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Doubly warped product Finsler manifolds
with some non-Riemannian curvature properties

by ESMAEIL PEYGHAN (Arak), AKBAR TAYEBI (Qom) and
BEHZAD NAJAFI (Tehran)

Abstract. We consider doubly warped product (DWP) Finsler manifolds with some
non-Riemannian curvature properties. First, we study Berwald and isotropic mean Ber-
wald DWP-Finsler manifolds. Then we prove that every proper Douglas DWP-Finsler
manifold is Riemannian. We show that a proper DWP-manifold is Landsbergian if and
only if it is Berwaldian. Then we prove that every relatively isotropic Landsberg DWP-
manifold is a Landsberg manifold. We show that a relatively isotropic mean Landsberg
warped product manifold is a weakly Landsberg manifold. Finally, we show that there is
no locally dually flat proper DWP-Finsler manifold.

1. Introduction. The study of relativity theory demands a wider class
of manifolds and the idea of doubly warped products was introduced and
studied by many authors. Recent studies show that the notion of doubly
warped product manifolds has an important role in Riemannian geometry
and its applications [A], [BEP], [BP, [G], [Mul], [Mu2], [U]. For example,
Beem—Powell studied this product for Lorentzian manifolds [BP]. Then in
[A], Allison considered global hyperbolicity of doubly warped products and
null pseudo convexity of Lorentzian doubly warped products.

On the other hand, Finsler geometry is dedicated to classical and gener-
alized Finsler geometries. It studies manifolds whose tangent spaces carry a
norm varying smoothly with the base point. Indeed, Finsler geometry is just
Riemannian geometry without the quadratic restriction. Thus it is natural
to extend the construction of warped product manifolds to Finsler geom-
etry. In the first step, Asanov generalized the Schwarzschild metric to the
Finslerian setting and obtained some models of relativity theory described
through warped products of Finsler metrics [AsI], [As2]. In [Koz|, Kozma—
Peter—Varga defined their warped product for Finsler metrics and concluded
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that completeness of a doubly warped product can be related to completeness
of its components.

Let (My, Fy) and (Ms, F3) be two Finsler manifolds and f; : M; — RT
and fy : My — R be two smooth functions. Let m : My x My — M and

o : My X Mo — M> be the natural projection maps. The product manifold
My x Ms endowed with the metric ' : TM7 x TM3; — R given by

(1.1) F(v1,09) = \/f22(7F2(712))F12(U1) + f1(m1(v1)) F3 (v2)

is considered, where TM7 = T'M; \ {0} and TM35 = T My \ {0}. The metric
defined above is a Finsler metric. The product manifold M; x My with this
metric will be called the doubly warped product of the manifolds M; and Mo,
denoted f,M7 x ¢ Ms. If either fi = 1 or fo =1, then p,My X 5, My becomes
a warped product of Finsler manifolds M; and Ms. If fi = fo = 1, then we
have a product manifold. If neither f; nor f, is constant, then we have a
proper DWP-manifold.

Let (M, F) be a Finsler manifold. The second and third order derivatives
of %Fg at y € T, Mo are symmetric trilinear forms g, and C, on T;; M, called
the fundamental tensor and Cartan torsion, respectively. The rate of change
of C, along geodesics is the Landsberg curvature L, on T, M |Bal, [BCS].The
metric F' is said to be a relatively isotropic Landsberg metric if L+ c¢FC = 0,
where ¢ = ¢(z) is a scalar function on M. Set I, := > | Cy(e;, €;,-) and
Jy = >"  Ly(ei, e, -), where {e;} is an orthonormal basis for (T, M,g,).
Then I, and J, are called the mean Cartan torsion and mean Landsberg
curvature, respectively. The metric F' is said to be a relatively isotropic mean

Landsberg metric if J + ¢FT = 0, where ¢ = ¢(z) is a scalar function on M
[ChSh.

The geodesic curves of a Finsler manifold (M, F') are determined by the
system of second order differential equations & + 2G%(¢) = 0, where the
local functions G* = G*(x,y) are called the spray coefficients of F. A Finsler
metric F is called a Berwald metric if the G' are quadratic in y € T, M for
any x € M, and a Douglas metric if G' = %F;k(:ﬂ)yjyk + P(z,y)y" [BM],
INSTT]. Taking the trace of the Berwald curvature yields the mean Berwald
curvature E. The metric F' is said to be an isotropic mean Berwald metric if
E= "T‘Hchlh, where h = h;;dz’ ® da’ is the angular metric and ¢ = ¢(z)
is a scalar function on M |[NST2].

