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Applications of the theory of differential subordination for
functions with fixed initial coefficient to univalent functions

by Sumit Nagpal (Delhi) and V. Ravichandran (Delhi and Penang)

Abstract. By using the theory of first-order differential subordination for functions
with fixed initial coefficient, several well-known results for subclasses of univalent functions
are improved by restricting the functions to have fixed second coefficient. The influence
of the second coefficient of univalent functions becomes evident in the results obtained.

1. Introduction and preliminaries. It is well-known that the second
coefficient of univalent functions influences many properties. For example,
a bound for the second coefficient of univalent functions yields growth and
distortion estimates as well as the Koebe constant. Various subclasses of uni-
valent functions with fixed second coefficients were investigated beginning
with Gronwall [3]. For a brief survey of these developments as well as for
some radius problem, see [1]. The necessary modifications to the theory of
differential subordination to handle problems for functions with second co-
efficients are recently carried out in [2]. Using the results in [2], the influence
of the second coefficient in certain differential implications associated with
starlike and convex functions with fixed second coefficients is investigated
in this paper.

Let p be an analytic function in the unit disk D = {z ∈ C : |z| < 1} and
ψ(r, s) be a complex function defined in a domain of C2. Consider a class of
functions Ψ , and two subsets Ω and ∆ in C. Given any two of these objects,
the aim of the theory of first-order differential subordination is to determine
the third so that the following differential implication is satisfied:

ψ ∈ Ψ and {ψ(p(z), zp′(z)) : z ∈ D} ⊂ Ω ⇒ p(D) ⊂ ∆.
Furthermore, the problem is to find “smallest” such ∆ and “largest” such Ω.
In [2], the authors proposed a new methodology by making appropriate
modifications and improvements to Miller and Mocanu’s theory (see [4, 5]
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and their monograph [6]) of second-order differential subordination and gave
interesting applications of the newly formulated theory to the classes of
normalized convex and starlike functions with fixed second coefficient.

Let Hβ[a, n] consist of all analytic functions p of the form

p(z) = a+ βzn + pn+1z
n+1 + · · · ,

where β ∈ C is fixed. Without loss of generality, we assume that β is a
positive real number.

Definition 1.1 ([5, Definition 1, p. 158]). Let Q be the class of func-
tions q that are analytic and injective in D \ E(q), where

E(q) := {ζ ∈ ∂D : lim
z→ζ

q(z) =∞},

and are such that q′(ζ) 6= 0 for ζ ∈ ∂D \ E(q).

Definition 1.2 ([2, Definition 3.1, p. 616]). Let Ω be a domain in C,
n ∈ N and β > 0. Let q ∈ Q be such that |q′(0)| ≥ β. The class Ψn,β(Ω, q)
consists of β-admissible functions ψ : C2 → C satisfying the following con-
ditions:

(i) ψ(r, s) is continuous in a domain D ⊂ C2,
(ii) (q(0), 0) ∈ D and ψ(q(0), 0) ∈ Ω,

(iii) ψ(q(ζ),mζq′(ζ)) 6∈ Ω whenever (q(ζ),mζq′(ζ)) ∈ D, ζ ∈ ∂D \ E(q)
and

m ≥ n+
|q′(0)| − β
|q′(0)|+ β

.

We write Ψ1,β(Ω, q) as Ψβ(Ω, q).

Theorem 1.3 ([2, Theorem 3.1, p. 617]). Let q ∈ Q, q(0) = a, β > 0
with |q′(0)| ≥ β, and ψ ∈ Ψn,β(Ω, q) with associated domain D. Let p ∈
Hβ[a, n]. If (p(z), zp′(z)) ∈ D for z ∈ D and

ψ(p(z), zp′(z)) ∈ Ω (z ∈ D),

then p ≺ q.

