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Real hypersurfaces with a special transversal vector field

by ZUZANNA SZANCER (Krakéw)

Abstract. Real affine hypersurfaces of the complex space C"™! are studied. Some

properties of the structure determined by a J-tangent transversal vector field are proved.
Moreover, some generalizations of the results obtained by V. Cruceanu are given.

1. Introduction. In [C], V. Cruceanu studied centro-affine real hy-
persurfaces in complex affine spaces. He called hypersurfaces for which a
centro-affine transversal vector field is J-tangent “special hypersurfaces”.
In particular, he gave the local characterization of such hypersurfaces and
proved that an almost contact structure (¢, &,n) induced by a centro-affine
J-tangent transversal vector field is always normal.

The main purpose of this paper is to generalize the results of |[C] to
affine hypersurfaces with a J-tangent transversal vector field of a special
form. More precisely, we study real hypersurfaces f: M — R?"*? with a
J-tangent transversal vector field

C:_alf_OQJf:

where a1, a9 are smooth functions on M and J is the standard complex
structure on R?"*2 =~ Ctl It is easy to see that the case studied by
Cruceanu is obtained by setting a; = 1 and ag = 0.

In Section 2 we briefly recall basic formulas of affine differential geometry,
we introduce the notion of a J-tangent transversal vector field and prove a
lemma required in the next section.

In Section 3 we recall some results obtained in [SS] and prove necessary
and sufficient conditions for an affine normal to be J-tangent.

Section 4 contains the main results of this paper. In particular, we prove
some properties of special vector fields and give a local characterization of
hypersurfaces with a locally equiaffine special vector field. We also prove that
the affine normal is always J-tangent for hypersurfaces with a centro-affine
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J-tangent transversal vector field and give an example of a J-tangent affine
hypersphere.
Throughout the paper we write a = 0 if a(x) = 0 for all x € M, and

a # 0 if a(x) # 0 for every x € M (i.e. a is a nowhere vanishing function
on M).

2. Preliminaries. We briefly recall the basic formulas of affine differ-
ential geometry. For more details, we refer to [NS]. Let f: M — R"*! be an
orientable connected differentiable n-dimensional hypersurface immersed in
the affine space R"*! equipped with its usual flat connection D. Then for
any transversal vector field C' we have

(2.1) Dx £Y = £.(VxY) + h(X,Y)C,
(2.2) Dy C = —f.(SX) + 7(X)C,

where X, Y are vector fields tangent to M. It is known that V is a torsion-
free connection, h is a symmetric bilinear form on M, called the second
fundamental form, S is a tensor of type (1,1), called the shape operator,
and 7 is a 1-form, called the transversal connection form.

We shall now consider the change of a transversal vector field for a given
immersion f.

THEOREM 2.1 ([NS]). Suppose we change a transversal vector field C' to
C=oC + f.(Z),

where Z is a tangent vector field on M and @ is a nowhere vanishing
function. Then the affine fundamental form, the induced connection, the
transversal conmection form, and the affine shape operator change as fol-
lows:

- 1
(2.3) h = Eh’

= 1
(2.4) VxY = VxY - Sh(X.Y)Z;
(2.5) sz%—%h(Z,') +dln|P|;
(2.6) S=0S-V.Z+7()Z.

We assume that h is nondegenerate so that h defines a semi-Riemannian
metric on M. If h is nondegenerate, then we say that the hypersurface or
the hypersurface immersion is nondegenerate. We have the following

THEOREM 2.2 ([NS, Fundamental equations]). For an arbitrary trans-
versal vector field C' the induced connection V, the second fundamental
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form h, the shape operator S, and the 1-form T satisfy the following equa-
tions:

(2.7) R(X,Y)Z = h(Y,Z)SX — h(X, Z)SY,
8) (Vxh)(Y, Z) + 7(X)h(Y, Z) = (Vyh)(X, Z) + 7(Y)h(X, Z),

(2.8
(2.9) (VxS)(Y)—7(X)SY = (VyS)(X) —7(Y)SX,
(2.10) hMX,SY)—h(SX,Y)=2d7(X,Y).
The equations (2.7), (2-8), (2.9), and (2.10) are called the equations of

Gauss, Codazzi for h, Codazzi for S, and Ricci, respectively.

For a hypersurface immersion f: M — R"! a transversal vector field C
is said to be equiaffine (resp. locally equiaffine) if 7 =0 (resp. dr = 0).

