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Simple connection matrices

by PIOTR BARTLOMIEJCZYK (Gdansk)

Abstract. We introduce simple connection matrices. We prove the existence of simple
connection matrices for filtered differential vector spaces and Morse decompositions of
compact metric spaces.

Introduction. The idea of the connection matrix is due to Charles Con-
ley, but its existence in the case of flows was first established by Robert
Franzosa [6]. Later Robbin and Salamon [9] extended the connection matrix
theory to the setting of discrete dynamical systems. Connection matrices can
be seen as algebraic representations of the dynamical system. They express
the relationship between certain (co)homology groups. Connection matrices
appear in a wide variety of situations. In this paper we study the simplest
possible version of these algebraic tools and for that reason we will call them
simple connection matrices. We introduce simple connection matrices for fil-
tered differential vector spaces. A filtered differential vector space is a finite
filtration of a given vector space together with an endomorphism d such that
d?> = 0 and d preserves the filtration. A simple connection matrix is a sub-
space of the filtered differential vector space which provides information on
some homology groups associated with the filtered differential vector space.
We prove the existence of such connection matrices.

It is natural to try to relate this purely algebraic theory to topological
dynamics. An understanding of the above relation is one of the goals of the
Conley index theory. The standard references here are [4]-[8]. In this paper
we consider flows on compact metric spaces. We have restricted ourselves
to the case of flows to avoid additional complications. Our purpose is to
investigate simple connection matrices for Morse decompositions.

The organization of the paper is as follows. Section 1 presents some pre-
liminaries from the Conley index theory for (continuous-time) flows. In Sec-
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tion 2 we introduce filtered differential vector spaces and prove the existence
of simple connection matrices. The proof was motivated by [9]. In Section 3
we indicate how the algebraic techniques from the previous section may be
applied to dynamical systems. For this purpose we introduce the notion of
the simple connection matrix for a Morse decomposition and examine some
elementary properties of this concept. Section 4 contains an example which il-
lustrates how simple connection matrices may be computed and represented.
For more references on the material presented here, see [1]-[3].

1. Preliminaries. We recall briefly some standard definitions from the
Conley index theory. The contents of this section will not be needed until
Section 3.

Throughout this paper X denotes a compact metric space and ¢ denotes
a flow on X, i.e. a continuous map ¢ : R x X — X satisfying

(p(O,.T) =7, <P(t7%0(371’)) :Qo(t"’_svx)'

If I c Rand A C X, then p(I,A) := {¢(t,z) | t € I and x € A}. For a
given subset N C X the set Inv(N) := {z € X | ¢(R,z) C N} is called the
invariant part of N. We say that S C X is invariant if Inv(S) = S.

Recall that given a set Y C X the positive limit set of Y is given by

wH(Y) = () ellp([t 00), V)
t>0
and the negative limit set of Y is

o (V) = [ ellp((=00, 1), V).
t<0

A compact set N C X is called an isolating neighborhood if Inv(N) C
int(N). A compact invariant set S C X is called an isolated invariant set
if S = Inv(N) for some isolating neighborhood N. A subset A C L is
called positively invariant in L if given x € A and ¢([0,¢],x) C L, we have
©([0,t],z) C A. A subset A of L is called an ezit set for L if given x € L
such that ¢([0,00),2) ¢ L, there exists ¢ > 0 such that ¢([0,¢],2) C L and
o(t,x) € A.

Let S be an isolated invariant set. A pair (N', N°) of compact sets is
called an index pair for S if:

(i) S =Inv(cl(N'\ N?)) Cint(N!1\ N?),

(i) N is positively invariant in N,

(iii) N is an exit set for N1
The homological Conley index of S is defined by

CH,(S) := H.(N'/N° [N°]) ~ H.(N', N?),
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where (N', N°) is any index pair for S and H, stands for the singular ho-
mology with field coefficients. Unfortunately, it is not true that for any index
pair H,(N!'/N° [N]) ~ H,(N*', N°). However, this isomorphism holds for
regular index pairs (see Salamon [10, Sec. 5| for the definition and more de-
tails). For that reason we will assume that we are working with regular index
pairs and index filtrations. Another way to overcome this problem is to use
the Alexander—Spanier cohomology functor instead of the usual homology.

We give two more definitions from the Conley index theory. Let S be an
isolated invariant set.

DEFINITION 1.1. A collection {M;}}" ; of mutually disjoint compact in-
variant subsets of S is a Morse decomposition of S if for every = € S\, M;
there are indices ¢ < j such that w™(z) C M; and w™(z) C M;.