The special case of ∆ being a half-plane is important in our investigation.
Let ∆ = {w : Rew > 0}. The function

q(z) =
a+ az

1− z
(z ∈ D),

where Re a > 0, is univalent in D \ {1} and satisfies q(D) = ∆, q(0) = a
and q ∈ Q. Let Ψn,β(Ω, a) := Ψn,β(Ω, q) and for Ω = ∆ denote the class
by Ψn,β{a}. Set Ψβ{a} := Ψ1,β{a}. The class Ψn,β(Ω, a) consists of those
functions ψ : C2 → C that are continuous in a domain D⊂C2 with (a, 0)∈D
and ψ(a, 0) ∈ Ω, and that satisfy the admissibility condition:
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(1.1) ψ(iρ, σ) 6∈ Ω whenever (iρ, σ) ∈ D and

σ ≤ −1

2

(
n+

2 Re a− β
2 Re a+ β

)
|a− iρ|2

Re a
,

where ρ ∈ R and n ≥ 1.

If a = 1, then (1.1) simplifies to

(1.2) ψ(iρ, σ) 6∈ Ω whenever (iρ, σ) ∈ D and

σ ≤ −1

2

(
n+

2− β
2 + β

)
(1 + ρ2),

where ρ ∈ R, and n ≥ 1. In this particular case, Theorem 1.3 becomes

Theorem 1.4 ([2, Theorem 3.4, p. 620]). Let p ∈ Hβ[a, n] with Re a > 0
and 0 < β ≤ 2 Re a.

(i) Let ψ ∈ Ψn,β(Ω, a) with associated domain D. If (p(z), zp′(z)) ∈ D
and ψ(p(z), zp′(z)) ∈ Ω (z ∈ D), then Re p(z) > 0 (z ∈ D).

(ii) Let ψ ∈ Ψn,β{a} with associated domain D. If (p(z), zp′(z)) ∈ D and
Reψ(p(z), zp′(z)) > 0 (z ∈ D), then Re p(z) > 0 (z ∈ D).

2. Applications in univalent function theory. Let An be the class
consisting of all analytic functions f defined on D of the form f(z) =
z + an+1z

n+1 + an+2z
n+2 + · · · , and A := A1. The class S∗(α) of starlike

functions of order α, 0 ≤ α < 1, consists of all functions f ∈ A satisfying
the inequality

Re
zf ′(z)

f(z)
> α (z ∈ D).

Similarly, the class C(α) of convex functions of order α, 0 ≤ α < 1, consists
of all functions f ∈ A satisfying the inequality

Re

(
1 +

zf ′′(z)

f ′(z)

)
> α (z ∈ D).

When α = 0, these classes are respectively denoted by S∗ and C.
Let An,b denote the class of all functions f ∈ An of the form

f(z) = z + bzn+1 + an+2z
n+2 + · · · ,

where b is fixed. We write A1,b as Ab.
There are many differential inequalities in classical analysis for which the

differential operator is required to have positive real part. A typical example
is the Marx–Strohhäcker result, which states that if f ∈ A, then

Re

(
zf ′′(z)

f ′(z)
+ 1

)
> 0 (z ∈ D) ⇒ Re

zf ′(z)

f(z)
>

1

2
(z ∈ D).
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A natural problem is to extend this result by finding a domain D containing
the right half-plane so that

zf ′′(z)

f ′(z)
+ 1 ∈ D (z ∈ D) ⇒ Re

zf ′(z)

f(z)
>

1

2
(z ∈ D).

The domain D cannot be taken as the half-plane {w ∈ C : Rew > α}, with
α < 0, for functions f ∈ A. (For a counterexample, see [9].) However, it is
possible to take such a D for functions f ∈ Ab. To prove this, we shall need
the following lemma proved by Ozaki.

Lemma 2.1 ([8]). If f ∈ A satisfies

Re

(
zf ′′(z)

f ′(z)
+ 1

)
> −1

2
(z ∈ D),

then f is univalent in D.

Theorem 2.2. If f ∈ Ab with |b| ≤ 1, then

Re

(
zf ′′(z)

f ′(z)
+ 1

)
>
|b| − 1

2(|b|+ 1)
(z ∈ D) ⇒ Re

zf ′(z)

f(z)
>

1

2
(z ∈ D).