This paper is arranged as follows: In Section 2, we recall some basic con-
cepts of Finsler manifolds. In Sections 3 and 4, we study doubly warped
product Finsler metrics (DWP-Finsler metrics) with vanishing Berwald cur-
vature and isotropic mean Berwald curvature, respectively. In Section 5,
we prove that every proper Douglas DWP-Finsler manifold is Riemannian.
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In Section 6, we show that a proper DWP-Finsler manifold is a Landsberg
manifold if and only if it is a Berwald manifold. Then we prove that every rel-
atively isotropic Landsberg DWP-Finsler manifold is a Landsberg manifold.
In Section 7, we prove that a relatively isotropic mean Landsberg warped
product manifold is a weakly Landsberg manifold. Finally in Section 8, we
show that there is no locally dually flat proper DWP-Finsler manifold.

2. Preliminaries. Let M be an n-dimensional C'*° manifold. Denote
by T, M the tangent space at x € M, by TM = |J, ¢, TM the tangent
bundle of M, and by TMy = TM \ {0} the slit tangent bundle on M.
A Finsler metric on M is a function F' : TM — [0,00) which has the
following properties:

(i) Fis C* on T My;
(ii) F is positively 1-homogeneous on the fibers of tangent bundle T'M;
(iii) for eachy € T, M, the quadratic form g, on T, M is positive definite,
where

1 92

gy (u,v) = 3 Bs 8t[F2(y+su+tv)] , u,v € Ty M.

s,t=0

Let x € M and F, := F|r,p. To measure the non-Euclidean feature of Fy,,
define C, : T, M @ T, M ® T, M — R by

1d
Cy(u,v,w) := o —[8yttw(w,v)]|  ,  u,v,w € T, M.

t=0

The family C := {Cy}yernm, is called the Cartan torsion. It is well known
that C = 0 if and only if F' is Riemannian. For y € T, M, define the mean
Cartan torsion I, by I, (u) := I;(y Yu?, where I; := gjkCZ-jk, Ciji = 1 ZZ’,g and

0| By Deicke’s Theorem, F is Riemannian if and only if I, =0
[BCS] [Shl]

Given a Finsler manifold (M, F'), a global vector field G is induced by
F on T'My, which in standard coordinates (2%, y") for TMy is given by G =

Y 821' —2G(x, y)aiyi, where

1 {a2F2 p  OF?
4

Gl = —gt , e T, M.
9" (y) ackayY " ol } yeTy
G is called the spray associated to (M, F). In local coordinates, a curve c(t)
is a geodesic if and only if its coordinates (c'(t)) satisfy ¢ + 2G*(¢) = 0.
For a tangent vector y € T, My, define By : T, M @ T, M @ T, M — T, M

and E, : .M @ T M — R by By(u7vaw) = Bijkl(y)ujvkwla?;i - and
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E,(u,v) :== Ej(y)u/v® where

P3Gt 1

dpiagray ik = g B km.

B and E are called the Berwald curvature and mean Berwald curvature,
respectively. Then F' is called a Berwald metric and weakly Berwald metric
if B =0 and E = 0, respectively [Shl]. It is proved that on a Berwald space,
parallel translation along any geodesic preserves the Minkowski functionals
[Ich]. Thus Berwald spaces can be viewed as Finsler spaces modeled on a
single Minkowski space.

Bjp =

A Finsler metric F' is said to be an isotropic mean Berwald metric if its
mean Berwald curvature is of the form

1
(2.1) Eij = 5(n+1)cF ™ hij,

where h;; = gij — F~2y;y; is the angular metric and ¢ = ¢(z) is a scalar
function on M [ChSh|.
Define Dy, : T, M @ T, M @ T, M — T, M by

i i j 0
Dy (u,v,w) := D" (y)u vjwk@

T

where
, A 9 A A B
D' == B ju — M{Ejmﬁ + Ej16), + Epd; + aylyl}-

We call D:={Dy }yernm, the Douglas curvature. A Finsler metric with D = 0
is called a Douglas metric. The notion of Douglas metrics was proposed by
Bacso—Matsumoto as a generalization of Berwald metrics [BM].

