(−A|x − ξ|2 + B|ξ|2) dξ =

(
π

A − B

)m/2

exp

(
AB

A − B
|x|2

)
.This follows from the equality

−A|x − ξ|2 + B|ξ|2 =
n∑

i=1

AB

A − B
x2

i −
(√

A − B ξi −
A√

A − B
x2

i

)2

.Now, hanging variables as follows: zi =
√

A − B ξi − A√
A−B

x2
i , and makinguse of the fat that T

Rm
exp(−|z|2) dz = πm/2 yields the result.3. Bounded solutions. We begin this setion with a proposition on theontinuous dependene of bounded solutions of the Cauhy problem on theright hand sides and initial values. In ase the right hand sides satisfy theLipshitz ondition, this guarantees the uniqueness of a solution of problem(1), (2).

Proposition 1. Let f i = f i(t, x, s, p) be Lipshitz ontinuous in s andin p (uniformly with respet to i ∈ S), i.e.
|f i(t, x, s, p) − f i(t, x, s̃, p̃)| ≤ L1‖s − s̃‖B(S) + L2‖p − p̃‖0,t.If v, w ∈ CS(Ω) satisfy

(5)
F i[vi](t, x) = f i(t, x, v(t, x), v),

F i[wi](t, x) = f i(t, x, w(t, x), w), i ∈ S,and there exists a nonnegative onstant M independent of i ∈ S suh that
(6) |f i(t, x, s, p) − f i(t, x, s, p)| ≤ Mthen

‖v − w‖0,t ≤ C‖v(0, ·) − w(0, ·)‖0e
tCL +

t\
0

CMe(t−τ)CL dτprovided v − w ∈ CBS(Ω), where L = L1 + L2.Proof. Set z̃(t) := ‖z(t)‖B(S), where z(t) = {zi(t)}i∈S and
zi(t) = sup

x∈Rm, t≤t

|vi(t, x) − wi(t, x)| = ‖vi − wi‖0,t.Sine v, w satisfy (5), making use of (6) and of the Lipshitz ontinuity of
f i in s and p we have
vi(t, x) − wi(t, x) =

\
Rm

Γ i(t, x; 0, ξ)[vi(0, ξ) − wi(0, ξ)] dξ

+

t\
0

\
Rm

Γ i(t, x; τ, ξ)[f i(τ, ξ, v(τ, ξ), v) − f i(τ, ξ, w(τ, ξ), w)] dξ dτ
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≤ Czi(0) +

t\
0

\
Rm

Γ i(t, x; τ, ξ)|f i(τ, ξ, v(τ, ξ), v) − f i(τ, ξ, w(τ, ξ), v)| dξ dτ

+

t\
0

\
Rm

Γ i(t, x; τ, ξ)|f i(τ, ξ, w(τ, ξ), v) − f i(τ, ξ, w(τ, ξ), w)| dξ dτ

+

t\
0

\
Rm

Γ i(t, x; τ, ξ)|f i(τ, ξ, w(τ, ξ), w) − f i(τ, ξ, w(τ, ξ), w)| dξ dτ

≤ Czi(0) +

t\
0

C(L1‖v(t, x) − w(t, x)‖B(S) + L2‖v − w‖0,τ + M) dτ

≤ Czi(0) +

t\
0

C[(L1 + L2)‖z(τ)‖B(S) + M ] dτ, i ∈ S.Therefore z̃ satis�es the integral inequality
z̃(t) ≤ Cz̃(0) +

t\
0

C[M + (L1 + L2)z̃(τ)] dτ.Thus, the Gronwall lemma yields
z̃(t) ≤ Cz̃(0)etC(L1+L2) +

t\
0

CMe(t−τ)C(L1+L2) dτ.

