
ANNALES
POLONICI MATHEMATICI

105.3 (2012)

A criterion of asymptotic stability for Markov–Feller
e-chains on Polish spaces

by Dawid Czapla (Katowice)

Abstract. Stettner [Bull. Polish Acad. Sci. Math. 42 (1994)] considered the asymp-
totic stability of Markov–Feller chains, provided the sequence of transition probabilities
of the chain converges to an invariant probability measure in the weak sense and con-
verges uniformly with respect to the initial state variable on compact sets. We extend
those results to the setting of Polish spaces and relax the original assumptions. Finally,
we present a class of Markov–Feller chains with a linear state space model which satisfy
the assumptions of our main theorem.

1. Introduction. Let X be a Polish space. We consider a homogeneous
X-valued Markov chain with transition semigroup (Pn)n∈N, where P 1 = P
is the transition kernel associated with the chain. A finite Borel measure π
on X is said to be invariant for the chain if

π(A) =
�

X

P (y,A)π(dy)

for each Borel set A ⊆ X.
We are concerned with sufficient conditions under which the Markov

chain admits an invariant probability measure π and (Pn(x, ·))n∈N converges
to π both weakly and uniformly with respect to x on compact subsets of X,
i.e. for each bounded, continuous function f : X → R the convergence�

X

f(y)Pn(x, dy)→
�

X

f(y)π(dy)

is uniform with respect to x on any compact subset of X. It is easily seen
that, in particular, the latter condition implies the asymptotic stability of
the chain, i.e. for each probability Borel measure µ on X and any bounded
continuous function f : X → R we have�

X

f(y)µPn(dy)→
�

X

f(y)π(dy),
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where µPn(A) =
	
X P

n(x,A)µ(dx). This condition also guarantees the
uniqueness of the invariant probability measure.

Motivated by the results of Stettner [9], we relax the assumptions of [9,
Theorem 4.3] and give a new proof of that theorem based upon ideas found
in [1, Theorem 2.1] due to Bessaih, Kapica and Szarek.

Recently, a lot of attention in the literature has been paid to various cri-
teria for the existence of invariant measures and the asymptotic stability of
Markov chains (initially, in the setting of locally compact and separable met-
ric spaces and later, Polish spaces). Possible properties of a Markov chain (or
equivalently, a Markov operator), which is typically assumed to be Feller, are
usually related to the notion of nonextensibility (with respect to an appro-
priate norm in the space of measures), semi-concentration ([11, 7, 5, 12, 4]),
e-property, tightness or concentration at a point ([9, 10, 1]). In the present
paper we are mainly concerned with the last three properties of Markov
chains.

The asymptotic stability problem consists, in general, in two issues:
firstly, the existence of an invariant probability measure and, secondly, a kind
of stability that provides the uniqueness of the invariant measure. Assuming
the Markov chain is Feller and enjoys the tightness property, it does admit
an invariant measure. Indeed, under these assumptions the invariant mea-
sure may be obtained as a weak limit of the Cesàro averages of (Pn(x, ·))n∈N
(see Proposition 5.3 of the Appendix or [11]). Therefore, we shall focus on
the stability properties of Markov chains.

The outline of the paper is as follows. The first section deals with basic
notions, notation and facts that we shall often refer to in this work. Among
other things we formulate some sufficient conditions for tightness of a col-
lection of measures.

We state our main result (which generalizes [9, Theorem 4.3]) in Section 2.
At the end of that section, we derive a corollary from [10] and the main result.
Then we specialise to the locally compact and separable case.

In Section 4, we give an example illustrating applications of the criterion
for asymptotic stability formulated in Section 3. Appealing to results of
Meyn and Tweedie [8], we consider a class of Markov chains with a linear
state space model of Rd given by the recursive formula

φn+1 = Fφn +Gηn+1 (n ∈ N),

where (ηn)n∈N is a sequence of mutually independent and identically dis-
tributed random variables and F , G are real matrices. Assuming that the
spectral radius of F is less than 1, it turns out that the model satisfies con-
ditions (A1) and (A2) formulated in Section 3. Condition (A3) can be easily
verified when the common distribution of variables ηn is given.
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For the convenience of the reader and self-containedness, in the Appendix
we give detailed proofs of some facts of importance from our perspective
which are probably well-known to experts.

2. Preliminaries. Let (Ω,A,P) be a probability space and let X be a
Polish space (that is, a separable and complete metric space endowed with
a metric ρ). Denote by BX the σ-field of Borel subsets of X. We need the
following notation:

• M(X) = the family of all finite, nonnegative and countably additive
Borel measures on X;
• M1(X) = the subset ofM(X) consisting of probability measures;
• MA

1 (X) = the subset ofM(X) consisting of probability measures sup-
ported on a given set A ∈ BX ;
• B(X) = the Banach space of all bounded, Borel, real-valued functions

defined on X, equipped with the supremum norm;
• C(X) = the subspace of B(X) consisting of bounded continuous func-

tions;
• Cbs(X) = the subspace of C(X) consisting of functions with bounded

supports;
• B(z, δ) = {x ∈ X : ρ(x, z) < δ} (z ∈ X and δ > 0).

Consider a time-homogeneous, X-valued Markov chain (ξn)n∈N0 defined
on Ω, where N0 = N ∪ {0}. Let P be the transition operator associated
with that chain, that is, P = P 1 : X ×BX → [0, 1] determines the transition
probability at the first step:

P (x,A) = P(ξ1 ∈ A | ξ0 = x) = Px(ξ1 ∈ A) (x ∈ X and A ∈ BX)
and satisfies the Chapman–Kolmogorov equations:

Pn+m(x,A) =
�

X

Pm(y,A)Pn(x, dy) (n,m ∈ N, x ∈ X and A ∈ BX).

We associate with each transition probability Pn (n ∈ N) a Markov
operator (·)Pn acting onM(X) in the following manner:

µPn(A) =
�

X

Pn(x,A)µ(dx) (A ∈ BX and µ ∈M(X)).

The action of the dual operator Pn(·) on bounded Borel functions on X is
defined by

Pnf(x) =
�

X

f(y)Pn(x, dy) (x ∈ X and f ∈ B(X)).

We often write 〈f, µ〉 instead of
	
X f dµ.

Now, we list several definitions and facts that are essential for many
proofs in the paper.
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Definition 2.1. The chain (ξn)n∈N0 is said to be:

(i) a Feller chain whenever Pf ∈ C(X) for each f ∈ C(X);
(ii) an e-chain if for each f ∈ Cbs(X) the family {Pnf : n ∈ N} is

equicontinuous at all points of X, that is,

(∀x ∈ X)(∀ε > 0)(∃δ > 0)(∀n ∈ N)(∀y ∈ B(x, δ))(|Pnf(x)− Pnf(y)| < ε).

There are several definitions of e-process in the literature which are not
equivalent in general. In this paper we adopt the definition from [10].

Definition 2.2. We say that a measure π ∈M(X) is invariant for the
chain (ξn)n∈N0 (or the operator P ) if

π(A) = πP (A) for each A ∈ BX .

Definition 2.3. We say that a sequence (µn)n∈N of measures inM(X)
converges weakly to a measure µ ∈M(X) whenever

lim
n→∞

�

X

f dµn =
�

X

f dµ for each f ∈ C(X).