Proof. If we set

(2.1) α :=
|b| − 1

2(|b|+ 1)

then α ∈ [−1/2, 0]. Define the function p : D→ C by

p(z) := 2
zf ′(z)

f(z)
− 1.

From Lemma 2.1 it follows that f is univalent and hence p(z) = 1+2bz+ · · ·
is analytic in D. Thus p ∈ H2b[1, 1] and

(2.2)
zf ′′(z)

f ′(z)
+1−α =

p(z) + 1

2
+

zp′(z)

p(z) + 1
−α = ψ(p(z), zp′(z)) (z ∈ D),

where

ψ(r, s) :=
r + 1

2
+

s

r + 1
− α,

and α is given by (2.1). The function ψ is continuous in the domain D =
(C\{−1})× C, (1, 0) ∈ D and Reψ(1, 0) = 1− α > 0, as α ∈ [−1/2, 0]. We
need to show that the admissibility condition (1.2) is satisfied. Since

ψ(iρ, σ) =
iρ+ 1

2
+

σ

1 + ρ2
(1− iρ)− α,

we have

Reψ(iρ, σ) =
1

2
+

σ

1 + ρ2
−α ≤ 1

2
− 1

2

(
1+

2− 2|b|
2 + 2|b|

)
−α =

|b| − 1

2(|b|+ 1)
−α = 0



Differential subordination 229

whenever ρ ∈ R and

σ ≤ −1

2

(
1 +

2− β
2 + β

)
(1 + ρ2), β = 2|b|.

Thus ψ ∈ Ψ2|b|{1}.
From the hypothesis and (2.2), we obtain

Reψ(p(z), zp′(z)) > 0 (z ∈ D).

Therefore, by applying Theorem 1.4(ii), we conclude that Re p(z)>0 (z∈D).
This is equivalent to

Re
zf ′(z)

f(z)
>

1

2
(z ∈ D).

Remark 2.3. For |b| = 1, Theorem 2.2 reduces to [6, Theorem 2.6a,
p. 57]. Also, if |b| = 0 then f ∈ A2 and α = −1/2. Therefore, Theorem 2.2
reduces to [6, Theorem 2.6i, p. 68] in this case.

Theorem 2.4. If f ∈ Ab with |b| ≤ 1, then

Re

(
zf ′′(z)

f ′(z)
+ 1

)
>
|b| − 1

|b|+ 1
(z ∈ D) ⇒ Re

√
f ′(z) >

1

2
(z ∈ D),

where the branch of the square root is so chosen that
√

1 = 1.

Proof. Set

(2.3) α :=
|b| − 1

|b|+ 1
.

Then α ∈ [−1, 0]. Define the function p : D → C by p(z) := 2
√
f ′(z) − 1.

From the hypothesis it follows that the function p(z) = 1 + 2bz + · · · is
analytic in D. Thus p ∈ H2b[1, 1] and

(2.4)
zf ′′(z)

f ′(z)
+ 1− α = 1 +

2zp′(z)

p(z) + 1
− α = ψ(p(z), zp′(z)) (z ∈ D)

where

ψ(r, s) := 1 +
2s

r + 1
− α,

and α is given by (2.3). The function ψ is continuous in the domain D =
(C\{−1})× C, (1, 0) ∈ D and Reψ(1, 0) = 1− α > 0, as α ∈ [−1, 0].

We now show that the admissibility condition (1.2) is satisfied. Since

ψ(iρ, σ) = 1 +
2σ

1 + ρ2
(1− iρ)− α,

we have

Reψ(iρ, σ) = 1 +
2σ

1 + ρ2
− α ≤ 1−

(
1 +

2− 2|b|
2 + 2|b|

)
− α =

|b| − 1

|b|+ 1
− α = 0,
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whenever ρ ∈ R and

σ ≤ −1

2

(
1 +

2− β
2 + β

)
(1 + ρ2), β = 2|b|.