Remark 1. In partiular, if the right hand sides of (5) are equal and
v(0, x) = w(0, x) then Proposition 1 yields the uniqueness.Now, let us state a result onerning weak partial di�erential-funtionalinequalities for an in�nite system of paraboli equations in the lass of on-tinuous bounded funtions. The Gronwall lemma will be our main tool inthe proof. This proposition plays a fundamental role in the proof of the maintheorem of this setion, i.e. Theorem 1.
Proposition 2. Let assumptions (P) and (Ht) hold. Let f i = f i(t, x,

s, p) be inreasing in s and p, and satisfy , uniformly with respet to i ∈ S,the one-sided Lipshitz ondition with respet to s and p, i.e.
f i(t, x, s, p) − f i(t, x, s̃, p) ≤ L1‖s − s̃‖B(S) + L2‖p − p̃‖0,tfor s ≥ s̃, p ≥ p̃.If v, w ∈ CBS(Ω) satisfy

(7)
F i[vi](t, x) ≤ f i(t, x, v(t, x), v),

F i[wi](t, x) ≥ f i(t, x, w(t, x), w), i ∈ S,then the initial inequality v(0, x) ≤ w(0, x) arries over to Ω.



8 A. PudeªkoProof. Set y(t) = {yi(t)}i∈S where yi(t) := max{0, zi(t)} and
zi(t) = sup

x∈Rm, t≤t

(vi(t, x) − wi(t, x)).It is obvious that 0 ≤ yi(t) < ∞ and zi(t) ≤ yi(t) for all i ∈ S. Let
I ∈ CBS(Ω) be the funtion whose every omponent is the onstant funtionequal to 1.Now, the Lipshitz onditions and the fat that f i, i ∈ S, are inreasingin s and p yield
f i(t, x, v(t, x), v)− f i(t, x, w(t, x), w)

= f i(t, x, [w + (v − w)](t, x), [w + (v − w)]) − f i(t, x, w(t, x), w)

≤ f i(t, x, w(t, x) + y(t)I(t, x), w + yI) − f i(t, x, w(t, x), w)

≤ L1‖y(t)‖B(S) + L2‖yI‖0,t = (L1 + L2)‖y(t)‖B(S).Sine v, w satisfy (7), for all i ∈ S we have
vi(t, x) − wi(t, x) =

\
Rm

Γ i(t, x; 0, ξ)[vi(0, ξ) − wi(0, ξ)] dξ

+

t\
0

\
Rm

Γ i(t, x; τ, ξ)[f i(τ, ξ, v(τ, ξ), v) − f i(τ, ξ, w(τ, ξ), w)] dξ dτ

≤
t\
0

C(L1 + L2)‖y(τ)‖B(S) dτ.Thus, the funtion ỹ(t) = ‖y(t)‖B(S) satis�es
ỹ(t) ≤

t\
0

C(L1 + L2)ỹ(τ) dτ.Now the Gronwall lemma yields ỹ(t) ≡ 0, whih means that v(t, x) ≤ w(t, x)in Ω.As a diret onsequene of Proposition 2 we get the following orollary.
Corollary 1. Let u ∈ CBS(Ω) and suppose that

F i[ui](t, x) ≤ 0 for (t, x) ∈ Ω, i ∈ S,

u(0, x) ≤ 0 for x ∈ R
m.Then u(t, x) ≤ 0 for (t, x) ∈ Ω.

Remark 2. If v and w are a subsolution and a supersolution for prob-lem (1), (2) in Ω, respetively, and u is any solution of this problem, thenProposition 2 yields
v(t, x) ≤ u(t, x) ≤ w(t, x) for (t, x) ∈ Ω.



In�nite systems of paraboli equations 9Below in Theorem 1 we onstrut ertain sequenes of suessive approx-imations as solutions of some linear systems of di�erential equations. Let usstress that Proposition 2 ensures the uniform onvergene of these sequenesto the required solution of problem (1), (2).Before formulating the theorem we introdue the following notation.For every su�iently smooth funtion β, let γ = P[β] be the uniquesolution of the initial value problem
F i[γi](t, x) = f i(t, x, β(t, x), β), i ∈ S,

γ(0, x) = ϕ(x) for x ∈ R
m.Now, let us formulate the following assumptions.

Assumptions 1. All omponents f i(t, x, s, p) of f = {f i}i∈S are
(Cf ) ontinuous in Ω × B(S) × CBS(Ω);
(Bf ) uniformly bounded in Ω × B(S) × CBS(Ω);
(If ) inreasing with respet to s and p;
(Hf ) loally Hölder ontinuous with respet to x uniformly in t;
(Lf ) Lipshitz ontinuous with respet to s and p:

|f i(t, x, s, p) − f i(t, x, s̃, p̃)| ≤ L1‖s − s̃‖B(S) + L2‖p − p̃‖0,tfor (t, x) ∈ Ω, s, s̃ ∈ B(S), p, p̃ ∈ CS(Ω).