Definition 2.4. The chain (ξn)n∈N0 (or the operator P ) is called asymp-
totically stable if it has an invariant probability measure π such that for each
µ ∈M1(X) the sequence (µPn)n∈N converges weakly to π.

In case a Markov process admits a unique invariant measure one may
expect that it is also asymptotically stable.

Remark 2.1. If the chain (ξn)n∈N0 is asymptotically stable then its in-
variant probability measure is unique.

Indeed, suppose π and π′ are invariant probability measures for (ξn)n∈N0 .
Then π′Pn w→ π. Hence, for each f ∈ C(X),∣∣∣ �

X

f(x)π′(dx)−
�

X

f(x)π(dx)
∣∣∣ = ∣∣∣ �

X

f(x)π′Pn(dx)−
�

X

f(x)π(dx)
∣∣∣→ 0

as n→∞. Consequently,
	
X f(x)π

′(dx) =
	
X f(x)π(dx), and thus π′ = π.

Since the ambient space X is Polish, the topology of weak convergence of
measures inM1(X) is metrisable by the Fortet–Mourier norm (see Section
1.5 of [6]). Hence one can equivalently define the asymptotic stability in
terms of convergence with respect to that norm.

Now, we turn to the notion of tightness of measures, which plays a crucial
role in further considerations.

Definition 2.5. A measure µ ∈ M(X) is said to be tight if for each
ε > 0 there exists a compact set K ⊆ X such that µ(X \K) < ε.

A family of measures R ⊂M(X) is tight if for each ε > 0 there exists a
compact set K ⊆ X such that µ(X \K) < ε for all µ ∈ R.
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Ulam’s Theorem ([2, Theorem 1.4], [8, Theorem 1.17]) asserts that each
finite Borel measure on a Polish space is tight.

We shall prove two useful conditions equivalent to tightness of a collec-
tion of Borel measures. To do that, we need to introduce one more piece of
notation: for each δ > 0 set

C(X, δ)=
{
A ⊂ X : A⊂

N⋃
i=1

clB(xi, δ) for some N ∈N and x1, . . . , xN ∈X
}
.

We note that the following fact remains valid if we drop the assumption of
separability of X.

Proposition 2.1 ([11, Lemma 3.2]). A collection A ⊆M1(X) of mea-
sures is tight if and only if for each δ > 0 there exists a set A ∈ C(X, δ) such
that

ν(A) > 1− δ for each ν ∈ A.
Proof. It is enough to prove that the condition given above is sufficient for

the tightness of A. Let ε > 0. By assumption, there is a sequence (Am)m∈N
of sets such that

Am ∈ C(X, ε/2m) and ν(Am) > 1− ε/2m (m ∈ N, ν ∈ A).
Plainly, for each m ∈ N, we have clAm ∈ C(X, ε/2m). Set K =

⋂∞
m=1 clAm.

Since for every m ∈ N the set K has an ε/2m-net, it is compact by [8,
Theorem 5.4]. Let ν ∈ A. We infer that

ν(X \K) = ν
( ∞⋃
m=1

(X \ clAm)
)
≤
∞∑
m=1

ν(X \ clAm) =
∞∑
m=1

(1− ν(clAm))

≤
∞∑
m=1

ε

2m
= ε.

We define a norm-like function to be a Borel function V : X → [0,∞)
for which there exists an increasing sequence (Cn)n∈N of compact subsets of
X such that

(2.1) lim
n→∞

inf
x∈X\Cn

V (x) =∞.

We can now state the following result ([8, p. 531]).

Proposition 2.2. Let A ⊆M1(X). If there exists a norm-like function
V : X → [0,∞) with

(2.2) sup
ν∈A

�

X

V (x) ν(dx) <∞,

then the family A is tight. If additionally X is separable and locally compact,
then the converse also holds.



272 D. Czapla

Proof. Let V : X → [0,∞) be a norm-like function satisfying (2.2) and
let (Cn)n∈N be an increasing sequence of compact sets enjoying (2.1). We
note that

(2.3) sup
ν∈A

�

X

V (x) ν(dx) ≥ sup
ν∈A

�

X\Cn

V (x) ν(dx)

≥ sup
ν∈A

(
inf

x∈X\Cn

V (x)ν(X \ Cn)
)
= inf

x∈X\Cn

V (x) sup
ν∈A

ν(X \ Cn) (n ∈ N).

The sequence (supν∈A ν(X \ Cn))n∈N is bounded and decreasing (as Cn ⊂
Cn+1, n ∈ N), so it converges to a non-negative number, say p. Letting
n→∞ in (2.3), we obtain

lim sup
n→∞

[
inf

x∈X\Cn

V (x) sup
ν∈A

ν(X \ Cn)
]
≤ sup

ν∈A

�

X

V (x) ν(dx),

thus
p = lim

n→∞
sup
ν∈A

ν(X \ Cn) = 0,

because if p > 0, then by (2.1) the right-hand side of the last inequality
would be infinite, contrary to (2.2).

Consequently, taking any ε>0 we may find N ∈N with supν∈A ν(X \CN )
< ε. This proves the tightness of A.

Conversely, suppose that X is locally compact and separable and the
family A is tight. Then there is an increasing sequence (Kn)n∈N of compact
subsets of X such that

sup
ν∈A

ν(X \Kn) < 1/2n (n ∈ N).

The assumptions about X yield a sequence (Un)n∈N of open and relatively
compact subsets such that

Kn ⊂ Un (n ∈ N) and X =
∞⋃
n=1

Un.

Set Cn = clUn (n ∈ N). Plainly,

ν(X \ Cn) ≤ ν(X \Kn) < 1/2n (ν ∈ A, n ∈ N).

Define V : X → [0,∞) as follows:

V (x) =

∞∑
n=1

1X\Cn
(x) (x ∈ X).

This is well-defined, since each x ∈ X is in some Cn, thus x ∈ Cm for m ≥ n,
and consequently V (x) ≤ n < ∞. Moreover, V is a norm-like function: if
n ∈ N and x ∈ X \ Cn, then x ∈ X \ Cm for each m ≤ n, so V (x) ≥ n, and
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hence
inf

x∈X\Cn

V (x) ≥ n (n ∈ N).

Furthermore, V satisfies (2.2) because for ν ∈ A we have

�

X

V (x) ν(dx) =
∞∑
n=1

ν(X \ Cn) ≤
∞∑
n=1

1

2n
= 1.

3. A criterion of asymptotic stability. Throughout this section we
assume that the chain (ξn)n∈N0 enjoys the Feller property. Let us introduce
the following conditions:

(A1) The process (ξn)n∈N0 is an e-chain.
(A2) The family of measures {Pn(x, ·) : n ∈ N} is tight for each x ∈ X.
(A3) There exists z ∈ X with the following property: for any com-

pact set C ⊂ X and each δ > 0 there is an N ∈ N such that
PN (x,B(z, δ)) > 0 for all x ∈ C.

(A2)′ The family of measures {Pn(x, ·) : x ∈ C, n ∈ N} is tight for any
compact set C ⊂ X.

(A3)′ There exists z ∈ X with the following property: for any compact
set C ⊂ X and for each δ > 0 there is an N ∈ N such that for some
α > 0, each measure µ ∈MC

1 (X) satisfies µPN (B(z, δ)) ≥ α.

We need the following lemma [9, Lemma 4.4]:

Lemma 3.1. Conditions (A3) and (A3)′ are equivalent.