Thus ψ ∈ Ψ2|b|{1}.
From the hypothesis and (2.4), we obtain

Reψ(p(z), zp′(z)) > 0 (z ∈ D).

Therefore, by applying Theorem 1.4 (ii), we conclude that Re p(z) > 0
(z ∈ D). This is equivalent to

Re
√
f ′(z) > 1/2 (z ∈ D).

Remark 2.5. If |b| = 1, then α = 0 and Theorem 2.4 reduces to [6,
Theorem 2.6a, p. 57].

Theorem 2.6. If f ∈ Ab with |b| ≤ 1, then

Re
zf ′(z)

f(z)
>

|b|
|b|+ 1

(z ∈ D) ⇒ Re
f(z)

z
>

1

2
(z ∈ D).

Proof. Setting

(2.5) α :=
|b|
|b|+ 1

,

we see that α ∈ [0, 1/2]. Define the function p : D→ C by

p(z) := 2
f(z)

z
− 1.

Since f ∈ Ab, the function p(z) = 1 + 2bz + · · · is analytic in D. Thus
p ∈ H2b[1, 1] and

(2.6)
zf ′(z)

f(z)
− α = 1 +

zp′(z)

p(z) + 1
− α = ψ(p(z), zp′(z)) (z ∈ D)

where

ψ(r, s) := 1 +
s

r + 1
− α,

and α is given by (2.5). The function ψ is continuous in the domain D =
(C\{−1})× C, (1, 0) ∈ D and Reψ(1, 0) = 1− α > 0, as α ∈ [0, 1/2].

We now show that (1.2) is satisfied. Since

ψ(iρ, σ) = 1 +
σ

1 + ρ2
(1− iρ)− α,

we have

Reψ(iρ, σ) = 1 +
σ

1 + ρ2
− α ≤ 1− 1

2

(
1 +

2− 2|b|
2 + 2|b|

)
− α =

|b|
|b|+ 1

− α = 0
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whenever ρ ∈ R and

σ ≤ −1

2

(
1 +

2− β
2 + β

)
(1 + ρ2), β = 2|b|.

Thus ψ ∈ Ψ2|b|{1}.
From the hypothesis and (2.6), we obtain

Reψ(p(z), zp′(z)) > 0 (z ∈ D).

Therefore, by applying Theorem 1.4(ii), we conclude that Re p(z)>0 (z∈D).
This is equivalent to

Re
f(z)

z
>

1

2
(z ∈ D).

Remark 2.7. If |b| = 1 then α = 1/2 and Theorem 2.6 reduces to [6,
Theorem 2.6a, p. 57].

Theorem 2.8. If f ∈ Ab is locally univalent with |b| ≤ 1, then the
following implication holds:

Re
√
f ′(z) >

√
1 + |b|

8
(z ∈ D) ⇒ Re

f(z)

z
>

1

2
(z ∈ D),

where the branch of the square root is so chosen that
√

1 = 1.

Proof. To begin with, note that if we set

(2.7) α :=

√
1 + |b|

8
,

then α ∈ [1/2
√

2, 1/2]. Define the function p : D→ C by

p(z) :=
2f(z)

z
− 1.

Since f ∈ Ab, the function p(z) = 1 + 2bz + · · · is analytic in D. Thus
p ∈ H2b[1, 1] and

(2.8)
√
f ′(z)− α =

√
zp′(z) + p(z) + 1

2
− α = ψ(p(z), zp′(z)) (z ∈ D),

where

ψ(r, s) :=

√
r + s+ 1

2
− α,

and α is given by (2.7). The function ψ is continuous in the domain D = C2,
(1, 0) ∈ D and Reψ(1, 0) = 1− α > 0 as α ∈ [1/2

√
2, 1/2].

We now show that the following admissibility condition holds:

(2.9) Reψ(iρ, σ) = Re

√
iρ+ σ + 1

2
− α ≤ 0
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whenever ρ ∈ R and

σ ≤ −1

2

(
1 +

2− β
2 + β

)
(1 + ρ2), β = 2|b|.