The sets M; are called Morse sets. Moreover, we define generalized Morse
sets for ¢ < j:

M;; .= {3: es ‘ wh(z)Uw (z) C ij:JZMk}

In particular, M;; = Mj. It is easy to check that all M;; are isolated invariant
sets.

DEFINITION 1.2. An index filtration for the Morse decomposition
{M;}, is a collection {N*}?_, of compact sets such that

(1) N°c Nt c---Cc N7,

(2) for any i < j, (N7, N“~!) is an index pair for Mj;.

Let us formulate the natural

THEOREM 1.3. For any given Morse decomposition there exists an index
filtration.

This was proved by Salamon [10].

The simplest nontrivial case of a Morse decomposition of an isolated
invariant set S is one consisting of two elements {Mj, My}. It is called an
attractor-repeller pair in S. The set of connecting orbits from My to My in
S is

C(My, My;S) :={x €S |wt(x) C My, w (z) C Ma}.

An index filtration for an attractor-repeller pair {M;, My} is reduced to an
index triple N° ¢ N' C N2, where

e (N2, N9 is an index pair for S,
e (N2 N')is an index pair for Mo,
e (N' N is an index pair for Mj.



80 P. Bartlomiejczyk

Let O denote the boundary map in a long exact homology sequence:
. — Hy(N',N%) — H,(N2,N°) — Hy(N%., NY) 2 H, (N}, NO) — ...
The importance of the boundary map 9 is reflected in the following
THEOREM 1.4. If 3 # 0, then C(Mz, My; S) # 0.
Proof. 1f C(My, M;;S) = (), then S = M; U My, so
H,(N? N° = CH,(S) ~ CH,(M;,) ® CH,(M>)
= H. (N, N% @ H,(N?* N

and consequently 0 = 0. u

2. Simple connection matrices. Recall that a filtration of a vector
space A is a sequence {Ai}’i"‘zo of subspaces of A such that

0=AcAlc...c A" = A.

A pair consisting of a vector space and its filtration is called a filtered vector
space. Similarly, a graded vector space is a vector space A with a sequence
{A;}}_ of subspaces of A such that

A= éAi.
i=1

Moreover, a grading {4;}7_; of A is called a splitting for the filtration { A},

of A if 4
7
= @ Ay,
k=1
for any 1 < ¢ < n. Of course, the splitting is not unique.

DEFINITION 2.1. A filtered differential vector space is a filtered vector

space A together with an endomorphism d such that d?> = 0 and d preserves
the filtration, i.e. dA* C A"

If {A;}7, is a splitting of a filtered differential vector space, then the
condition that d is filtration preserving is equivalent to the fact that the
components of d in the direct sum decomposition d,, : A, — A, satisfy
dpq = 0 for each p > ¢, which means that the differential d written in the
form of a usual matrix is triangular.

A homomorphism of filtered dzﬁerentml vector spaces is any homomor-
phism of vector spaces h : A — A such that dh = hd and h preserves the
filtration, i.e. hA* C Al Tt is easy to see that filtered differential vector spaces
and their homomorphisms form a category. Of course, if h: A — A is a ho-
momorphism of filtered differential vector spaces, then A induces homology
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homomorphisms
h:H(AYJAY) — H(A')AY)
for any j < 4. Furthermore, it follows from the five lemma that if i : H(A) —

H(A) is an isomorphism, then so are all h : H(A?/AT) — H(A?/AY).
It is high time to introduce the crucial definition of this paper.

DEFINITION 2.2. A filtered differential vector space C' is called a simple
connection matriz if dC* C C*71,

The requirement in the above definition constitutes a significant strength-
ening of the condition that d preserves the filtration. Here are some elemen-
tary properties of simple connection matrices. For example, if {C;}"  is a
splitting of the filtered differential vector space C, then C' is a simple connec-
tion matrix if and only if the components of the differential d in the direct
sum decomposition satisfy d,, = 0 for each p > ¢, which means that d
treated as a matrix is strictly triangular. Another consequence of the last
definition is stated below.

PROPOSITION 2.3. IfC is a simple connection matriz, then H(C*/C'™1)
= C'/C* for each 1 <i < n.

Proof. Let d : C*/C*~1 — (C%/C*~! be the differential on the quotient.