Proof. Plainly, it is sufficient to prove that (A3) implies (A3)′. Assume
that z ∈ X satisfies (A3). Let C be a compact subset of X and fix δ > 0.
There is a natural number N such that

(3.1) PN (x,B(z, δ/2)) > 0 (x ∈ C).

Set U = B(z, δ). By the Urysohn Lemma, there is a continuous function
f : X → [0, 1] such that

f(clB(z, δ/2)) = {1} and f(X \B(z, δ)) = {0}.

Notice it is enough to show that

α = inf
x∈C

PN (x, U) > 0,

because for each µ ∈MC
1 (X) we then have

µPN (U) ≥
�

C

PN (x, U)µ(dx) ≥ αµ(C) = α.
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We argue by contradiction. Suppose that infx∈C PN (x, U) = 0. Let (xn)n∈N
be a sequence of points of C such that

lim
n→∞

PN (xn, U) = 0.

Since C is compact, we can assume that xn → x0 ∈ C. Observe that

PNf(x0) = 0.

Indeed, for all n ∈ N we have

PN (xn, U) =
�

X

1U (y)P
N (xn, dy) ≥

�

X

f(y)PN (xn, dy) = PNf(xn),

and since the chain has the Feller property and the function f is nonnegative
we infer that

0 ≤ PNf(x0) = lim
n→∞

PNf(xn) ≤ lim sup
n→∞

PN (xn, U) = 0.

Therefore,

PN (x0, B(z, δ/2)) =
�

X

1B(z,δ/2)(y)P
N (x0, dy) ≤

�

X

f(y)PN (x0, dy)

= PNf(x0) = 0,

which contradicts (3.1).

Armed with this information, we are ready to prove a theorem which is
a crucial ingredient in the proof of the main result (the idea is based on the
proof of [1, Theorem 2.1]).

Theorem 3.1. Suppose that conditions (A1)–(A3) are satisfied. Then,
for each f ∈ C(X) and any x1, x2 ∈ X,

(3.2) lim
n→∞

|Pnf(x1)− Pnf(x2)| = 0.

Proof. Firstly, it suffices to show that (3.2) is satisfied for each f ∈
Cbs(X). Indeed, take f ∈ C(X), f 6= 0, x1, x2 ∈ X and ε > 0. By (A2) we
find a compact set C ⊂ X such that

Pn(xi, X \ C) ≤
ε

3‖f‖
(n ∈ N, i = 1, 2).

Let B ⊂ X be an open ball containing C. The Urysohn Lemma yields a
continuous function ϕ : X → [0, 1] with ϕ|C = 1 and ϕ|X\B = 0. Set f0 = fϕ.
Then f0 ∈ Cbs(X) and ‖f − f0‖ = ‖f‖ ‖1− ϕ‖ ≤ ‖f‖. Now, assuming that
(3.2) holds for each function in Cbs(X), we may choose n0 ∈ N such that

|Pnf0(x1)− Pnf0(x2)| ≤ ε/3 (n ≥ n0).
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Hence, for each n ≥ n0 we have

|Pnf(x1)− Pnf(x2)| ≤ |Pnf(x1)− Pnf0(x1)|+ |Pnf0(x1)− Pnf0(x2)|
+ |Pnf0(x2)− Pnf(x2)|

≤
�

X\C

|(f − f0)(y)|Pn(x1, dy) + ε/3

+
�

X\C

|(f − f0)(y)|Pn(x2, dy)

≤ ‖f‖Pn(x1, X \ C) + ε/3 + ‖f‖Pn(x2, X \ C)
≤ ε/3 + ε/3 + ε/3 = ε.

Secondly, we prove that (3.2) holds for each function in Cbs(X). Fix
f ∈ Cbs(X), f 6= 0, x1, x2 ∈ X and ε ∈ (0, 1/2). By (A1), there is δ > 0 such
that

(3.3) |Pnf(x)− Pnf(y)| < ε/2 (x, y ∈ B(z, δ), n ∈ N).

Making use of (A2), we choose a compact set K ⊂ X such that

(3.4) Pn(xi,K) > 1− ε2

4‖f‖
(n ∈ N, i = 1, 2).

There is no loss of generality in assuming that x1, x2 ∈ K. By the Feller
property, each sequence of measures in {P (x, ·) : x ∈ K} clearly admits
a weakly convergent subsequence, whence by the Prokhorov Theorem ([2,
Appendix III, Theorems 6, 7]) this family is tight. Therefore, there exists a
compact set L ⊂ X containing K such that

inf
x∈K

P (x, L) ≥ 3/4.

Consequently, for each µ ∈MK
1 (X) we have

(3.5) µP (L) ≥
�

K

P (x, L)µ(dx) ≥ 3/4 > 1/2.

Applying condition (A3)′ to the set L and the number δ, we find a natural
number N and a constant α ∈ (0, 1) such that

(3.6) νPN (B(z, δ)) ≥ α (ν ∈ML
1 (X)).

Set
γ = αε/2 and k = min{l ∈ N : 4(1− γ)l‖f‖ < ε}.

Clearly, γ ∈ (0, 1/4). Let m = N + 2. We shall prove inductively that for
each l ∈ {1, . . . , k} there exist νi1, . . . , νil ∈ M

B(z,δ)
1 (X) and µil ∈ M1(X)

(i = 1, 2) such that
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(3.7) PN+(l−1)m(xi, ·) = γ νi1P
(l−1)m + γ(1− γ) νi2P (l−2)m + · · ·

+ γ(1− γ)l−2 νil−1Pm + γ(1− γ)l−1 νil + (1− γ)l µil.

Let l = 1. Define

νi1(A) =
PN (xi, A ∩B(z, δ))

PN (xi, B(z, δ))
(A ∈ BX , i = 1, 2),

µi1(A) =
1

1− γ
(PN (xi, A)− γνi1(A)) (A ∈ BX , i = 1, 2).

Certainly, νi1 ∈M
B(z,δ)
1 (X) (i = 1, 2). By (3.6) we infer that

PN (xi, B(z, δ)) = δxiP
N (B(z, δ)) ≥ α = 2γ/ε > γ (i = 1, 2),

whence, by the definition of νi1,

PN (xi, A) ≥ PN (xi, A ∩B(z, δ)) = PN (xi, B(z, δ))νi1(A) ≥ γ νi1(A)
for each A ∈ BX (i = 1, 2). The last inequality guarantees that µi1 is non-
negative, so µi1 ∈M1(X) (i = 1, 2). It remains to note that the above defined
measures satisfy (3.7):

γ νi1 + (1− γ)µi1 = γ νi1 + PN (xi, ·)− γ νi1 = PN (xi, ·) (i = 1, 2).

Let now l ∈ {1, . . . , k − 1} and assume inductively that there exist mea-
sures νi1, . . . , νil ∈ M

B(z,δ)
1 (X) and µil ∈ M1(X) (i = 1, 2) such that (3.7)

holds. By the definition of k we infer that

(3.8) 4(1− γ)l‖f‖ ≥ ε.
We now prove

(3.9) µilP (K) > ε (i = 1, 2).