If we let ζ = ξ + iη = (1 + σ+ iρ)/2, and use the conditions on ρ and σ, we
obtain

ξ =
1 + σ

2
≤ 1

2

[
1− 1

2

(
1 +

2− 2|b|
2 + 2|b|

)
(1 + ρ2)

]
=

1

2

[
1− 1

1 + |b|
(1 + ρ2)

]
=

1

2(1 + |b|)
(|b| − 4η2).

This implies that ζ is a point inside the parabola

η2 = −1 + |b|
2

[
ξ − |b|

2(1 + |b|)

]
and

Re
√
ζ = Re

√
ξ + iη =

√
ξ +

√
ξ2 + η2

2
.

Since

ξ2 + η2 ≤ 1

4(1 + |b|)2
(|b| − 4η2)2 + η2 =

1

4(1 + |b|)2
(1 + 4η2)(|b|2 + 4η2),

using the arithmetic and geometric mean inequality we have√
ξ2 + η2 =

1

2(1 + |b|)
√

(1 + 4η2)(|b|2 + 4η2) ≤ 1

4(1 + |b|)
[1 + 8η2 + |b|2]

so that

ξ +
√
ξ2 + η2 ≤ 1

2(1 + |b|)
(|b| − 4η2) +

1

4(1 + |b|)
[1 + 8η2 + |b|2] =

1 + |b|
4

.

Thus

Re
√
ζ −

√
1 + |b|

8
≤ 0.

This is exactly the admissibility condition given in (2.9). Thus ψ ∈ Ψ2|b|{1}.
From the hypothesis and (2.8), we obtain

Reψ(p(z), zp′(z)) > 0 (z ∈ D).

Therefore, by applying Theorem 1.4(ii) we conclude that Re p(z)>0 (z∈D).
This is equivalent to

Re
f(z)

z
>

1

2
(z ∈ D).

Remark 2.9. If |b| = 1, then α = 1/2 and Theorem 2.8 reduces to [6,
Theorem 2.6a, p. 57].
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3. Two sufficient conditions for starlikeness. In 1989, Nunokawa
[7] gave the following sufficient condition for starlikeness: if f ∈ A, then

Re

(
zf ′′(z)

f ′(z)
+ 1

)
<

3

2
(z ∈ D) ⇒ 0 < Re

zf ′(z)

f(z)
<

4

3
(z ∈ D).

We will improve this result for a function f ∈ Ab.
Theorem 3.1. If f ∈ Ab satisfies

Re

(
zf ′′(z)

f ′(z)
+ 1

)
<

3

2
(z ∈ D),

then ∣∣∣∣zf ′(z)f(z)
− α

∣∣∣∣ < α (z ∈ D),

where α is given by

(3.1) α :=
3(|b|+ 6) +

√
9|b|2 + 28|b|+ 4

8(|b|+ 4)
.

In particular,

0 < Re
zf ′(z)

f(z)
< 2α (z ∈ D).

Proof. The hypothesis can be written in terms of subordination as

zf ′′(z)

f ′(z)
+ 1 ≺ 1− 2z

1− z
(z ∈ D),

which gives |b| ≤ 1/2. Also, the constant α given by (3.1) satisfies the
equation

(3.2) 4(|b|+ 4)α2 − 3(|b|+ 6)α+ 5 = 0.

If α > 2/3, then we obtain

3
√

9|b|2 + 28|b|+ 4 > 7|b|+ 10.

On solving this, we get |b| > 1/2, which is a contradiction. Similarly, if we
let α < 5/8, then we obtain |b| < 0. Thus α ∈ [5/8, 2/3].