Remark 3. Sine the funtions f i = f i(t, x, s, p), i ∈ S, are inreasingin s and p and Γ i(t, x; τ, ξ) is a positive funtion the operator P is inreasing.
Assumption 2. There exists at least one pair v0 = v0(t, x), w0 =

w0(t, x) ∈ CBS(Ω) of a subsolution and a supersolution of problem (1),(2) in Ω whih are Hölder ontinuous in x uniformly with respet to t.Now, we state and prove the theorem on the existene and uniqueness ofsolution of problem (1), (2) obtained by a simple iterative method, i.e. start-ing from a subsolution v0 and a supersolution w0 we de�ne vn := P[vn−1],
wn := P[wn−1], n = 1, 2, . . . . Thus, at eah step we have an in�nite systemof linear equations. The sequene of suessive approximations onverges tothe desired solution with power speed.
Theorem 1. Let onditions (P) and (Ht) hold. Suppose that every om-ponent ϕi of the initial data ϕ = {ϕi}i∈S is a bounded ontinuous funtion on

R
m. Moreover , let Assumptions 1 and 2 hold. Consider the following in�nitesystem of linear equations:

F i[vi
n](t, x) = f i(t, x, vn−1(t, x), vn−1),(8)

F i[wi
n](t, x) = f i(t, x, wn−1(t, x), wn−1),(9)for (t, x) ∈ Ω, i ∈ S, n = 1, 2, . . . with the initial ondition (2), and let

N0 = ‖w0 − v0‖0 < ∞. Then



10 A. Pudeªko(i) there exist unique lassial bounded solutions vn and wn, n=1, 2, . . . ,of systems (8) and (9) with the initial ondition (2) in Ω;(ii) vn and wn, n = 1, 2, . . . , are respetively subsolutions and superso-lutions for problem (1), (2) in Ω;(iii) we have
v0(t, x) ≤ · · · ≤ vn(t, x) ≤ vn+1(t, x) ≤ · · ·

≤ wn+1(t, x) ≤ wn(t, x) ≤ · · · ≤ w0(t, x)for (t, x) ∈ Ω, n = 1, 2 . . .(iv) limn→∞[wi
n(t, x) − vi

n(t, x)] = 0 uniformly in Ω, i ∈ S;(v) u(t, x) = limn→∞ vn(t, x) is a unique lassial bounded solution ofproblem (1), (2) in Ω.Proof. (i) Starting from v0 and w0 we de�ne v1, w1 as solutions of (8),(9) with the initial ondition (2), i.e. v1 = P[v0], w1 = P[w0]. Observethat the systems in question have the following property: the ith equationdepends on the ith unknown funtion only, therefore sine v0, w0 satisfyAssumption 2, the lassial theorems on the existene and uniqueness ofsolution of linear paraboli Cauhy problems (f. [5℄ or [6℄) assert that thereexist unique solutions v1, w1 ∈ CBS(Ω) of the above problems and v1 and
w1 are Hölder ontinuous with respet to x uniformly in t (f. [5℄).Next, we de�ne by indution {vn}, {wn} as solutions of (8), (9) with theinitial ondition (2), i.e. vn = P[vn−1], wn = P[wn−1].The preeding reasoning shows that vn, wn exist and are uniquely de-�ned. Moreover, for eah i ∈ S, n = 1, 2, . . . , vi

n, wi
n are bounded, belong to

C1,2(Ω) and are Hölder ontinuous in x uniformly in t.(ii) We now show, by indution, that the funtions vn are subsolutions.
v0 is a subsolution by Assumption 2. Suppose vn is a subsolution of (1), (2)in Ω, i.e.