Indeed, it follows from (3.4) and the inductive assumption that

1− ε2

4‖f‖
< P 1+N+(l−1)m(xi,K) = PN+(l−1)mP (xi,K)

= (δxiP
N+(l−1)m)P (K)=(γ νi1P

(l−1)m + γ(1− γ) νi2P (l−2)m + · · ·
+ γ(1− γ)l−2 νil−1Pm + γ(1− γ)l−1 νil + (1− γ)l µil)P (K)

≤ γ + γ(1− γ) + · · ·+ γ(1− γ)l−1 + (1− γ)l (µilP )(K)

= γ + γ

l−1∑
j=1

(1− γ)j + (1− γ)l(µilP )(K)

= γ + γ(1− γ)1− (1− γ)l−1

1− (1− γ)
+ (1− γ)l(µilP )(K)

= γ + (1− γ)− (1− γ)l + (1− γ)l(µilP )(K)

= 1− (1− γ)l + (1− γ)l(µilP )(K) (i = 1, 2),
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whence by (3.8),

µilP (K) >
(1− γ)l − ε2

4‖f‖

(1− γ)l
= 1− ε2

4‖f‖(1− γ)l
> 1− ε2

ε
> ε

for each i = 1, 2, proving (3.9).
Define

µ̃il(A) =
µilP (A ∩K)

µilP (K)
(A ∈ BX , i = 1, 2).

Clearly, µ̃il ∈MK
1 (X) (i = 1, 2). The definition together with (3.9) yield

(3.10)
µilP (A) ≥ µilP (A ∩K) = µilP (K) µ̃il(A) ≥ εµ̃il(A) (A ∈ BX , i = 1, 2).

The measures µ̃il (i = 1, 2) satisfy (3.5) as they belong toMK
1 (X). Therefore,

µ̃ilP (L) > 1/2 (i = 1, 2),

whence by (3.10),

(3.11) µilP
2(L) = (µilP )P (L) ≥ εµ̃ilP (L) > ε/2 (i = 1, 2).

Define

µil(A) =
µilP

2(A ∩ L)
µilP

2(L)
(A ∈ BX , i = 1, 2).

Then µil ∈ML
1 (X) (i = 1, 2), so by (3.6) we get

(3.12) µilP
N (B(z, δ)) ≥ α (i = 1, 2).

Appealing to the definition of µil and (3.11) we infer that

µilP
2(A) ≥ µilP 2(A ∩ L) = µil = P 2(L)µil(A)(3.13)

≥ (ε/2)µil(A) (A ∈ BX , i = 1, 2).

Now, applying both (3.13) and (3.12) we observe that

µilP
N+2(B(z, δ)) = (µilP

2)PN (B(z, δ)) ≥ (ε/2)µilP
N (B(z, δ))(3.14)

≥ εα/2 = γ (i = 1, 2).

We are now ready to construct the relevant measures. Set

νil+1(A) =
µilP

N+2(A ∩B(z, δ))

µilP
N+2(B(z, δ))

(A ∈ BX , i = 1, 2),

µil+1(A) =
1

1− γ
(µilP

N+2(A)− γνil+1(A)) (A ∈ BX , i = 1, 2).

Certainly, νil+1 ∈M
B(z,δ)
1 (X) (i = 1, 2). Taking into account (3.14) together

with the definition of νil+1 we find that

µilP
N+2(A) ≥ µilPN+2(A∩B(z, δ)) = µilP

N+2(B(z, δ)) ·νil+1(A) ≥ γνil+1(A)
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for A ∈ BX and i = 1, 2. Therefore, µil+1 is non-negative and belongs to
M1(X). Lastly, we prove that the measures defined above satisfy decompo-
sition (3.7):

PN+lm(xi, ·) = δxiP
N+(l−1)mPm

= (γ νi1P
(l−1)m + γ(1− γ) νi2P (l−2)m

+ · · ·+ γ(1− γ)l−2 νil−1Pm + γ(1− γ)l−1 νil + (1− γ)l µil)Pm

= γ νi1P
lm + γ(1− γ) νi2P (l−1)m + · · ·+ γ(1− γ)l−2 νil−1P 2m

+ γ(1− γ)l−1 νilPm + (1− γ)l µilPm (i = 1, 2),

and by the definition of µil+1 the last summand above is of the form

(1− γ)lµilPm = (1− γ)lµilPN+2 = (1− γ)l[(1− γ)µil+1 + γνil+1]

= γ(1− γ)lνil+1 + (1− γ)l+1µil+1 (i = 1, 2).

This proves the inductive step.
Set n0 = N + (k − 1)m and fix n ≥ n0. By (3.7) we obtain

(3.15) |Pnf(x1)− Pnf(x2)| = |Pn0Pn−n0f(x1)− Pn0Pn−n0f(x2)|
= |〈Pn−n0f, Pn0(x1, ·)− Pn0(x2, ·)〉|
≤ γ|〈Pn−n0f, (ν11 − ν21)P (k−1)m〉|+ γ(1− γ)|〈Pn−n0f, (ν12 − ν22)P (k−2)m〉|

+ · · ·+ γ(1− γ)k−1|〈Pn−n0f, ν1k − ν2k〉|+ (1− γ)k|〈Pn−n0f, µ1k − µ2k〉|.

Notice that for any j ∈ N and l ∈ {1, . . . , k},

(3.16) |〈P jf, ν1l − ν2l 〉| ≤ ε/2.

Indeed, condition (3.3) together with ν1l (B(z, δ)) = ν2l (B(z, δ)) = 1 ensure
that for each l ∈ {1, . . . , k} we have

|〈P jf, ν1l − ν2l 〉| =
∣∣∣ �

B(z,δ)

P jf(x) ν1l (dx)−
�

B(z,δ)

P jf(y) ν2l (dy)
∣∣∣

=
∣∣∣ �

B(z,δ)

( �

B(z,δ)

(P jf(x)− P jf(y)) ν1l (dx)
)
ν2l (dy)

∣∣∣
≤

�

B(z,δ)

( �

B(z,δ)

|P jf(x)− P jf(y)| ν1l (dx)
)
ν2l (dy) ≤ ε/2.

Moreover,

(3.17) |〈Pn−n0f, µ1k − µ2k〉| ≤ ‖f‖µ1k(X) + ‖f‖µ2K(X) = 2‖f‖.

Finally, the estimates (3.15)–(3.17) yield
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|Pn(x1)− Pn(x2)| ≤
ε

2
(γ + γ(1− γ) + · · ·+ γ(1− γ)k−1) + 2‖f‖(1− γ)k

=
ε

2
(1− (1− γ)k) + 2‖f‖(1− γ)k < ε

2
+
ε

2
= ε.

It follows from the theorem above that (A2)′ can be derived from the
other conditions. To prove this we need an additional lemma. Recall that
C(X, δ) denotes the family of all subsets of X which can be covered by a
finite number of closed balls of radius δ.

Lemma 3.2. For every compact set K ⊂ X and for each δ > 0 there
exists a continuous function f : X → [0, 1] such that supp f ∈ C(X, δ) and
f ≥ 1K .

Proof. Define τ : [0,∞)→ [0, 1] and f : X → [0, 1] by

τ(t) = max{1− t, 0} (t ≥ 0),

f(x) = τ

(
3

δ
dist(x,K)

)
(x ∈ X).

Plainly, τ and f are continuous and f ≥ 1K as f(x) = τ(0) = 1 for each
x ∈ K.

Notice that

supp f = cl{x ∈ X : f(x) 6= 0} = cl{x ∈ X : dist(x,K) < δ/3}
⊂ {x ∈ X : dist(x,K) < δ/2}.