Define the function

w = q(z) :=
α(1− z)

(α− 1)z + α
(z ∈ D),

where α is given by (3.1). As α ∈ [5/8, 2/3], q is analytic and univalent in D.
Thus, q ∈ Q. Since q(−1) = 2α and q(1) = 0, we see that

q(D) = {w : |w − α| < α}.
Now, define the function p : D→ C by

p(z) :=
zf ′(z)

f(z)
.
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Since f ∈ Ab and f is starlike (univalent), the function p(z) = 1 + bz + · · ·
is analytic in D. Thus p ∈ Hb[1, 1] and

(3.3)
zf ′′(z)

f ′(z)
+ 1 = p(z) +

zp′(z)

p(z)
= ψ(p(z), zp′(z)) (z ∈ D),

where
ψ(r, s) := r +

s

r
.

We claim that ψ ∈ Ψb(Ω, q) where Ω = {w : Rew < 3/2}. The function
ψ is continuous in the domain D = (C\{0})×C, (1, 0) ∈ D and Reψ(1, 0) =
1 < 3/2 so that ψ(1, 0) ∈ Ω. We now show that

Reψ(q(ζ),mζq′(ζ)) ≥ 3/2,

where |ζ| = 1 and

m ≥ 1 +
|q′(0)| − |b|
|q′(0)|+ |b|

, q′(0) =
1− 2α

α
.

Since

ψ(q(ζ),mζq′(ζ)) = q(ζ) +m
ζq′(ζ)

q(ζ)
=

α(1− ζ)

(α− 1)ζ + α
+

m(1− 2α)ζ

(1− ζ)[(α− 1)ζ + α]

= −1 +
(m+ 2)α− ζ
(α− 1)ζ + α

− m

1− ζ
, ζ 6= 1,

we have

(3.4) Reψ(q(ζ),mζq′(ζ)) = −1+Re
(m+ 2)α− ζ
(α− 1)ζ + α

−mRe
1

1− ζ
, ζ 6= 1.

Moreover, since for α ∈ [5/8, 2/3], m ≥ 1,

Re
(m+ 2)α− ζ
(α− 1)ζ + α

≥ (m+ 2)α+ 1, |ζ| = 1,

and

Re
1

1− ζ
=

1

2
, |ζ| = 1, ζ 6= 1,

we have

Reψ(q(ζ),mζq′(ζ)) ≥ −1 +
2(m+ 2)α2 −mα− 1

2α− 1
− m

2

= (m+ 2)α− m

2
=

2α− 1

2
m+ 2α

≥ 2α− 1

2

(
1 +

(2α− 1)− |b|α
(2α− 1) + |b|α

)
+ 2α

=
2(|b|+ 4)α2 − 6α+ 1

(2α− 1) + α|b|
=

3

2
,

using (3.2). Thus, ψ ∈ Ψ|b|(Ω, q) where Ω = {w : Rew < 3/2}.



Differential subordination 235

From the hypothesis and (3.3), we obtain

ψ(p(z), zp′(z)) ∈ Ω (z ∈ D).

Therefore, by applying Theorem 1.3, we have

p(z) ≺ q(z) (z ∈ D)

or equivalently ∣∣∣∣zf ′(z)f(z)
− α

∣∣∣∣ < α (z ∈ D).

In particular, the above inequality yields

0 < Re
zf ′(z)

f(z)
< 2α (z ∈ D).

Remark 3.2. If |b| = 1/2 then α given by (3.1) simplifies to 2/3. Thus
Theorem 3.1 reduces to [7, Main Theorem] in this case.

Another familiar implication is the following [6, Theorem 2.6i, p. 68]:

Re

(
zf ′′(z)

f ′(z)
+ 1

)
> −1

2
(z ∈ D) ⇒ Re

zf ′(z)

f(z)
>

1

2
(z ∈ D)

for any function f ∈ A2. We generalize this result for f ∈ A2,b.

Theorem 3.3. If f ∈ A2,b, then

Re

(
zf ′′(z)

f ′(z)
+ 1

)
> −1

2
(z ∈ D) ⇒ Re

zf ′(z)

f(z)
> α (z ∈ D),

where α is the smallest positive root of the equation

(3.5) 2α3 + 2(1− |b|)α2 − (2|b|+ 7)α+ 3 + |b| = 0

in the interval [1/2, 2/3].