F i[vi
n](t, x) ≤ f i(t, x, vn(t, x), vn) for (t, x) ∈ Ω, i ∈ S,

vn(0, x) ≤ ϕ(x) for x ∈ R
m.From the de�nition of the operator P it follows that

F i[vi
n+1](t, x) = f i(t, x, vn(t, x), vn) for (t, x) ∈ Ω, i ∈ S,

vn+1(0, x) = ϕ(x) for x ∈ R
m.Thus, Corollary 1 yields

[vn − vn+1](t, x) ≤ 0 for (t, x) ∈ Ω,i.e.
vn(t, x) ≤ P[vn](t, x) for (t, x) ∈ Ω.Now, the monotoniity ondition (If ) implies
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F i[vi

n+1](t, x) − f i(t, x, vn+1(t, x), vn+1)

= f i(t, x, vn(t, x), vn) − f i(t, x,P[vn](t, x),P[vn]) ≤ 0for all i ∈ S, (t, x) ∈ Ω. We onlude that vn+1 is a subsolution as well. Theproof that the wn are supersolutions is similar.(iii) The monotoniity of the sequenes {vn}, {wn} is a onsequeneof the fat that vn, wn are subsolutions and supersolutions, respetively,whereas the inequality vn ≤ wn follows from the monotoniity of the operator
P and the fat that v0 ≤ w0.(iv) We show by indution that mi

n(t, x) := wi
n(t, x) − vi

n(t, x) ≥ 0 isestimated as follows:
(10) mi

n(t, x) ≤ N0
[(L1 + L2)t]

n

n!
, n = 0, 1 . . . , for (t, x) ∈ Ω, i ∈ S.The inequality for mi

0 is obvious. Suppose it holds for mi
n. Condition (Lf )yields

F i[mi
n+1](t, x) = f i(t, x, wn(t, x), wn) − f i(t, x, vn(t, x), vn)

≤ L1‖mn(t, x)‖B(S) + L2‖mn‖0,t.By the de�nitions of ‖ · ‖0,t and ‖ · ‖B(S) and the indution assumptionboth ‖mn(t, x)‖B(S) and ‖mn‖0,t are estimated by N0[(L1 + L2)t]
n/n!. Thus,�nally,

F i[mi
n+1](t, x) ≤ N0

(L1 + L2)
n+1tn

n!
in Ωand mi

n+1(0, x) = 0 for x ∈ R
m, i ∈ S.In order to apply the theorem on di�erential inequalities, onsider theomparison system

F i[M i
n+1](t, x) = N0

(L1 + L2)
n+1tn

n!
for (t, x) ∈ Ω, i ∈ S,with the initial ondition M i

n+1(0, x) ≥ 0 for x ∈ R
m, i ∈ S.The funtions M i

n+1(t, x) = N0[(L1 + L2)t]
n+1/(n + 1)! are solutions ofthe omparison problem, therefore, owing to Proposition 2, we get

mi
n+1(t, x) ≤ M i

n+1(t, x) = N0
[(L1 + L2)t]

n+1

(n + 1)!
for (t, x) ∈ Ω, i ∈ S,so, the indution step is proved. As a diret onsequene of (10) we obtain

(11) lim
n→∞

[wi
n(t, x) − vi

n(t, x)] = 0 uniformly in Ω.(v) First, notie that, sine {vn} and {wn} are bounded and monotonesequenes of ontinuous funtions and (11) holds, there exist ontinuousbounded funtions ui = ui(t, x) suh that
(12) lim

n→∞
vi
n(t, x) = ui(t, x), lim

n→∞
wi

n(t, x) = ui(t, x)



12 A. Pudeªkouniformly in Ω for all i ∈ S and the funtion u = {ui}i∈S satis�es the initialondition (2).Now, we prove that u satis�es (1). It is enough to show that u ful�lls (1)in any ompat set ontained in Ω.Consequently, we only need to prove it in DR for any R > 0.From (If ) and (iii) it follows that f i(t, x, vn−1(t, x), vn−1) are uniformlybounded in DR (with respet to n), therefore the solution vn(t, x) of thelinear system
(13) F i[vi

n](t, x) = f i(t, x, vn−1(t, x), vn−1), i ∈ S,with a suitable initial ondition is Hölder ontinuous with exponent α withrespet to x uniformly in t, with a onstant independent of n (f. [5℄). Hene,
u(t, x) also satis�es the Hölder ondition with respet to x uniformly in t.Now, onsider the system
(14) F i[zi](t, x) = f i(t, x, u(t, x), u) for (t, x) ∈ DR, i ∈ S,with the onditions

z(t, x) = u(t, x) on ΓR,(15)

z(0, x) = ϕ(x) on S0
R.(16)As u(t, x) is Hölder ontinuous with respet to x and onditions (Hf ) and