Since K is compact, we may find an integer N and x1, . . . , xN ∈ X such
that

K ⊂
N⋃
j=1

B(xj , δ/2).

It remains to prove that supp f ⊂
⋃N
j=1B(xj , δ). Fix x ∈ supp f . Then

dist(x,K) < δ/2, so there exists z ∈ K such that ρ(x, z) < δ/2. Clearly,
z ∈ B(xi, δ/2) for some i ∈ {1, . . . , N}, so

ρ(x, xi) ≤ ρ(x, z) + ρ(z, xi) < δ.

Corollary 3.1. Suppose that conditions (A1)–(A3) hold. Then (A2)′
holds as well.

Proof. Let C be a non-empty compact subset ofX. To prove the tightness
of {Pn(x, ·) : n ∈ N, x ∈ C} it is enough to show that each sequence in
this family admits a tight subsequence. Indeed, let (mn)n∈N be a strictly
increasing sequence of natural numbers, and let (xn)n∈N be a sequence of
points in C. Suppose that (kn)n∈N is a strictly increasing sequence of natural
numbers such that {Pmkn (xkn , ·) : n ∈ N} is tight. Then by the Prokhorov
Theorem a subsequence of (Pmkn (xkn , ·))n∈N is weakly convergent. Thus we
have shown that each sequence in the family under consideration admits a
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weakly convergent subsequence. Applying [2, Theorem 7, Appendix II], we
infer that the family is tight.

Let (Pmn(xn, ·))n∈N be a subsequence of {Pn(x, ·) : n ∈ N, x ∈ C}. Fix
δ > 0 and let x0 ∈ C. It follows from (A2) that there exists a compact set
K ⊂ X such that

(3.18) Pn(x0,K) ≥ 1− δ/2 (n ∈ N).
Appealing to Lemma 3.2, we find a function f : X → [0, 1] with

f ≥ 1K and supp f ∈ C(X, δ).
Certainly, f ∈ Cbs(X). Making use of (A1) we deduce that the family
{Pnf : n ∈ N} is equicontinuous at all points of X. Moreover, it is uni-
formly bounded with constant 1. Hence, by the Arzelà–Ascoli Theorem, we
may extract a subsequence (Pmknf)n∈N which is uniformly convergent to a
continuous function ϕ on C. Applying Theorem 3.1 we conclude that

lim
n→∞

|Pnf(x)− Pnf(y)| = 0 (x, y ∈ X).

Thus, for all x, y ∈ C we get

|ϕ(x)− ϕ(y)| = lim
n→∞

|Pmknf(x)− Pmknf(y)| = 0,

so ϕ is constant, say ϕ(x)=m for each x∈C. Since the sequence (Pmknf)n∈N
is uniformly convergent on C, we may pick n0 ∈ N such that

|Pmknf(x)−m| < δ/4 (n ≥ n0 and x ∈ C).
Consequently,

(3.19)
|Pmknf(x)− Pmknf(y)| < |Pmknf(x)−m|+ |m− Pmknf(y)| < δ/2

for n ≥ n0 and x, y ∈ C. Set A = supp f . Let n ≥ n0. By (3.19) applied to
x0, xkn and (3.18) we obtain

Pmkn (xkn , A)

=
�

X

1A(y)P
mkn (xkn , dy) ≥

�

X

f(y)Pmkn (xkn , dy) = Pmknf(xkn)

= Pmknf(x0) + (Pmknf(xkn)− Pmknf(x0)) > Pmknf(x0)− δ/2
≥ Pmkn1K(x0)− δ/2 > 1− δ.

Since each measure Pmki (xki , ·) (i ∈ {1, . . . , n0 − 1}) is tight in view of
the Ulam Theorem ([2, Theorem 1.4] or [8, Theorem 1.17]), Proposition 2.1
yields a set B ∈ C(X, δ) such that

Pmki (xki , B) > 1− δ (i ∈ {1, . . . , n0 − 1}).
Therefore, letting D = A ∪B we see that D ∈ C(X, δ) and

Pmkn (xkn , D) > 1− δ (n ∈ N).
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We have proved that for any δ > 0 there exists a set D ∈ C(X, δ) such that
Pmkn (xkn , D) > 1 − δ for each n ∈ N. Now Proposition 2.1 implies that
{Pmkn (xkn , ·) : n ∈ N} is tight.

Observe that condition (A2) implies the boundedness in probability on
average at each point of X. In particular, it ensures the existence of an
invariant probability measure (see Proposition 5.3 or e.g. [11]).

Now we are prepared to prove the main result of this section (cf. [9,
Theorem 4.3]).

Theorem 3.2. Suppose that conditions (A1)–(A3) are satisfied. Then
the chain (ξn)n∈N0 is asymptotically stable with a unique invariant probabil-
ity measure π. Furthermore, the convergence Pn(x, ·) w→ π is uniform with
respect to x on compact subsets of X.

Proof. Let π be an arbitrary invariant probability measure for (ξn)n∈N0

(see Proposition 5.3). We shall deduce the asymptotic stability of (ξn)n∈N0

by using Theorem 3.1 and the Lebesgue Dominated Convergence Theorem.
Indeed, let µ ∈M1(X) and f ∈ C(X). Then∣∣∣ �
X

f(x)µPn(dx)−
�

X

f(y)π(dy)
∣∣∣ = ∣∣∣ �

X

f(x)µPn(dx)−
�

X

f(y)πPn(dy)
∣∣∣

=
∣∣∣ �
X

Pnf(x)µ(dx)−
�

X

Pnf(y)π(dy)
∣∣∣

=
∣∣∣ �
X

( �

X

Pnf(x)µ(dx)− Pnf(y)
)
ν(dy)

∣∣∣
=
∣∣∣ �
X

( �

X

(Pnf(x)− Pnf(y))µ(dx)
)
ν(dy)

∣∣∣
≤

�

X

( �

X

|Pnf(x)− Pnf(y)|µ(dx)
)
ν(dy)→ 0 as n→∞.

Consequently, µPn w→ π.
One should keep in mind that π is a unique probability invariant measure

for (ξn)n∈N0 (see Remark 2.1).
Set π(f) =

	
X f(x)π(dx). In particular, for each x ∈ X we have δxPn

w→ π (where δx is the Dirac measure supported at x), so

(3.20) lim
n→∞

|Pnf(x)− π(f)| = 0 (f ∈ C(X)).

We shall prove that for each f ∈ C(X) the sequence (Pnf)n∈N converges
to π(f) uniformly on compact subsets of X. Indeed, fix f ∈ C(X), f 6= 0
and a compact set C ⊂ X. Assume to the contrary that (Pnf)n∈N does
not converge uniformly to π(f) on C. Then we may find ε > 0, a strictly
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increasing sequence (kn)n∈N of integers and a sequence (xn)n∈N of points of
C such that

(3.21) |P knf(xn)− π(f)| ≥ ε (n ∈ N).

Since C is compact, we can assume that xn → x0 ∈ C. It follows from (A2)′
that there is a compact set K ⊂ X such that

(3.22) sup
x∈C

Pn(x,X \K) ≤ ε

8‖f‖
and Pn(x0, X \K) ≤ ε

8‖f‖
(n ∈ N).