When f is nondegenerate, there exists a canonical transversal vector field
C, called the affine normal. The affine normal is uniquely determined up to
sign by the following conditions: the metric volume form wy, of h is V-parallel
and coincides with the induced volume form ©, where wy is defined by
wp(X1, ..., X,) = |det[h(X;, X;)]|*/? and O is defined by O(X1,...,X,) =
det[f« X1, ..., [+ Xy, C] for tangent vectors X; (i =1,...,n).

Let dimM = 2n + 1 and f: (M,g) — (R?"*2 §) be a nondegenerate
isometric immersion, where § is the standard inner product on R?"*2. We
always assume that R?"™ ~ C™ is endowed with the standard complex struc-
ture J. In particular, if m =n + 1 we have

J(l‘l, ey Tn415 Y1, - - "ynJrl) — (—?/1, ey T Yn+1,T1,y - - - ,l’n+1).

Let C be a transversal vector field on M. We say that C is J-tangent if
JC; € fo (T, M) for every xz € M. We also define a distribution D on M as
the biggest J invariant distribution on M, that is,

D, = f*_l(f*(T:JcM> N J(f*(Ta:M))>

for every x € M. It is clear that dimD = 2n. A vector field X is called
a D-field if X, € D, for every x € M. We use the notation X € D for
vectors as well as for D-fields. We define two 1-dimensional distributions D;
and Dy by

Dy, ={XeT,M: g(X,)Y)=0VY € D, },

Dy, :={X €T, M: h(X,Y)=0VY € D,},
where h is the second fundamental form on M relative to any transversal
vector field. It follows from Theorem [2.1] that the definition of D; is indepen-
dent of the choice of the transversal vector field. We say that the distribution

D is nondegenerate if h is nondegenerate on D. It is easy to see that D is
nondegenerate if and only if D@ Dy =T M. In this paper we assume that f
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as well as D are always nondegenerate. To simplify the writing, we will be
omitting f, in front of vector fields in most cases.

We conclude this section with the following useful lemma relating to
differential equations:

LEMMA 2.3. Let F: I — R?" be a smooth function on an interval I
and let o, 3 € C®(I,R) be such that o + 32 # 0 on I. If F satisfies the
differential equation

(2.11) F'(y) = —a(y)JF(y) + B(y)F(y),
then
(2.12) Fly) = JveP® cos(aly)) + veP® sin(a(y)),

where v € R*™ and &, B are any primitives of a and B on I respectively.

Proof. 1t is easily seen that functions of the form (2.12)) satisfy the dif-
ferential equation (2.11). On the other hand, since (2.11)) is a first order or-
dinary differential equation, the Picard—Lindel6f theorem implies that any

solution of (2.11)) must be of the form (2.12)). =

3. Induced almost contact structures. First, we recall some defini-
tions from [B]. A (2n+ 1)-dimensional manifold M is said to have an almost
contact structure if there exist on M a tensor field ¢ of type (1,1), a vector
field ¢ and a 1-form n which satisfy

(3.1) P*(X) = =X + (X,
(3.2) n(€) =1

for every X € TM. We say that an almost contact structure (p,&,n) is
normal if

[, 0] +2dn® & =0,

where [p, ¢] is the Nijenhuis tensor for .

Let f: M — R?"*2 be a nondegenerate hypersurface with a J-tangent
transversal vector field C. Then we can define a vector field &, a 1-form 75
and a tensor field ¢ of type (1,1) as follows:

(3.3) ¢:=JC,
(3.4) nlp=0 and n({) =1,
(3.5) ¢lp=Jlp and (&) =0.

It is easy to see that (y,&,n) is an almost contact structure on M. This
structure is called the almost contact structure on M induced by C.
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For an induced almost contact structure we have the following theorem:

THEOREM 3.1 ([SS]). If (p,&,n) is an induced almost contact structure
on M then the following equations hold:
(3.6) n(VxY) = —h(X, oY)+ X(n(Y)) +n(Y)7(X),
(3.7) p(VxY) = VxpY +n(Y)SX — h(X,Y)E,
(3.8) n([X,Y]) = = h(X, oY)+ h(Y, pX) + X(n(Y)) = Y (n(X))
+n(Y)T(X) = n(X)7(Y),
3.9)  »([X,)Y]) =VxpY — VypX —n(X)SY +n(Y)SX,
(3.10) n(Vx§) = 7(X),
(3.11) n(SX) = h(X,9),
for every XY € X(M).
Normal almost contact structures can be characterized as follows
TuEOREM 3.2 ([YIL Th. 3.3]). The induced almost contact structure
(p,&,m) is normal if and only if
SeZ —pSZ+1(2)§ =0 for every Z € D.
It is interesting to ask about a necessary and sufficient condition for the

affine normal to be J-tangent. An answer is the following:

THEOREM 3.3. Let f: M — R?"*2 be the Blaschke hypersurface with
an affine normal field C. Then C is J-tangent if and only if the Gauss—
Kronecker curvature is constant in the direction of the distribution Ds.

Proof. Let N be the metric normal vector field on M. Then there exist
a nonvanishing function @ on M and a vector field Z such that

C=dN"+ f.2.
From (2.5)) and the fact that C' and N are both equiaffine we have
(3.12) hMZ,X)=-X(P)

for all X € X(M). The affine normal C' is J-tangent if and only if Z € D,
or equivalently h(Z, X) = 0 for every X € D,. By is equivalent with
constancy of @ in the direction of Ds.

Recall ([N9]) that & = |K|Y/(*"*3) where K is the Gauss-Kronecker
curvature function on M. So @ is constant in the direction D5 if and only if
the Gauss—Kronecker curvature is constant along D. =

4. Special hypersurfaces. Let f: M — R?"2 be an affine hypersur-
face with a J-tangent transversal vector field C'. The transversal vector field
C will be called special if there exist smooth functions aj,ay € C*(M)
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such that o} + o # 0 and

Ci = —a1(2)of (2) — as(x)Jof ()

is J-tangent for every x € M. A hypersurface equipped with a special J-
tangent transversal vector field will be called a special hypersurface.

It is easy to see that if C' is a special transversal vector field for f then
for every nonvanishing function @ on M, a vector field @C' is also special. It
turns out that the converse is also true.

LEMMA 4.1. Let f: M — R?*"*2 be a hypersurface. Assume that C and
C' are both special vector fields for f. Then there exists a monvanishing
function ® on M such that C' = &C.

Proof. Directly by the definition of a special vector field we have

Cy, C!, € span{of (), Jof (z}}

for every x € M. Since C, and C are both transversal to f.(T,M) and
JCy, JC! belong to f.(T,M) and moreover

JCy, JC! € Span{of(:c;,Jof(m;},

thus there must exist a nonzero constant @(x) such that C!, = @(x)C;. It is
easy to verify that @ is a smooth function on M. =

To avoid nonuniqueness we introduce a notion of a normalized special
vector field, i.e. a special vector field with the property that a2 + a2 = 1.
It can be shown that such a vector field is unique up to sign. From now
on we shall be considering only hypersurfaces with a special vector field C
satisfying a; # 0. Since o is a smooth function, without loss of generality we
can assume that a; > 0. Moreover, if C' is a normalized special vector field
there exists o € C*°(M, (—m/2,7/2)) such that a; = cosa and as = sin«,
so the normalized special vector field can be expressed in the form

Cy = —cosa(x) Of(l’; —sina(x) Jof(:c;
for every z € M.

The following lemma characterizes the shape operator S and the 1-form
T for a hypersurface with a normalized special vector field.

LEMMA 4.2. Let f: M — R?"*2 be an affine hypersurface with a nor-
malized special vector field

C=—-cosaf—sinalJf
and let (p,&,n) be an almost contact structure induced by C. Then
(4.1) SX =cosaX +sinapX — X(a),
(4.2) 7(X) =sinan(X),
for all X € X(M).
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Proof. The form of C' and the fact that D J = 0 imply that
DxC=—-X(cosa)f —cosa fo(X) — X(sina)Jf —sina J fu(X)
= —cosa fo(X) —sinaJ fu(X)) + X(a)(sina f — cosa J f)
= —cosa [u(X) — sina (fu(¢X) — n(X)C) + X(@)12(€)
= —fu(cosa X +sinapX — X(a)) +sinan(X)C

for every X € X(M). Now using the Weingarten formula (2.2)) and compar-
ing the tangent and transversal parts we easily get (4.1]) and (4.2). m

It is interesting to ask when an induced almost contact structure is nor-
mal. The following theorem gives some conditions equivalent to the normal-
ity.