Since dC* C C*~1, we have kerd = C*/C*~! and Im d = 0. Therefore
H(C'/C™Y) =kerd/Imd = C*/C*!. u

Let us formulate the main result of this section. This lemma states that
any filtered differential vector space decomposes as A = BOC ®dB, where C
is a simple connection matrix and the components C; of C' may be identified
with the relative homology H(A?/A?~!). Observe that assertions (1) and (4)
below are nothing but the statements that {A4;}” ; is a splitting of A and
that C = @121 C; is a simple connection matrix respectively.

LEMMA 2.4 (Decomposition Lemma). For any filtered differential vector
space A there are graded vector spaces {A;}!" ¢, {Bi}l, {Ci}'_, such that
for each 1 <i <n:

(1) At = A1 g A,

(2) A;=B; & C; & dB;,

(3) the differential d maps B; isomorphically onto dB;, i.e. B,nd~'0=0,

(4) dC; C C*=1, where O~ = @i Oy

Proof. Assume by induction that vector spaces Ay, By, C. exist for k < 4
and satisfy conditions (1)—(4). The proof will be completed by constructing
spaces A;11, Bit1, Ciy1 satisfying (1)—(4).

The diagram in Figure 1 shows the main idea of the construction. The
construction will be divided into three steps.
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d tA?

Cit1
dBi+1] Bit

AH—I
Fig. 1. The idea of the proof of Lemma 2.4

STEP 1. We first choose B;;1 to be any complement to A1 Nd~1A? in

AL e , , ,
Az+1 — Bi—i-l D (AH-l ) d_lAl).
By the definition of B;y1:
(i) Bi+1 N d_10‘: 0, i.e. d|p,, is a monomorphism,

(ii) dBiy1 C dA nd'0 C AT nd A,

(iii) A'NdB;11 =0.

STEP 2. Then we choose C;,; to be a complement to A* @ dB;,1 in
AN =1 A7 satisfying ,

dCiy1 C C".

The existence of such a complement is equivalent to

ATINdTTA = A4 (A nd 'O,
It is obvious that the right-hand side is a subset of the left-hand side. The
reverse inclusion may be deduced from the inclusion

AL A4 © B4 (AT N gm0,
which is justified below. Let a € A1 Nd=t Al By the induction assumption,
there are b,e € B* and ¢ € C" such that

da = b+ c+ de.
Hence , , A
dB' > db=d(—c) € dC" C C".
Since C* N dB* = 0, we have db = 0, and consequently b = 0, because d|gi
is a monomorphism. Then d(a —e) = c € C%, i.e. a — e € AT Nd~1Ct We
thus get 4 . .
a=e+(a—e)€ B + (AT nd 1Y),

which completes the proof of the desired inclusion.
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STEP 3. Finally, we define
Ait1 = Biy1 ® Cip1 ®dBiy.
It is easy to check that A;y1, Bi+1 and Cj4q satisfy conditions (1)—(4). m

DEFINITION 2.5. A subspace C of the filtered differential vector space A
is called a simple connection matriz for A if

(1) C is a simple connection matrix,
(2) the map i : H(C) — H(A) induced by the inclusion C' C A is
an isomorphism.

It may be worth pointing out that in our category, C' is a subspace of
A if the inclusion C C A preserves the filtration, i.e. C? C AP. Moreover,
from (2) and the five lemma, we see at once that if C' is a simple connection
matrix for A, then ¢ : H(C?/C%) — H(AP/A?) are isomorphisms for any
q < p. In particular,

H(AP/AP~Y = H(CP/COP~) = CP/CP~t = O,

The following result is the most important consequence of the above
decomposition lemma.

THEOREM 2.6. There is a simple connection matriz for any filtered dif-
ferential vector space.

Proof. Let A be a filtered differential vector space and C' = ;. C; be
as in the assertion of the previous lemma, so C' is a simple connection matrix.
Since A= B & C ®dB and
_kerd  (kerd|c) DdB  kerd|c
- Imd (Imd|c) ®dB  Imd|c
we see that the inclusion C' C A induces an isomorphism i : H(C) — H(A)
in homology, which completes the proof. m

H(A) H(C),

3. Applications to dynamical systems. Let ) = N° ¢ N' c --- C
N™ = N be a topological filtration. Let C'(N*) be the vector space of singular
chains in N* and ij, : C(N*) — C(N) be the homomorphism induced by the
inclusion N* c N.

DEFINITION 3.1. A simple connection matriz for the topological filtration
{N’“}?:0 is a simple connection matrix for the filtered differential vector space
({ix(C(N*))}"_, d), where d is the boundary map on singular chains.

Let X be a compact metric space.