Let B ⊂ X be an open ball containing K. The Urysohn Lemma yields a
continuous function ϕ : X → [0, 1] such that ϕ|K = 1 and ϕ|X\B = 0. Set
f0 = fϕ. Then f0 ∈ Cbs(X) and ‖f − f0‖ ≤ ‖f‖. Applying (A1) to f0 and
x0 we find δ > 0 such that

(3.23) |Pnf0(x)− Pnf0(x0)| ≤ ε/8 (x ∈ B(x0, δ), n ∈ N).

Pick N ∈ N such that xn ∈ B(x0, δ) (n ≥ N). Appealing to (3.23) with
x = xn (n ≥ N) and making use of (3.20), we choose n0 ≥ N such that

(3.24) |Pnf(x0)− π(f)| ≤ ε/8 (n ≥ n0).

Let n ≥ n0. Then, applying (3.23), (3.24) and (3.22) successively we obtain

|P knf(xn)− π(f)| ≤ |P knf(xn)− P knf0(xn)|+ |P knf0(xn)− P knf0(x0)|
+ |P knf0(x0)− P knf(x0)|+ |P knf(x0)− π(f)|

≤
�

X\K

|(f − f0)(y)|P kn(xn, dy) + ε/8

+
�

X\K

|(f − f0)(y)|P kn(x0, dy) + ε/8

≤ ε/4 + ‖f‖P kn(xn, X \K) + ‖f‖P kn(x0, X \K)

≤ ε/4 + 2‖f‖ · ε

8‖f‖
=
ε

2
< ε,

contrary to (3.21), whence the proof is complete.

Consider the following two conditions:

(A1)′ For each f ∈ C(X) the family {Pnf : n ∈ N} is equicontinuous at
all points of X.

(A3)′′ For any point z and each δ > 0 there exist α > 0 and N ∈ N such
that PN (x,B(z, δ)) > α for all x.

The conditions above are stronger than (A1) and (A3), respectively. Ob-
serve that (A1)′ and (A3)′′ together imply (A2). Indeed, if z ∈ X, δ > 0 are
arbitrary and α > 0, N ∈ N satisfy (A3)′′, then Pn(x,B(z, δ)) > α for all
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n ≥ N , because for each k ∈ N we have

PN+k(x,B(z, δ)) ≥
�

X

PN (y,B(z, δ))P k(x, dy) ≥ αP k(x,X) = α.

Consequently, for any integer n > N and for each x ∈ X we have

1

n

n∑
i=1

P i(x,B(z, δ)) ≥ 1

n

n∑
i=N+1

P i(x,B(z, δ)) ≥ αn−N
n

= α

(
1− N

n

)
.

In the proof of Proposition 2.1 of [10] it is shown this implies the tightness
of {Pn(z, ·) : n ∈ N}, hence condition (A2) holds. This leads to the following
conclusion:

Corollary 3.2. Assume that conditions (A1)′ and (A3)′′ are satisfied.
Then the chain (ξn)n∈N0 is asymptotically stable with a unique invariant
probability measure π and Pn(x, ·) w→ π uniformly with respect to x ∈ X on
compact sets of X.

To end this section, we consider the case when X is a locally compact
and separable metric space. Of course, we can treat this as a special case of
the previous considerations as every locally compact, separable metric space
is homeomorphic to a Polish space.

We introduce one more condition:

(A1)C For any f ∈ C(X) with compact support the family {Pnf :
n ∈ N} is uniformly equicontinuous on each compact subset of
X, that is, if K ⊂ X is compact, then

(∀ε > 0)(∃δ > 0)(∀n ∈ N)(∀x, y ∈K)(y ∈B(x, δ)⇒ |Pnf(x)− Pnf(y)|< ε).

The uniform equicontinuity condition is equivalent to the pointwise equicon-
tinuity on compact sets (cf. Proposition 5.1), so in general, condition (A1)C
is seemingly stronger than (A1). It turns out that for locally compact and
separable metric spaces these conditions are equivalent:

Proposition 3.1. Let X be a locally compact, separable space. Then
conditions (A1) and (A1)C are equivalent.

Proof. Each locally compact and separable metric space (which is also
σ-compact under these assumptions) admits a metric which is equivalent
to the original one and has the additional property that each closed and
bounded set is compact ([13]). Consequently, when X is endowed with such
a metric, bounded supports of functions are already compact. In this case
it is sufficient to see that the implication (A1)C ⇒ (A1) can be derived
from the fact that every compact set in X is contained in an open relatively
compact set. The opposite implication is obvious (cf. Proposition 5.1).

Let us recall a simple consequence of the Arzelà–Ascoli theorem:



284 D. Czapla

Remark 3.1. Suppose there exists a unique invariant probability mea-
sure π for the chain (ξn)n∈N0 such that Pn(x, ·) w→ π uniformly with respect
to x ∈ X on compact sets. Then for each f ∈ C(X) the family {Pnf : n ∈ N}
is uniformly equicontinuous on each compact subset of X.

In fact, Proposition 3.1 implies that in case X is locally compact and
separable, the above assumptions can be weakened by (A1). Thus, Remark
3.1 together with Theorem 3.2 yield the following corollary:

Corollary 3.3. Let X be a locally compact, separable space. Suppose
the conditions (A2) and (A3) are satisfied. Then (A1) (or, equivalently,
(A1)C) holds if and only if the chain (ξn)n∈N0 admits a unique invariant
probability measure π such that Pn(x, ·) w→ π uniformly with respect to x ∈ X
on compact sets.

4. An example of application. Let φ0 : Ω → Rd be a random variable
with a given distribution. Assume that (ηn)n∈N is a sequence of mutually in-
dependent and identically distributed random variables taking values in Rp.
Let Γ be the probability distribution of ηn (n ∈ N) and suppose that Γ has
finite expectation and finite variance. Moreover, assume that the sequence
(ηn)n∈N is independent of φ0. Additionally, fix matrices F ∈ Rdd and G ∈ Rpd.
For each n ∈ N0 we define a random variable φn as follows:

(4.1) φn+1 = Fφn +Gηn+1.

From (4.1) it follows easily that

(4.2) φn = Fnφ0 +
n−1∑
i=0

F iGηn−i (n ∈ N).

Under these assumptions, the sequence (φn)n∈N0 is a time-homogeneous
Markov chain. The model defined in this way is called a linear state space
model and denoted by LSS(F,G) (see [8]).

Throughout this section P stands for the stochastic kernel of the model
LSS(F,G), that is, the stochastic kernel of the chain (φn)n∈N0 .

For f : Rd → Rm we denote by Df its Jacobian matrix (or gradient if
m = 1). Thus, Df(x) =

[ ∂fi
∂xj

(x) : i ≤ m, j ≤ d
]
(x ∈ Rd).

The next remark describes the Jacobian matrix of the expectation of the
chain (f(φn))n∈N at time n (cf. [8, Theorem 7.5.1]).

Remark 4.1. Let f : Rd → Rm be a Borel function which has all its
first-order partial derivatives bounded. Then for each n ∈ N the function
Rd 3 x 7→ Ex(f(φn)) ∈ Rm is differentiable and

DEx(f(φn)) = FnEx(Df(φn)) (x ∈ Rd).