THEOREM 4.3. Let f: M — R?"*2 be an affine hypersurface with a
normalized special vector field

C=—-cosaf—sinalJf

and let (p,&,m) be an almost contact structure induced by C. Then the fol-
lowing conditions are equivalent:

(i) (v, &,m) is normal,
(11) § € D27
(iii) « s constant in the direction of D.

Proof. From (4.1) we have
SpZ —pSZ = —pZ(a)§
for all Z € D. Applying (3.11]) to (4.1)) we get

(4.3) —pZ(a) = h(¢Z,§)
for all Z € D. The above equalities imply that
(4.4) SpZ — pSZ — h(pZ,£)§ =0

for all Z € D. If (¢, &,n) is normal, then (4.2), (4.4) and Theorem [3.2] yield
heZ,&) =0 for Z € D. Thus £ € Dy. This completes the proof of (i)=-(ii).

The implication (ii)=-(iii) easily follows from (4.3). The proof of (iii)=-(i)
can be deduced from Lemma 121 and Theorem 3.2 =

Formula implies that a normalized special vector field is equiaffine
if and only if @ = 0, i.e. is centro-affine. Unfortunately, a change of a special
vector field usually does not preserve the equiaffinity. More precisely, if C
and C" are both equiaffine and special then there exists constant a # 0 such
that C' = aC. The above considerations motivate studying hypersurfaces
with a locally equiaffine special vector field, since this property is invariant
relative to any change among special vector fields.
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THEOREM 4.4. Let f: M — R?>"*2 be an affine hypersurface with a
locally equiaffine normalized special vector field

C=—-cosaf—sinalJf.

Then the function a is constant in the direction of D. Moreover, if « = 0
then C is centro-affine, whereas if a # 0 then the distribution D is involutive.

Proof. Let X € D. Using and we get
h(SX,&) = h(cosa X +sinapX — X ()&, §)
=cosah(X,§) +sinah(eX, &) — X(a)h(,§)
= —cosaX(a) —sinapX(a) — X(a)(cosa — &(a))
and
hX,S¢) = h(X,cosal —&(a)f) = cosah(X,§) — &(a)h(X,€)
= —cosaX(a)+ (o)X (a).

Since C is locally equiaffine the Ricci equation (2.10) and the above equali-
ties imply

(4.5) cosa X(a)+sinapX(a) =0
for all X € D. Let Y be any D-field on M. Putting
X =cosaY —sinapY
in we get
0 =cosa X (a)+sinapX(a)= cos’aY (a)— cosasina Y (a)
+ sin acos a pY () + sin? aY (a)
=Y ()

for all Y € D. That is, a is constant in the direction of D. Since d7 = 0,
formula implies

0=2d7(X,Y)=X(7(Y)) - Y(1(X)) — 7([X,Y]) = —sinan([X,Y])
for all X, Y € D. Hence oo = 0 or if a # 0 then D is involutive. m

From Theorems [.3] and [£.4] we immediately get

COROLLARY 4.5. Let f: M — R?*"*2 be an affine hypersurface with a
special vector field C. If C' is locally equiaffine then an almost contact struc-
ture induced by the corresponding normalized special vector field is normal.

In [C] V. Cruceanu gave a local representation of centro-affine hypersur-
faces with a J-tangent centro-affine vector field. More precisely he proved

THEOREM 4.6 ([C]). Let f: M — R?"*2 be a centro-affine hypersurface
with a J-tangent centro-affine vector field. Then there exist an open subset
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U C R?", an interval I C R and an immersion g: U — R?"*2 such that f
can be locally expressed in the form
(4.6) fz1,...,xon,y) = Jg(x1, ..., 2opn) cosy + g(x1,...,xo,)siny
for all (x1,...,20n,y) €U x I.
Now we can extend this result as follows:
THEOREM 4.7. Let f: M — R?"*2 be an affine hypersurface with a

locally equiaffine special vector field Coy = —ar f —anJ f. If s =0 or ag # 0
then f can be locally expressed in the form

flz1, ..., xon,y) = W) (Jg(xl, ..., Tay) cos(B(y))
+g(a1, ..., x20) sin(B(y))),

where A,B: I — R and g: V — R*"*2 are smooth functions defined on an
interval I and an open subset V .C R?"™, respectively.