(Lf ) hold, the right hand sides of this system are ontinuous in DR andloally Hölder ontinuous with respet to x.Thus, the lassial existene and uniqueness theorems for linear paraboliinitial-boundary valued problems (f. [6℄) imply that there exists a uniquelassial solution z(t, x) of the problem (14), (15), (16) in DR.On the other hand, from (12) and (Lf ) it follows that
lim

n→∞
f i(t, x, vn−1(t, x), vn−1) = f i(t, x, u(t, x), u) uniformly in DR.Moreover, the boundary values vn(t, x) onverge uniformly to u(t, x) on

ΓR and the initial values are equal, so applying to systems (13) and (14)the theorem on the ontinuous dependene of the solution on the right handsides and initial-boundary values (f. [11℄) we onlude that
lim

n→∞
vi
n(t, x) = zi(t, x) uniformly in DR.Thus zi(t, x) = ui(t, x) in DR for all i ∈ S, for arbitrary R > 0, whih means

z(t, x) = u(t, x) for all (t, x) ∈ Ω, i.e. u(t, x) is a lassial bounded solutionof problem (1), (2).The uniqueness of the solution is a diret onsequene of Remark 1.Theorem 1 is proved.4. Unbounded solutions. This setion ontains a result (Proposition 3)whih is ruial in the proof of our theorem on the existene of unbounded



In�nite systems of paraboli equations 13solutions (Theorem 2). It yields weak partial di�erential inequalities for fun-tions whih behave like |ui(t, x)| ≤ D exp(d|x|2). The result is obtained uponassuming the right hand sides to satisfy the Lipshitz ondition with respetto s and a weighted Lipshitz ondition with respet to p.We denote by C+ the spae of all positive, real-valued, ontinuous andnondereasing funtions de�ned on the set [0, T ]. For w ∈ CS(Ω) we de�nethe following weighted norms depending on φ ∈ C+:
‖w‖2,φ := sup

i∈S
sup

(t,x)∈Ω

|wi(t, x)|
[φ(t)]m/2 exp(φ(t)|x|2) ,

‖w‖2,φ,t := sup
i∈S

sup
x∈Rm, t≤t

|wi(t, x)|
[φ(t)]m/2 exp(φ(t)|x|2) .Let E2,φ

S for φ ∈ C+ be the spae of all funtions w ∈ CS(Ω) suh that
∃D ≥ 0 ∀(t, x) ∈ Ω ∀i ∈ S |wi(t, x)| ≤ D exp(φ(t)|x|2).Obviously, E2,φ

S endowed with the norm ‖ · ‖2,φ is a Banah spae.Now, we state and prove the proposition mentioned above.
Proposition 3. Let assumptions (P) and (Ht) hold. Let φ ∈ C+ satisfy

µ∗φ(τ)

µ∗ − 4φ(τ)(t − τ)
≤ φ(t) for 0 ≤ τ ≤ t ≤ T,where µ∗ is the onstant whih appeared in Lemma 1. Let f i = f i(t, x, s, p) beinreasing in s and p and satisfy the following one-sided Lipshitz onditionuniformly with respet to i ∈ S:

f i(t, x, s, p) − f i(t, x, s̃, p̃)

≤ L1‖s − s̃‖B(S) + L2‖p − p̃‖2,φ,t[φ(t)]m/2 exp(φ(t)|x|2)for (t, x) ∈ Ω, s ≥ s̃, p ≥ p̃.If v, w ∈ E2,φ
S satisfy the system of inequalities