DEFINITION 3.2. A simple connection matriz for a Morse decomposition
{M;}?_, of X is a simple connection matrix for any index filtration for this
Morse decomposition.
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We can now formulate two results concerning simple connection matrices
for Morse decompositions. The first one ensures their existence.

THEOREM 3.3. For any Morse decomposition of a compact metric space
X there exists a simple connection matriz.

Proof. By Theorem 1.3, there is an index filtration such that N = () and
N™ = X for any Morse decomposition of X. Hence the construction of the
simple connection matrix, as presented in this section, poses no problem. =

It is easily seen that the simple connection matrix expresses the relation-
ship between local Conley indices of the Morse sets and the total Conley
index of the whole isolated invariant set. A similar relationship is given by
so-called Morse inequalities (see for instance [11]).

The next result states that some information on the Morse decomposition
may be found using its simple connection matrix. Let C' be a simple connec-
tion matrix for the Morse decomposition and let {C;}" ; be a splitting of C.
As previously, let d, , : C; — C,, denote a component of the differential d.

THEOREM 3.4. If dy_1p # 0, then C(M,, My_1; X) # 0.

Proof. From the definition of the simple connection matrix for the Morse
decomposition {M;}}" ,, we obtain the following commutative diagram:

dp—1,p
C, i N Cp1

! !

H. (NP, NP1y —2 g (NP1, NP-2)
in which the vertical maps are the canonical isomorphisms. Observe that
NP=2 < NP~! C NP is an index triple for the attractor-repeller pair
(Mp—1,M,) in My,—1 and O # 0, since dp—1, # 0. By Theorem 1.4 the
set C(Mp, M,_1; X) is nonempty. u

4. An example. It is not surprising that the simple connection matrix
may be represented geometrically in the plane using the so-called Zeeman
diagram A (see Figure 4). This diagram was defined by E. C. Zeeman to
study the information contained in filtered differential groups (see [12] for
more details).

The Zeeman diagram A is the union of a collection of unit squares in the
plane. The number of these squares depends only on the length of the filtra-
tion. The union of any subcollection of squares in A is called a region of A.
For example, the region to the left of the vertical line labeled A° represents
the vector subspace A’ in the filtration. Similarly, the regions below the hori-
zontal lines represent the vector spaces dA? or d~'A?. Since the differential d
is filtration preserving, some squares in the diagram represent trivial spaces.
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In the original Zeeman diagram the regions represent the quotients of some
groups associated with the filtered differential group, but in our diagram the
regions represent the components in the direct sum decompositions of some
vector spaces.

Since the diagram offers a graphic and intuitive approach to simple con-
nection matrices, we will use it in the description of the simple connection
matrix in our example. We emphasize that our goal is to present the form of
the simple connection matrix for a well known dynamical system, and not
to give any relevant applications of the theory.

Fig. 2. The dynamics of ¢
Let ¢ be a flow on the closed unit ball D? in R? with the dynamics as in
Figure 2. Assume that X = D? is an isolated invariant set and that
M, = (071)7 My = (Oa _1)5 Ms = (170)5 M, = (_170)7 Ms = (050)
form a Morse decomposition M of X. The index filtration {N*}?_, for M

Fig. 3. The index filtration for M

may be easily constructed from the sets P; shown in Figure 3 using the
formula N* = J;_, P It is understood that Py = (. Moreover, a simple
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computation shows that the local Conley indices of the Morse sets are

Q ifk=0,

CHk(Ml) = CHk(MQ) = .
0 otherwise,

Q ifk=1,

CHy(Ms) = CHp(My) = ]
0 otherwise,

Q ifk=2,

CHp(Ms) =
H(Ms) { 0 otherwise,
and the total Conley index of the whole set is
CH(X) = {Q if b =0,
0 otherwise.

Bs

i e Cal| dBs
o ol dBs| !
dA® r---- -
dB3 I |

dA? p----
dB2 ' | |

A’
dB1 \ | | |

0 ____l_____',_ _________
0 A" A2 A3 A* A

Fig. 4. The simple connection matrix for M

Finally, an easy comparison of the above Conley indices shows that the
Zeeman diagram A of the simple connection matrix for M is as in Figure 4.
It is worth pointing out that our picture shows in fact not only the simple
connection matrix C' = @?:1 C;, but much more, namely, the full decompo-
sition of the filtered differential vector space in the notation of 2.4. Observe
that the arrows represent the only nonzero components of the differential d,
i.e. the maps d4 5 and dz 3. The important point to note here is the form of the
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relation between the local indices represented as the columns C; = CH,(M;)
and the total index C'H,(X) represented as the row just below the z-axis.
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