Proof. Assume that the normalized special field for f has the form C =
—cosa f—sina Jf. If a =0 then the result follows from Theorem Now
we assume that o # 0. In this case Theorem [4.4]implies that the distribution
D is involutive. Since C is locally equiaffine, it follows from Theorem [4.4] and
Lemma that S = ¢S on D. In particular

(47) § € Ds.

The Frobenius theorem implies that for every x € M there exist an open
neighborhood U C M of x and linearly independent vector fields X1, ..., Xo,,
Xont1 =& € X(U) such that [X;, X;]=0fori,j=1,...,2n+ 1. For every
i=1,...,2n we have

Xi = D; + ai,
where D; € D and o; € C*°(U). Thus we have
(4.8) 0= [Xi, €] = [Di, ] — ()¢

Now (3.8), (4.2) and (4.7) imply that [D;,£] = 0 and &(a;) = 0 for i =
1,...,2n. We also have
= [Di, Dj] — Dj(a)€ + Di(a;)€,

where the last equality follows from (4.8]). Since D is involutive, the above
equality implies [D;, D;] =0 for ¢,j = 1,...,2n. Of course the vector fields
Dy, ..., Doy, € arelinearly independent, so we can find amap ¢ (z1, . . ., Ton, y)
on U such that 9/0y = & and 0/0x; = D; for i = 1,...,2n. In particular f
satisfies the differential equation

Jfy=—cosaJf +sinaf.
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We obtain (using Lemma

f=e"*(Jgcos(cosa) + gsin(cosa)),

where sina and Gosa are any primitives relative to y variable of sin o and
cos a respectively. Since « is constant in the direction of D (Theorem {4.4)
and {0/0x;} span D, the function o does not depend on z1,...,z2,. Now

- —
we can set A :=sina and B :=Cosa. n

The next theorem characterizes special centro-affine hypersurfaces with
an involutive distribution D.

THEOREM 4.8. Let f: M — R?"*2 be an affine hypersurface with a
centro-affine J-tangent vector field. The distribution D is involutive if and
only if for every x € M there exists a Kihlerian immersion g: V — R2712
defined on an open subset V. C R*"2 such that f can be expressed in the
neighborhood of x in the form

flx1, ... 2o, y) = Jg(x1,. .., 22p) cosy + g(x1, ..., Ta,) siny.

Proof. Let C be a centro-affine J-tangent vector field for f and let
(p,&,m) be the almost contact structure induced by C. Assume that D is
involutive. Since 7 = 0 and £ € Dy for every € M, we can find (in a sim-
ilar way to the proof of Theorem a neighborhood U of x and a map
¥(x1,...,22,y) on U such that /0y = € and 0/0z; € D for i =1,...,2n.
Now applying Lemma [2.3] we find that f can be expressed locally in the
form

f(w1, ... 2o, y) = Jg(x1,. .., 22n) cosy + g(x1, ..., 72,) siny,

where g: V — R?"*2 is an immersion defined on an open subset V' C R?",
Moreover, we have

Jz, = J gz, cOSY + gz, siny € f(D)
fori=1,...,2n. Since f.(D) is J-invariant we also have
T fo, = —ga, cOSY + Jgs, siny € fo(D)
for i =1,...,2n. The above formulas imply that

ngz € Span{gxla e 7g$2n}

fori=1,...,2n, that is, g is a Kéhlerian immersion. To prove the converse
note that

fy = _Jf7

_>
i.e. the centro-affine vector field —of is J-tangent. It is sufficient to prove
that D is involutive. Consider the fields fy,,..., fo,,, and Jfe,, ..., J fo,,-
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Since g is Kéhlerian, we have

2n
Jga:i = § Qijdxz;,
J=1

and consequently

2n 2n 2n
5 Qg fo; = E QjjJ go; COSY + E Qjga; SINY
j=1 =1 =1

= J29x¢ cosy + Jgg, siny = J fy,
for ¢ = 1,...,2n. The last formula implies that the space spanned by
fars-os fag, is J-invariant. We also have dimspan{fz,,..., fz,,} = 2n.

Therefore, it is the largest J-invariant subspace of f.(T'M). Thus the vector
fields {0/0x;}i=1,...2n span the distribution D, which completes the proof. =

Theorem gives a mnecessary and sufficient condition for the affine
normal to be J-tangent. Now using this theorem we will prove that in the
case of centro-affine hypersurfaces with a J-tangent centro-affine vector field
the affine normal is always J-tangent.