There is another extension of Berwald curvature. For a tangent vector y €
Ty Mo, define Ly : T,M @ T, M @ T, M — R by Ly, (u,v,w) := Lk (y)u'viw®,

where
1

Lijk, == —QyzBlijk-
The family L := {Ly}yern, is called the Landsberg curvature. A Finsler
metric is called a Landsberg metric if L = 0. The quantity L/C is regarded
as the relative rate of change of C along geodesics. A Finsler metric F' is
said to be a relatively isotropic Landsberg metric if

L=cFC

for some scalar function ¢ = ¢(x) on M |[ChSh].

Taking the trace of the Landsberg curvature yields the mean Landsberg
curvature J,, : T, M — R, defined by Jy(u) := J;(y)u’, where

Ji == ¢"" Lij.
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A Finsler metric is called a weakly Landsberg metric if J = 0. The quantity
J/I is regarded as the relative rate of change of I along geodesics. A Finsler
metric I is said to be a relatively isotropic mean Landsberg metric if

J=cFI

for some scalar function ¢ = ¢(x) on M [ChSh|. It is obvious that every
relatively isotropic Landsberg metric is a relatively isotropic mean Landsberg
metric.

A Finsler metric F' = F(x,y) on a manifold M is said to be locally dually
flat if at any point there is a standard coordinate system (z*,y") in TM that
satisfies

(2.2) (F?) gy = 2(F?) 1.

In this case, the coordinate system (%) is called an adapted local coordinate
system [Aml|, [ammal. It is easy to see that every locally Minkowskian metric
satisfies , hence is locally dually flat [Sh2|. But the converse is not true,
generally.

3. Berwaldian DWP-Finsler manifolds. In this section, we study
DWP-Finsler manifolds with vanishing Berwald curvature.

LEMMA 3.1. Every proper DWP-Finsler manifold (y,My % g Ma, F') with
vanishing Berwald curvature is a Riemannian manifold.

Proof. The Berwald curvature of (M x f My, F) is as follows:

ko1 Og™ off

(3.1) BZZ:BijZ_TﬁWW 2

(3.2) Bfﬁz = _41f22 88;9;; gﬁl gfga

(3.3) Bgﬁl = _;22 gﬁ %qyklhgam

(3.4) Bl = —;22 gﬁgkhcaﬁ,\v

(3.5) Blsy = Bosy — 4;12 af;i;vx gﬁ 7,
2 ay 52 2

(3.6) Bjs, = _41f12 ;vggav)\ gii C{;}; )

(37) Bl = ~ 1o r A
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1 of3
v oo B 2
(3.8) B, = _f?c”kg Wiaua'
If (;,M;y % ,M>, F) is Berwaldian, then B4, = 0. By (3.4), we get
of?

3.9 gt = = 0.
(3.9) C BrY oxh 0
Multiplying (3.9) with gx, implies that

off
3.1 = = 0.
(3.10) Caprgr =0

By (3.10), if f1 is not constant then we get Copy = 0, i.e., (Ma, F») is Rie-
mannian. In a similar way, from (3.8)) we conclude that if fs is not constant
then (M, Fy) is Riemannian. m

THEOREM 3.2. Let (p,M1 x Mo, F) be a DWP-Finsler manifold.

(i) If f1 is constant and fo is not constant, then (r,My x fMs, F') is a
Berwald manifold if and only if My is Riemannian, My is a Berwald
manifold and

dg*" 0fs _
o\ Ju™

(ii) If fo is constant and fi is not constant, then (M1 x y, Mo, F) is a
Berwald manifold if and only if My is Riemannian, My is Berwaldian
and

997 Off _
oyk ozt
Proof. Let (f,M; x 5, M3, F) be a Berwaldian manifold with f; constant
on Mj. Then from (3.8) we get Cyj, = 0, i.e., (M1, Fy) is Riemannian. Also,
(3.7) gives

99*7 0f3
N dux
Differentiating this equation with respect to v implies that
0%9°7 0f3
O B Jue

and consequently
g Af3
v OvB vk du
Then 1) reduces to Bgﬁk =0, i.e., (My, F») is Berwaldian. In a similar
way, we can prove the converse of this assertion. The proof of (ii) is similar
and we omit it. m

=0.