A criterion of asymptotic stability 285

Indeed, applying the Lebesgue Dominated Convergence Theorem, we obtain

DEx(f(φn)) = DEx
(
f
(
Fnφ0 +

n−1∑
i=0

F iGηn−i

))
= DE

(
f
(
Fnx+

n−1∑
i=0

F iGηn−i

))
= FnE

(
Df
(
Fnx+

n−1∑
i=0

F iGηn−i

))
= FnEx(Df(φn)) (x ∈ Rd).

The next theorem gives a sufficient condition for the model LSS(F,G)
to have the e-property (this is, in fact, a sufficient condition for (φn)n∈N0 to
satisfy (A1); consult also [8, Theorem 7.5.3]).

Theorem 4.1. Let ‖ · ‖ be the matrix norm arising from the underlying
operator norm. Suppose that supn∈N ‖Fn‖ < ∞. Then the model LSS(F,G)
satisfies (A1).

Proof. As Rd is locally compact and separable, Proposition 3.1 shows
that it is sufficient to prove that for any f ∈ C(Rd) with compact support
the family {Pnf : n ∈ N} is equicontinuous on compact sets.

Fix f ∈ C∞c (Rd). Then supx∈Rd ‖Df(x)‖d ≤M for someM > 0. Remark
4.1 ensures that for each n ∈ N we have

‖DPnf(x)‖d =
∥∥∥D �

Rd

f(y)Px(φn ∈ dy)
∥∥∥
d
=
∥∥∥D �

Rd

f(φn) dPx
∥∥∥
d

= ‖DExf(φn)‖d = ‖FnEx(Df(φn))‖d
≤ ‖Fn‖ ‖Ex(Df(φn))‖d ≤M sup

k∈N
‖F k‖.

Consequently, the family {Pnf : n ∈ N} is uniformly equicontinuous (cf.
Proposition 5.2). Since C∞c functions are dense in the space of bounded con-
tinuous functions with compact supports, the conclusion follows.

Let A be a d × d matrix. Denote by σ(A) its spectrum, that is, σ(A) =
{λ ∈ C : det(A − λI) = 0} (where I stands for the identity matrix). Recall
that ρ(F ) = max{|λ| : λ ∈ σ(F )}) is called the spectral radius of A. The
following fact is known in the theory of linear models (see [3] for its proof):

Theorem 4.2. Suppose ρ(A) > 0. Then for each matrix norm ‖ · ‖ the
sequence (n−1 ln(‖An‖))n∈N converges to ln(ρ(A)).

Of course, for any real a, b with a < ρ(A) < b there exist c > 1 and an
integer n0 such that for each n ≥ n0,

c−1an ≤ ‖An‖ ≤ cbn.
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Now, if we assume that 0 < ρ(A) < 1, then we may choose b such that
0 < ρ(A) < b < 1 and by the above observation, we obtain ‖An‖ → 0.
Hence, supn∈N ‖An‖ is finite. Although not required here, it is worth noting
that the condition ρ(A) > 0 holds even in case A is non-singular.

Assuming that 0 < ρ(F ) < 1, the model LSS(F,G) satisfies (A2), i.e. the
family {Pn(x, ·) : n ∈ N} is tight for each x ∈ X. Let us quote the following
theorem from [8, Theorem 12.5.9].

Theorem 4.3. Suppose 0 < ρ(F ) < 1. Then the model LSS(F,G) satis-
fies (A2).

Proof. Taking into account Proposition 2.2, it suffices to prove that there
exists a norm-like function V : Rd → [0,∞) satisfying (2.2) with respect to
A = {Pn(x, ·) : n ∈ N}.

Let ‖ · ‖ be a matrix norm arising from the underlying operator norm. It
is well-known that it is a Banach-algebra norm, that is, ‖·‖ is submultiplica-
tive. As ρ(F T ) = ρ(F ) < 1, Theorem 4.2 implies that there exist constants
b1, b2 < 1 and c1, c2 ∈ R such that for almost all n ∈ N we have ‖Fn‖ ≤ c1bn1
and ‖(F T )n‖ ≤ c2bn2 . Thus, for almost all n ∈ N we obtain

‖(F T )nFn‖ ≤ ‖(F T )n‖ ‖Fn‖ ≤ c1c2(b1b2)n.

In particular, the matrix

M = I +
∞∑
n=1

(F T )nFn

exists. Notice that

xTMx = xTx+
∞∑
n=1

xT (F T )nFnx = ‖x‖2 +
∞∑
n=1

(Fnx)T (Fnx)(4.3)

= ‖x‖2 +
∞∑
n=1

‖Fnx‖2 (x ∈ Rd).

Hence, the matrix M is positive-definite. Define

|x|2M = xTMx (x ∈ Rd).

It follows from (4.3) that

|Fx|2M = ‖Fx‖2 +
∞∑
n=1

‖Fn+1x‖2 =
∞∑
n=1

‖Fnx‖2

< xTMx = |x|2M (x ∈ Rd \ {0}).

Thus, we may choose α < 1 with

(4.4) |Fx|2M ≤ α|x|2M (x ∈ Rd).
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Define V : Rd → [0,∞) by

V (x) = |x− a|2M (x ∈ Rd) where a =
(
I +

∞∑
n=1

Fn
)
GEη1.

Since a = Fa−GEη1 = Fa−GE(ηn+1) (n ∈ N), we conclude that

(4.5) V (φn+1) = |Fφn +Gηn+1 − a|2M
= |Fφn +Gηn+1 − (Fa+GEηn+1)|2M
= ((Fφn)

T − (Fa)T + (Gηn+1)
T − (GEηn+1)

T )

×M(Fφn − Fa+Gηn+1 −GEηn+1)

= ((φn − a)TF T + (ηn+1 − Eηn+1)
TGT )M(F (φn − a) +G(ηn+1 − Eηn+1))

= |F (ηn − a)|2M + |G(ηn+1 − Eηn+1)|2M + (ηn+1 − Eηn+1)
TGTMF (ηn − a)

+ (ηn − a)TF TMG(ηn+1 − Eηn+1) (n ∈ N).

Making use of (4.2) we infer that for each n ∈ N and i ≤ n the random
variables ηn+1 and φi are mutually independent. Consequently, taking into
account (4.5) and applying (4.4) to an arbitrary point x ∈ Rd we obtain

Ex(V (φn+1) |φ0, . . . , φn) = |Fn(φn − a)|2M + Ex(|G(ηn+1 − Exηn+1)|2M )

≤ αV (φn) + Ex(|G(ηn+1 − Exηn+1)|2M ) (n ∈ N).

So,

ExV (φn+1) ≤ αExV (φn) + Ex(|G(ηn+1 − Exηn+1)|2M )

= αExV (φn) + E(|G(η1 − Exη1)|2M ) (n ∈ N).

Letting β = E(|G(η1 − Exη1)|2M ) we have

ExV (φn+1) ≤ αnExV (φ1) + β

n−1∑
k=0

αk (n ∈ N)

and the right-hand side tends to a real number as n→∞. Consequently,

sup
n∈N

�

X

V (y)Pn(x, dy) = sup
n∈N

ExV (φn) <∞,

so condition (2.2) holds.
It remains to show that V is a norm-like function. For this purpose we

define
Cn = {x ∈ Rd : V (x) ≤ n} (n ∈ N).

For each n ∈ N the set Cn is closed (as V is continuous) and bounded.
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Indeed, let x ∈ Cn. Then, by (4.3),

‖x− a‖2 ≤ ‖x− a‖2 +
∞∑
n=1

‖Fn(x− a)‖2 = (x− a)TM(x− a)

= |x− a|2M = V (x) ≤ n.