THEOREM 4.9. Let f: M — R?"*2 be an affine hypersurface with a
centro-affine J-tangent vector field. Then the affine normal is J-tangent.

Proof. Tt follows from Theorem [.6] that there exist an open subset U C
R?" and an interval I C R such that f can be locally expressed in the form

flxy, ..., xon,y) = Jg(x1, ... ,29) cOsy + g(x1, ..., x2,)siny,

on U x I, where g: U — R?"*2 is an immersion. Since f is an immersion, we
also see that Jg is linearly independent of g, , ..., gz,,- Thus there exists a
function W: U — R?"*2 such that

where - and || - || are the standard inner product and the standard norm
on R?"*2 respectively. We define a new function N: U x I — R?"*2 by the
formula

N(x1,...,2on,y) = JW(x1,...,22,) cosy + W(x1,...,22,)siny.

It is not difficult to see that |N| = 1, N - f,, = 0 for ¢ = 1,...,2n
and N - fy, = 0. This means that N is a metric normal for f. The equal-
ity W - W =1 implies that W, - W = 0. Thus we have

Wmi S Span{g:pla <o Gzon, Jg}

for every i = 1,...,2n. Also for every i = 1,...,2n we can find functions
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aij, 7 =1,...,2n+ 1, (independent of y) such that
2n

Wy, = Z QijGa; + Qignt1Jg.
j=1

Using the above formula we have
Ny, = JWy, cosy + Wy, siny
2n

= Z @ij(Jgz; COSY + g ; SINY) + i 2n11(—gcosy + Jgsiny)
j=1

2n
= Z Oéijf:rj - ai,2n+1fy'
J=1

Since JW - W = 0, we also have

JW € span{guy; - - - s Gusn» JG}
so there exist functions fi, ..., fon+1 (independent of y) such that

2n
IW =" Bigs; + Bani1]g.
j=1

The last equality implies
Ny = —JWsiny + W cosy
2n

= = Bj(gn, siny + Jgu, cosy) + Pany1(=Jgsiny + g cosy)
j=1

2n
== Bjfe, + Pani1fy

j=1
In this way, we have calculated that the Gauss—Kronecker curvature K for
f can be locally expressed in the form

—aqp o —op B1
K = det
—Q12n . —Q2n2n Bon
Q1241 "0 Q2p2pt1  —Pont1

Since «;; as well as 8; do not depend on y, the curvature K does not de-
pend on y either. But /0y € D and consequently the Gauss—Kronecker
curvature for f is constant in the direction of Dy. The theorem now follows
from Theorem .

Here is an example of an affine J-tangent hypersphere.
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ExAaMPLE 4.10. Let us consider the affine immersion defined by

sin z sinh y cos z cosh y
— cosx sinh sin z cosh
fR®S (z,y,2) — Y cosz + . . Y| sinz e R*
cos z coshy —sinxsinhy
sin x cosh y cos x sinh y

with the transversal vector field
C: RS 2 (x,y,z) = —f(l',y,Z) € R4'

It is not difficult to see that C is J-tangent. Moreover, we have

=0, S=id,
and
1 0 0
h=10 -1 0
0 0 1

in the canonical base on R?. It can be shown that C is the affine normal
vector field, so f is a J-tangent affine sphere.

The next example shows that not every affine hypersurface with a centro-
affine J-tangent vector field must be an affine sphere.

EXAMPLE 4.11. Let an affine immersion be defined as follows:
—xzy x

0
f:(0,00)2 xR > (z,y,2) — cosz+ | V| sinz e RY
x xy

0
It is easy to see that
C: (O,oo)2 xR 3 (x,y,2) = —f(x,y,2) € R*

is a transversal centro-affine J-tangent vector field. Obviously

T=0, S=id.
We can also compute that

1 y2+1
0 &

_ 1 1

h= 7 0 7

_ Y41 1 1

Ty oy

in the canonical base {9/0x,0/dy,d/0z} on (0,00)? x R, so f is nondegen-
erate. Moreover, by straightforward computations we find that the vector
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fields 9 5 5 5 9
X == -2 V=JX = - — e —y—
4 oy 0z’ T ox y@y Y52
span the distribution D. It follows that h(X, X) = -1, h(X,Y) = h(Y, X) =
—2y and h(Y,Y) = —y? + 2, so h is nondegenerate on D. We also have

22yt
0 = ————=-wn,
V3y? 42

thus C is not the affine normal (it is not even proportional to it).
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