By a similar argument, we obtain
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COROLLARY 3.3. Let (M1 x y,M>, F) be a proper WP-Finsler manifold.
Then (My x y,M>, F') is Berwaldian if and only if Mo is Riemannian, M is
Berwaldian and

. afl
3.11 cY - =0
( ) k Ot ’
where CY), = —2%972 1s the Cartan tensor.

4. Isotropic mean Berwald DWP-manifolds. In this section, we
study DWP-Finsler metrics with isotropic mean Berwald curvature. First,
we compute the mean Berwald curvature of a DWP-Finsler manifold.

LEMMA 4.1. Let (f,M; x y,M>, F') be a DWP-Finsler manifold. Then the
mean Berwald curvature of F' is as follows:
1 D¢ OfF e 1 9™ Off
812 dvBIvdvY dur 4f22gaﬁ oyk oxh’
1 a3gkh 81?2 1 aga'y an
kA

8fy 0y 0yl 0y~ Ox 4ff ovY Ou

1 9" off 1 9%g™ 0f3

- Y9 YN, iz,
4f2 oykoy ozh® T 4f2 dvPowt oue”

where Egj and Eog are mean Berwald curvatures of (My, F1) and (Ma, F3),
respectively.

(41) Eup=FE.s—

(4.3)  Epg=

THEOREM 4.2. Let (s,M1 x y,M>, F') be a proper DWP-Finsler manifold.
Then F is a weakly Berwald metric if and only if F1 and Fy are weakly
Berwald metrics and

og™ oft _ 09" 0fF _
oyk ozl v Our
Proof. Let (M1 x M>, F) be a weakly Berwald manifold. Then we
have E,g = E;; = E;3 = 0. Using (4.3)), we get
1 %" off 1 %™ 0f
R - — = —— e — y .
12 Oyidyk Oz g f2 0vPovYT du> Yi
Contracting (4.5) with 37 gives
(4.6) 1 9" of? 1 9°¢" 3f3 o
. — e Vg = — )
f2 oyk oxh A f2 0vBovY duv !
Differentiating (4.6) with respect v® implies that

1 9g" aff 1 g 8fF
(4.7) 72 0gF 90790 = 72 GuednBont our

(4.4)

(4.5)
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In a similar way, one can obtain
Logoff 19" Off o,
2 o duedi = f2 9yidyioyk ozt
Substituting (4.7)) into (4.1]) and plugging (4.8]) into (4.2]), we have
_ 3P0 OfF
© 82 0vedvBIvY dur
3 63 kh o 2

(4.10) Ey; = —2%4}1 2,

8fy 0y'0yI oy~ Ox

Since E,p is a function of (u®,v®), by differentiating li with respect y"
we deduce that

(4.8)

(4.9) Eop

o’g"  Of3
v dvBorT dur "

=0,

and consequently
g 0ff
OV QP Iy uv

Putting (4.11)) into (4.9)) gives Eog = 0. A similar argument yields E;; = 0.
Further, from (4.11)) and (4.7) we derive that

(4.11)

8gkh 87]012 B
oyk oxh
Also, contracting (4.11)) with v®v® implies that
9" of3
oY ur

Thus we have (4.4]).
Conversely, suppose (M1, F1) and (Ms, F») are weakly Berwald manifolds

and (4.4]) holds. Then E;; = E,p = 0. Equation (4.4) gives
P Bfp PG a2 B¢ 0 97 0f3
Oy oyk oxh  Oyioyioyk oxh  OvPOvY dur  OvrOVPIVY Our
By plugging E;; = E.3 = 0 and the above equation into (4.1)—(4.3)), we

obtain E,3 = E;; = E;3 = 0. This means that (p,M; x s, M>, F) is a weakly
Berwald manifold. =

=0.