Proof. First note that in terms of subordination the hypothesis can be
written as

zf ′′(z)

f ′(z)
+ 1 ≺ 1 + 2z

1− z
(z ∈ D),

which gives |b| ≤ 1/2. Also, the function g defined by

g(α) := 2α3 + 2(1− |b|)α2 − (2|b|+ 7)α+ 3 + |b|
is continuous in [1/2, 2/3] and satisfies

g

(
1

2

)
=

1

4
(1− 2|b|) ≥ 0, g

(
2

3

)
= − 1

27
(5 + 33|b|) ≤ 0,

as |b| ≤ 1/2. Therefore by the Intermediate Value Theorem, there exists a
root of g(α) = 0 in [1/2, 2/3]. (In fact, α ∈ [0.5,

√
2.5− 1] ' [0.5, 0.58].)

Define the function p : D→ C by

(3.6) p(z) :=
zf ′(z)

f(z)
− α,
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where α is the smallest positive root of (3.5). Since f ∈ A2,b and f is
univalent, the function p(z) = (1 − α) + 2bz2 + · · · is analytic in D. Thus
p ∈ H2b[1− α, 2] and as α ≤ 2/3 we readily see that

Re p(0) = 1− α > 0.

From (3.6), we obtain

zf ′(z)

f(z)
= p(z) + α

so that

zf ′′(z)

f ′(z)
+ 1 = p(z) + α+

zp′(z)

p(z) + α
= ψ(p(z), zp′(z)) (z ∈ D),

where

ψ(r, s) := r + α+
s

r + α
.

We need to apply Theorem 1.4 to conclude that Re p(z) > 0. If we let

Ω = {w : Rew > −1/2},

then by hypothesis, we have

{ψ(p(z), zp′(z)) : z ∈ D} ⊂ Ω.

To apply Theorem 1.4, we need to show that ψ ∈ Ψ2,2|b|(Ω, 1 − α). The
function ψ is continuous in the domain D = (C\{−α})× C, (1− α, 0) ∈ D
and

Reψ(1− α, 0) = 1 > 0.

We now show that the admissibility condition (1.1) is satisfied. Since

ψ(iρ, σ) = iρ+ α+
σ

α2 + ρ2
(α− iρ),

we have

Reψ(iρ, σ) = α+
ασ

α2 + ρ2

≤ α− 1

2

α

α2 + ρ2

(
2 +

2(1− α)− 2|b|
2(1− α) + 2|b|

)
(1− α)2 + ρ2

1− α

= α− 1

2

α

1− α
3(1− α) + |b|
(1− α) + |b|

(1− α)2 + ρ2

α2 + ρ2
.

Using (3.5) and the monotonicity of the function

h(t) =
(1− α)2 + t

α2 + t
, t ≥ 0,
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we deduce that

Reψ(iρ, σ) ≤ α− 1

2

1− α
α

3(1− α) + |b|
(1− α) + |b|

=
(2|b| − 1)α2 − 2α3 + (6 + |b|)α− 3− |b|

2α[(1− α) + |b|]
= −1

2

whenever ρ ∈ R and

σ ≤ −1

2

(
2 +

2 Re p(0)− β
2 Re p(0) + β

)
|p(0)− iρ|2

Re p(0)
, p(0) = 1− α, β = 2|b|.

Thus ψ ∈ Ψ2,2|b|(Ω, 1 − α). Therefore, by applying Theorem 1.4(i) we con-
clude that Re p(z) > 0 (z ∈ D). This is equivalent to

Re
zf ′(z)

f(z)
> α (z ∈ D),

where α is the smallest positive root of (3.5).

Remark 3.4. If |b| = 1/2 then (3.5) becomes

2α3 + α2 − 8α+ 7/2 = 0,

which simplifies to

(2α− 1)(α2 + α− 7/2) = 0.

As α ∈ [1/2, 2/3], we get α = 1/2. Thus Theorem 3.3 reduces to [6, Theorem
2.6i, p. 68] in this case.
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