(17)
F i[vi](t, x) ≤ f i(t, x, v(t, x), v),

F i[wi](t, x) ≥ f i(t, x, w(t, x), w), i ∈ S,then the initial inequality v(0, x) ≤ w(0, x) arries over to the whole domain.Proof. As in the proof of Proposition 2 we de�ne y(t) = {yi(t)}i∈S , where
yi(t) := max{0, zi(t)}, zi(t) = supx∈Rm, t≤t(v

i(t, x) − wi(t, x)). It is obviousthat 0 ≤ yi(t) < ∞ and zi(t) ≤ yi(t) for all i ∈ S. Let I ∈ E2,φ
S be theonstant funtion equal to 1.We notie that the de�nitions of ‖ · ‖2,φ,t and y(t) and the monotoniityof φ yield

‖y(t)‖B(S) ≤ ‖y‖2,φ,t[φ(t)]m/2 exp(φ(t)|x|2).



14 A. PudeªkoCombining the Lipshitz ondition with the fat that f i, i ∈ S, are inreasingin s and p we obtain
(18) f i(t, x, v(t, x), v)− f i(t, x, w(t, x), w)

= f i(t, x, [w + (v − w)](t, x), [w + (v − w)]) − f i(t, x, w(t, x), w)

≤ f i(t, x, w(t, x) + y(t)I(t, x), w + yI) − f i(t, x, w(t, x), w)

≤ L1‖y(t)‖B(S) + L2‖y‖2,φ,t[φ(t)]m/2 exp(φ(t)|x|2)
≤ (L1 + L2)‖y‖2,φ,t[φ(t)]m/2 exp(φ(t)|x|2).Sine v, w satisfy (17), making use of (18) and Lemma 1 we have, for all

i ∈ S,

|vi(t, x) − wi(t, x)| ≤
\

Rm

Γ i(t, x; 0, ξ)|vi(0, ξ) − wi(0, ξ)| dξ

+

t\
0

\
Rm

Γ i(t, x; τ, ξ)|f i(τ, ξ, v(τ, ξ), v) − f i(τ, ξ, w(τ, ξ), w)| dξ dτ

≤
t\
0

\
Rm

(L1 + L2)‖v − w‖2,φ,τΓ i(t, x; τ, ξ)[φ(τ)]m/2 exp(φ(τ)|ξ|2) dξ dτ

≤ (L1 + L2)

t\
0

‖v − w‖2,φ,τ [φ(τ)]m/2
\

Rm

c(t − τ)−m/2

× exp

(
−µ∗|x − ξ|2

4(t − τ)

)
exp(φ(τ)|ξ|2) dξ dτ.Now, Lemma 3 shows that

|vi(t, x) − wi(t, x)|

≤ c(L1 + L2)

t\
0

‖v − w‖2,φ,τ [φ(τ)]m/2(t − τ)−m/2

(
4π(t − τ)

µ∗ − 4φ(τ)(t − τ)

)m/2

× exp

(
µ∗φ(τ)|x|2

µ∗ − 4φ(τ)(t − τ)

)
dτ

≤ c(L1 + L2)

t\
0

‖v − w‖2,φ,τ

(
4πφ(τ)

µ∗ − 4φ(τ)(t − τ)

)m/2

× exp

(
µ∗φ(τ)|x|2

µ∗ − 4φ(τ)(t − τ)

)
dτ.By the assumption on φ we have

|vi(t, x) − wi(t, x)|

≤ c(L1 + L2)

(
4π

µ∗

)m/2

[φ(t)]m/2 exp(φ(t)|x|2)
t\
0

‖v − w‖2,φ,τ dτ.



In�nite systems of paraboli equations 15Thus,
‖v − w‖2,φ,t ≤

t\
0

(L1 + L2)‖v − w‖2,φ,τ dτ.Now, the Gronwall lemma yields ‖v − w‖2,φ,t ≡ 0, so v(t, x) ≤ w(t, x) in Ω,whih ompletes the proof.As a diret onsequene of Proposition 3 one gets the following orollary.
Corollary 2. Let u ∈ E2,φ

S and assume that
F i[ui](t, x) ≤ 0 for (t, x) ∈ Ω, i ∈ S,

u(0, x) ≤ 0 for x ∈ R
m.Then u(t, x) ≤ 0 for (t, x) ∈ Ω.