Now, if f5 is a constant function on My, then (4.7)) implies that E,z = 0.
Thus we have

COROLLARY 4.3. Let (s, My x 5, Mo, F') be a DWP-Finsler manifold and
f1 be constant on My (resp. fa be constant on Ms). Then (p,M1 x Mo, F')
is weakly Berwald if and only if (M1, F1) and (Ma, Fy) are weakly Berwald
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manifolds and

9" Of3 dg*" 0 f}
=0 Tesp. =0].
oY u¥ < Yk dxh )

COROLLARY 4.4. Let (My x yM>, F) be a WP-Finsler manifold. Then
(My x yyM>, F) is weakly Berwald if and only if (My, F1) and (M, F») are
weakly Berwald manifolds and

ag*" off _
oyk oxzh

Now, we consider DWP-Finsler manifolds with isotropic mean Berwald
curvature. First, as a consequence of Lemma we have

LEMMA 4.5. A DWP-Finsler manifold (y,My x §Ms, F) has isotropic
mean Berwald curvature if and only if

1 g 0ff 5, 1 g™ off

(4.12)  Bap = @ OBV AT dur @gaﬁﬁiyk ozl
n —|— 1 f?
cfiF ( 9o ~ 2 Ua%) 0,
1 03gkh 8f2 1 0g*7 0f2
(4.13)  Ejj — — ==

8f2 Qyidyidyk dxzh” 2 4f2 Y3 g7 ue
on + 1 f3
f2 (glj F22 yzy]> = 07

123 Lot ofr 1 g of
F3 Y% T 552 ukay 0ah P T 2f2 9uPaw aue
where ¢ = ¢(x) is a scalar function on M.

THEOREM 4.6. A DWP-Finsler manifold (,M x Mo, F') with isotropic
mean Berwald curvature is a weakly Berwald manifold provided that

(4.14) (n+1)c

dg*" o f1 g7 Of2
—— =0 or =
oyk &Uh oY duv
Proof. Suppose that 8 - % 0 and F is an isotropic mean Berwald
DWP-Finsler metric. Then by using (4.14]), we obtain
R 1 P of
1 - ol
(n+1)e 3P 2f% OvPOVY dux

Differentiating the above equation with respect 3/ gives
n+1

F»

Thus, ¢ =0, so F is a weakly Berwald metric. =

Cf1f2UB?JJ =0.
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5. Douglas DWP-Finsler manifolds. In this section, we study DWP-
Finsler manifolds with vanishing Douglas curvature. We prove that every
Douglas proper DWP-Finsler manifold is Riemannian. To do this, we need

LEMMA 5.1. Let (f, My x ¢ M,
Douglas curvature of F' is as follows:

F) be a DWP-Finsler manifold. Then the

1 Pk of?
1 Dkz :Bkz —_—— L
(5.1) Jl Jl 4f2 Oy Dy Oyl oxh
2 g k_iﬂafl 2 5h
n+1 77 812 9yidyidy® dxh Eyo
1 69‘” % E»I(S’? 1 33 sh afl 5k
4f1 Y3 507 due w 8f2 dyidyloys ozl £
1 99 Afs & I T i ) e
Z Bl — — 29 i pas
T 1R guet T EIY T 553 fuiagiays aah?
L0 Of 1 Dy 09 052
4f12 957 e 4f2 Oyt v Ou~
1 gt af ., . OE;
- g F2yf 4 S50
812 oyoyioyioy auh 2V T gy Y }
5 Dhye - L PO 2 (1 G sty
' W8 4f2 oylayt Dzt 9vB T n+ 1| 4f2 dysdyt dah ! B
_‘_i 8290‘7 (97]32 1 82 sh afl
412 9By due "t Af? dyroy! ol fus
L 9™ fyg, 1 _Og" Off
4f1 OvBovY Que ™’ 413 Oytoys oyt Ozt p
1 9% afF .
112 9uB o oY il (>
fi 0vPOVY Ou
1 dgkh o f? 2 1 dg*h O f?
) Dk 1 E k YJ1
(5-3) afl = 2f290"3 oy ozh  n+1 o0l — 4]”290‘ﬁ oy (%vh
R &g 3f22 ock L &g afz k
8f% dvPvdvT Hu” 1 4f% 0vPovovY dur Y
B 1 82 sh 8f2
4f gaﬁaylay 8$hy )
1 of2 2 (OE
4) Dk kh 1 aB  k
(54) abA = f2 Caprg oz n+1| o
1 &g anZFz w1 Ogag 99" OfF
82 dvrdvBIvedY duv 4f2 ovr Qys Ozh7 7
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(5.5)
D L PG 0, 2 (1 o op
“ aBA 42 JuP v Ot du¥ n+1|8f2 dvPovduvk du¥
1 dgkh o f? 1 PBgr  Of3
_ ~ 1 s 2 257
Eapoy + fQQO"B dyk 8xh 8f2 v dv*ouvk du¥ g
1 ogkh o f? 1 DBgr  Of2
. 'y 1 = 2 25y
Eaxdg + 4729X gyk oh 82 dv dvPaur v 110
1 89’” aft v L g Of3
— Epnoo + fQQB)‘ ko Qxh 82 Qv JuB v duk 8u”F vl
L gap 09" OfF ., OFag
412 dvY Oyt azh "’ Ov ’
1 0% 0f2 OF? 2 1 9%k of?
50 D = =37 5550 dus oy {2 oy 9ah
h Yy n+14fy 0y*oy' Ox
i anau 67]022 1 32 kh afl
42 OvP vk due A 4f2 dykoyt o P
L P 0 1 O™ OfF
42 Ovrovr ue P 412 dykoyt Oa:hgﬁ’\
1 D3gr  OfF .
T]‘f DB Due yl}’
(5.7)
1 0g™ 0f2 2 1 93¢ off
Vo = _ 57 99 o
igA fggm 0N duc n+1{E1]5/\ f2 8y28y35)yk aSCh 25
Loogmoft . 1 @M op oR3
4f129” vk duo )\ 8f2 Yt Dy dyk dzh avA
1 0% OfF
4f29” o vk due ' [
1 ofs 2 (0E;
. D7, S ay _ J v
(5 8) ijk f12 Cz]kg ouc n+1 { 6y
1 ot gt Of? 1 8gij 0g°" Of3