Thus, (Cn)n∈N is an increasing sequence of compact subsets of Rd. Moreover,
V (x) ≥ n for each n ∈ N and x ∈ X \ Cn, so

lim
n→∞

inf
x∈X\Cn

V (x) =∞.

Let us determine the explicit form of the kernel Pn (n ∈ N) for the model
LSS(F,G). We have

Pn(x,A) = Px(φn ∈ A) = P
(
Fnφ0 +

n−1∑
i=0

F iGηn−i ∈ A
∣∣∣ φ0 = x

)
=

P(Fnx+
∑n−1

i=0 F
iGηn−i ∈ A, φ0 = x)

P(φ0 = x)
= P

(
Fnx+

n−1∑
i=0

F iGηn−i ∈ A
)

= P
( n−1∑
i=0

F iGηn−i ∈ A− Fnx
)

(x ∈ Rd, A ∈ BRd , n ∈ N).

Condition (A3) is easy to verify in case the distribution Γ is given. The form
of the kernel Pn enables us to see that the model LSS(F,G) has the Feller
property. In fact, for each f ∈ C(X) we have

Pf(x) =
�

Rd

f(y)P(Fx+Gη1 ∈ dy) =
�

Rd

f(Fx+ y)P(Gη1 ∈ dy) (x ∈ Rd).

By continuity of x 7→ f(Fx + y) (y ∈ Rd) and the Lebesgue Dominated
Convergence Theorem we conclude that Pf is continuous.

Taking into account all the above considerations we can state the follow-
ing theorem:

Theorem 4.4. Assume that 0 < ρ(F ) < 1 and suppose that there exists
a point z ∈ Rd with the following property: for any compact set C ⊂ X and
for each δ > 0 there is an integer N ∈ N such that

P
(N−1∑
i=0

F iGηN−i ∈ B(z − FNx, δ)
)
> 0 for all x ∈ C.

Then the model LSS(F,G) is asymptotically stable with a unique invariant
probability measure π. Moreover, the convergence Pn(x, ·) w→ π is uniform
with respect to x on compact subsets of Rd.
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5. Appendix. Here we list some standard facts that have been used in
this paper. First, we show the equivalence of uniform equicontinuity with
pointwise equicontinuity on compact sets (this has been applied in the proof
of Proposition 3.1).

Proposition 5.1. Let (K, ρ) be a compact metric space and F a family
of real-valued functions on K. Then F is equicontinuous at all points of K
if and only if it is uniformly equicontinuous on K, i.e.

(∀ε > 0)(∃δ > 0)(∀f ∈ F)(∀x, y ∈ K)(ρ(x, y) < δ ⇒ |f(x)− f(y)| < ε).

Proof. Suppose F is equicontinuous at all points of K. Fix ε > 0. Then,
for each z ∈ K we may find δ(z) > 0 such that

(5.1) |f(x)− f(z)| < ε/3 (f ∈ F , x ∈ B(z, δ(z))).

By compactness there exist z1, . . . , zN ∈ K such that

K =
N⋃
i=1

B
(
zi, δ(zi)/3

)
.

Set δ = 1
3 min{δ(z1), . . . , δ(zN )}. Let x, y ∈ K with ρ(x, y) < δ. Then x ∈

B(zk, δ(zk)/3) and y ∈ B(zl, δ(zl)/3) for some k, l ∈ {1, . . . , N}. We may
assume that δ(zl) < δ(zk). Then

ρ(zk, zl) ≤ ρ(zk, x) + ρ(x, y) + ρ(y, zl) <
δ(zk)

3
+ δ +

δ(zl)

3
< δ(zk).

Therefore, for each f ∈ F by (5.1) we obtain

|f(x)− f(y)| ≤ |f(x)− f(zk)|+ |f(zk)− f(zl)|+ |f(zl)− f(y)|
< ε/3 + ε/3 + ε/3 = ε.

The following criterion of equicontinuity has been used in the proof of
Theorem 4.1.

Proposition 5.2. Let {fn : n ∈ N} be a collection of real-valued con-
tinuous functions on Rd with bounded first-order partial derivatives. Suppose
there exists a constant M > 0 such that

‖Dfn(x)‖ ≤M (x ∈ Rd, n ∈ N).

Then the functions fn (n ∈ N) are Lipschitz continuous with constant M
and, in particular, the family {fn : n ∈ N} is uniformly equicontinuous.

Proof. Fix n ∈ N and x, y ∈ Rd. Define a function ϕ : [0, 1]→ R by

ϕ(t) = fn(tx+ (1− t)y) (t ∈ [0, 1]).

Then ϕ(1) = fn(x) and ϕ(0) = fn(y). Certainly, the function ϕ is continuous
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and differentiable in the interval (0, 1). The Lagrange Mean Value Theorem
implies that there exists s ∈ (0, 1) such that

ϕ(1)− ϕ(0)
1− 0

= ϕ′(s).

The Cauchy–Schwarz inequality yields, for each t ∈ (0, 1),

|ϕ′(t)| =
∣∣∣∣〈Dfn(tx+ (1− t)y)

∣∣∣∣ ddt(tx+ (1− t)y)
〉∣∣∣∣

≤ ‖Dfn(tx+ (1− t)y)‖
∥∥∥∥ ddt(tx+ (1− t)y)

∥∥∥∥ ≤M‖x− y‖.
Consequently,

|fn(x)− fn(y)| = |ϕ(1)− ϕ(0)| = |ϕ′(s)| ≤M‖x− y‖.
The uniform equicontinuity of {fn : n ∈ N} is now obvious.

Finally, we give a simple criterion for the existence of an invariant prob-
ability measure for Markov–Feller chains which are bounded in probability.
This fact has been applied in the proof of Theorem 3.2.

Proposition 5.3. Let (ξn)n∈N0 be a Markov chain with transition ker-
nel P . Suppose (ξn)n∈N0 has the Feller property and is bounded in probability
on average at a point x ∈ X, that is, the family {n−1

∑n
k=1 P

k(x, ·) : n ∈ N}
of measures is tight. Then there exists an invariant probability measure for
the chain.

Proof. Set Pn = n−1
∑n

k=1 P
k (n ∈ N). Since the family {Pn(x, ·) :

n ∈ N} is tight, it contains a sequence (P kn(x, ·))n∈N converging weakly to
a probability measure π ([2, Appendix III, Theorem 6]). The Feller property
of (ξn)n∈N0 implies that for each f ∈ C(X) we have

〈f, πP 〉 = 〈Pf, π〉 = lim
n→∞

〈Pf, P kn(x, ·)〉 = lim
n→∞

1

kn

kn∑
i=1

〈Pf, P i(x, ·)〉

= lim
n→∞

1

kn

kn∑
i=1

〈f, P i+1(x, ·)〉 = lim
n→∞

1

kn

kn+1∑
i=2

〈f, P i(x, ·)〉

= lim
n→∞

1

kn

kn∑
i=1

〈f, P i(x, ·)〉 − lim
n→∞

1

kn
〈f, P (x, ·)〉

+ lim
n→∞

1

kn
〈f, P kn+1(x, ·)〉

= lim
n→∞

〈f, P kn(x, ·)〉 = 〈f, π〉.

Consequently, πP = π. Thus, π is an invariant measure.
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