Remark 4. In partiular, Proposition 3 shows that there exists at mostone solution of problem (1), (2) (in the integral sense) satisfying the growthondition |ui(t, x)| ≤ D exp(φ(t)|x|2) for (t, x) ∈ Ω.Now, we state a result similar to Theorem 1, but onerning funtionswhih behave like |ui(t, x)| ≤ D exp(φ(t)|x|2). But �rst, let us formulateappropriate assumptions.
Assumptions 3. All omponents f i(t, x, s, p) of f = {f i}i∈S are
(Cf ) ontinuous in Ω × B(S) × E2,φ

S ;
(Bf ) exponentially bounded:

∃M0 ≥ 0 ∀i ∈ S ∀(t, x) ∈ Ω |f i(t, x, 0, 0)| ≤ M0 exp(φ(t)|x|2);
(If ) inreasing with respet to s and p;
(Hf ) loally Hölder ontinuous with respet to x uniformly in t;
(Lf ) weighted Lipshitz ontinuous in the following sense:

|f i(t, x, s, p) − f i(t, x, s̃, p̃)|
≤ L1‖s − s̃‖B(S) + L2‖p − p̃‖2,φ,t[φ(t)]m/2 exp(φ(t)|x|2)for (t, x) ∈ Ω, s, s̃ ∈ B(S), p, p̃ ∈ CS(Ω).

Assumption 4. There exists at least one pair v0 =v0(t, x), w0 =w0(t, x)

∈ E2,φ
S of a subsolution and a supersolution of problem (1), (2) in Ω whihare Hölder ontinuous in x uniformly with respet to t.

Theorem 2. Let assumptions (P) and (Ht) hold. Let φ ∈ C+ satisfy
µ∗φ(τ)

µ∗ − 4φ(τ)(t − τ)
≤ φ(t) for 0 ≤ τ ≤ t ≤ T,where µ∗ is the onstant whih appeared in Lemma 1. Let f = {f i}i∈S satisfyAssumptions 3. Moreover , let Assumption 4 hold and let all the omponents



16 A. Pudeªkoof the initial data ϕ = {ϕi}i∈S be suh that |ϕi(x)| ≤ K exp(φ(0)|x|2) for all
x ∈ R

m.Consider the following in�nite system of linear equations:
F i[vi

n](t, x) = f i(t, x, vn−1(t, x), vn−1),(19)

F i[wi
n](t, x) = f i(t, x, wn−1(t, x), wn−1),(20)for (t, x) ∈ Ω, i ∈ S, n = 1, 2, . . . with the initial ondition (2), and let

N0 = ‖w0 − v0‖2,φ < ∞. Then(i) there exist unique lassial solutions vn ∈ E2,φ
S and wn ∈ E2,φ

S , n =
1, 2 . . . , of systems (19) and (20) with the initial ondition (2) in Ω;(ii) vn and wn, n = 1, 2, . . . , are respetively subsolutions and superso-lutions for problem (1), (2) in Ω;(iii) we have

v0(t, x) ≤ · · · ≤ vn(t, x) ≤ vn+1(t, x) ≤ · · ·
≤ wn+1(t, x) ≤ wn(t, x) ≤ · · · ≤ w0(t, x)for (t, x) ∈ Ω, n = 1, 2, . . . ;(iv) u(t, x) = limn→∞ vn(t, x) is a unique lassial solution of problem

(1), (2) in Ω satisfying the ondition |ui(t, x)| ≤ D exp(φ(t)|x|2) for
(t, x) ∈ Ω.Proof. (i) As in the proof of Theorem 1, starting from v0 and w0, wede�ne by indution the sequenes {vn}, {wn} as solutions of (19), (20) withthe initial ondition (2) in Ω, i.e.

vn = P[vn−1], wn = P[vn−1] for n = 1, 2, . . . .Here too, the ith equation depends on the ith unknown funtion only andAssumption 4 holds, therefore the lassial theorems on the existene anduniqueness of solution for linear Cauhy problems assert that there existunique lassial solutions vn, wn in E2,φ
S of problems (19), (2) and (20), (2),respetively (f. [6℄).The proofs of steps (ii)�(iii) are analogous to those in Theorem 1, withCorollary 1 replaed by Corollary 2 and on notiing that the inequalities (iii)guarantee that u satis�es the desired growth ondition.(iv) First, we show that u(t, x) = limn→∞ vn(t, x) is ontinuous. To thisend we show by indution that mi

n(t, x) := wi
n(t, x) − vi

n(t, x) ≥ 0 satis�es
mi

n(t, x) ≤ N0
[(L1 + L2)t]

n

n!
[φ(t)]m/2 exp(φ(t)|x|2),

for (t, x) ∈ Ω, n = 0, 1, . . . , i ∈ S.The inequality for mi
0 is obvious. Suppose it holds for mi

n. Similarly tothe proof of Theorem 1, the (Lf ) ondition yields
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F i[mi

n+1](t, x) = f i(t, x, wn(t, x), wn) − f i(t, x, vn(t, x), vn)

≤ L1‖mn(t, x)‖B(S) + L2‖mn‖2,φ,t[φ(t)]m/2 exp(φ(t)|x|2)
≤ (L1 + L2)‖mn‖2,φ,t[φ(t)]m/2 exp(φ(t)|x|2).By the de�nitions of ‖ · ‖2,φ,t and the indution assumption, ‖mn‖2,φ,t ≤

N0[(L1 + L2)t]
n/n!.Thus, �nally,

F i[mi
n+1](t, x) ≤ N0

(L1 + L2)
n+1tn

n!
[φ(t)]m/2 exp(φ(t)|x|2) in Ωand mi

n+1(0, x) = 0 for x ∈ R
m, i ∈ S.In order to apply the theorem on di�erential inequalities, onsider theomparison system

F i[M i
n+1](t, x) = N0

(L1 + L2)
n+1tn

n!
[φ(t)]m/2 exp(φ(t)|x|2)for (t, x) ∈ Ω, i ∈ S, with the initial ondition M i

n+1(0, x) = 0 for x ∈ R
m,

i ∈ S.Now, let us estimate the solution of this omparison system. Lemma 1,Lemma 3 and the properties of φ yield
M i

n+1(t, x) ≤
t\
0

\
Rm

Γ i(t, x; τ, ξ)f i(τ, ξ) dξ dτ

≤
t\
0

\
Rm

N0

n!
(L1 + L2)

n+1τn [φ(τ)]m/2 exp(φ(τ)|ξ|2)c(t − τ)−m/2

× exp

(
−µ∗|x − ξ|2

4(t − τ)

)
dξ dτ

≤ c
N0

n!
(L1 + L2)

n+1
t\
0

τn[φ(τ)]m/2(t − τ)−m/2

×
(

4π(t − τ)

µ∗ − 4φ(τ)(t − τ)

)m/2

exp

(
µ∗φ(τ)|x|2

µ∗ − 4φ(τ)(t − τ)

)
dτ

≤ c
N0

n!
(L1 + L2)

n+1
t\
0

τn

(
4πφ(τ)

µ∗ − 4φ(τ)(t − τ)

)m/2

× exp

(
µ∗φ(τ)|x|2

µ∗ − 4φ(τ)(t − τ)

)
dτ

≤ N0
tn+1

(n + 1)!
(L1 + L2)

n+1[φ(t)]m/2 exp(φ(t)|x|2).



18 A. PudeªkoTherefore, owing to Proposition 3 we get
mi

n+1(t, x) ≤ M i
n+1(t, x) ≤ N0

[(L1 + L2)t]
n+1

(n + 1)!
[φ(t)]m/2 exp(φ(t)|x|2),for (t, x) ∈ Ω, i ∈ S,so, the indution step is proved. Thus, ‖mn‖2,φ = ‖m̃n‖0 → 0 as n → ∞where

m̃n = w̃n − ṽn,

ṽn = vn[φ(t)]−m/2 exp(−φ(t)|x|2),
w̃n = wn[φ(t)]−m/2 exp(−φ(t)|x|2).Therefore, as in the proof of Theorem 1 we onlude that ũ := limn→∞ ṽn isontinuous and onsequently so is u = ũ exp(φ(t)|x|2).To end the proof it is enough to repeat the proof of step (v) of The-orem 1. Finally, the uniqueness of the solution is a diret onsequene ofProposition 3.
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