 8f2 OyFOyi Oy Oy Oz’ Af2 oyt Qur Oue
Proof. By lengthy calculations using Lemmas [3.1] and [£.1] =

THEOREM 5.2. Every proper DWP-Finsler manifold (y,My x 5, Ms, F)
with vanishing Douglas curvature is a Riemannian manifold.
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Proof. Suppose that the Douglas curvature of (M X M, F') vanishes,
ie., ngc = 0. Then by contracting |D with y* we obtain
3 3395h of 12 F2
83 Oy'0yi dy® Ozt 2
Since Ej;j is a function of (z,y), by differentiating the above equation with
respect to v*, we get

(5.9) Ly =

g Off _
Oyt Oy Oys Oxh ’
Putting the above into gives E;; = 0. Further, implies

ot Off _ Pgt off _9g™ off _
Oykoyioyioys Oxh Oy oys Ozl Oy Ozl '
In a similar way, we conclude that E,3 = 0 and
51 o Of3 __ gv 0f3
v ovBoveOvY du  dvPOV*OVY du¥
0% 0f; _ 99" Off _
vy dur vy Our
Inserting f and E;; = E,3 = 0 into and implies that
Cijk = Capr = 0. Therefore (M, 1) and (Mo, F») are Riemannian, and
consequently (z,Mq X § My, F) is Riemannian. w

From Theorem [5.2] we obtain
COROLLARY 5.3. Let (f,Mi x M, F') be a DWP-Finsler manifold.

(i) If fo is constant on Ma, then F' is a Douglas metric if and only if F

. ) . . A . sh 9 2
1s a Riemannian metric, F1 is a Berwald metric and %gys ﬁ =0.

(ii) If f1 is constant on My, then F' is a Douglas metric if and only if Fy

99" 0f _ 0
ovY gur T 7

Finally, we consider warped product Finsler manifolds with vanishing
Douglas curvature:

COROLLARY 5.4. The WP-Finsler manifold (My x s My, F') is a Douglas

manifold if and only if Fy is a Riemannian metric, Iy is a Berwald metric
sh 8f2
d 9g 1 —

oys ozh —
Proof. By Lemma [5.1] =

(5.10)

(5.11)

1s a Riemannian metric, Fs is a Berwald metric and

6. Relatively isotropic Landsberg DWP-Finsler manifolds. In
this section, we prove that for a proper DWP-Finsler manifold the notions of
being a Landsberg manifold and of being a Berwald manifold are equivalent.
Then we study DWP-Finsler metrics with relatively isotropic Landsberg
curvature.
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LEMMA 6.1. Let (f,M; x y,M>, F') be a DWP-Finsler manifold. Then the
Landsberg curvature of F is as follows:

1 839lh 8f2
g2y o tge2 99 YT
(6.1) ka = f2 ngk + f2 yl Zayjayk oxh

1 9% lh of 1 9g™ 0f2

of3

1
2
F2 + §Cijk'l)a %,

(6.2) Lij\ = 43/1 Byidyd Dzh X+ 492] T our Gue’
Loogh ot 1 0 OfF
(63) LiIB)\ yz ay 8xhg,3/\+ 4 ’Yavﬁavz\ 8uoz
Pg 93, nOf7

(64)  Tapy = fiLapr + fl TOveQvB vt Quv Fi o+ Caﬁ Azl
Proof. Ise the deﬁnltlon of Landsberg curvature and 7-. u

PROPOSITION 6.2. Every proper DWP-Finsler manifold ( s,My x 5, M, F)
with vanishing Landsberg curvature is Riemannian.

Proof. Let the Landsberg curvature tensor of (f,M; x ¢ Mo, F') be zero.
Then by using (6.1) we obtain

1 23gh Off of2
27 g2, 99  Y9Nip aYl2 _
Differentiating (6.5 with respect to v 1mphes that
1 gt of? 1 of2
6.6 iy —Cijp==2 =0.
(6:6) 4f2 o dyidyI Oy* Hh YT Mk
By differentiating with respect v, we have
83 lh afl
i E 9,09 = 0,
8y Oyl Oy Ox
and consequently
83 lh o 2
i k fh =0.
By Oy oyk Ox
Thus (6.5 reduces to
0 013
(6.7) faLijk + Cz]kv o =2 =.
Differentiating with respect to v? gives
af3
Cijkw =0,

and consequently Cjjr = 0. Thus (M, F1) is a Riemannian manifold. In a
similar way, we can conclude that (Ms, F5) is Riemannian. =

Using Proposition and Lemma we get
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THEOREM 6.3. A proper DWP-Finsler manifold is Landsbergian if and
only if it is Berwaldian.

Now, let f; be non-constant on M; and fs be constant on Ms. Then as
in the proof of Proposition we conclude that (Ma, F») is a Riemannain
manifold. Also, from we conclude L;;, = 0, because fo is constant.
Thus we obtain

THEOREM 6.4. Let (M x yyM>o, F') be a proper DWP-Finsler manifold.

(i) If fo is constant and fy is not constant, then (f,My x s Mo, F) is a
Landsberg manifold if and only if (M, Fy) is a Landsberg manifold,
(My, Fy) is Riemannian and
O of
o Qyidyioyk dxh
(ii) If f1 is constant and fo is not constant, then (M1 x Mo, F) is a
Landsberg manifold if and only if (Ma, F3) is a Landsberg manifold,
(My, F1) is Riemannian and

g Of

Y 90 0B dur

(6.8)

(6.9)

Theorem [6.4] yields
COROLLARY 6.5. A WP-Finsler manifold (M x M, F') is a Landsberg
manifold if and only if (M1, F1) is Landsberg, (Mas, F5) is Riemannian and
Of _
" ah

Proof. 1t suffices to show that (6.4)) implies (6.10). Multiplying (6.4)) with
y* implies that

(6.10) ch 0.

Ui aCZhj % =
oyt Oxh

Using lelhj =0 and % = gix, one can obtain (6.10]). =

(6.11)

Now, we deal with DWP-Finsler manifolds with relatively isotropic
Landsberg metric.

THEOREM 6.6. Let (y,My x M, F) be a DWP-Finsler manifold. Sup-
pose that F' is a relatively isotropic Landsberg metric. Then F' is a Landsberg
metric.

Proof. Let (5,Mi x y,Ma, F') be a relatively isotropic Landsberg manifold.
Then by (6.1)), we have

1 Pgh  Of} 1., L Of
(612) f22LZJk + gfgzylm 871‘}1}722 + icwkv 67?1 = CFf2201]k
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By differentiating with respect v” and v*, one obtains
1 g Off
47 Oyt Oyl Oy QI
Contracting with ¢7* implies that
ng g Of}
e Oy Oy yk Hzh
Differentiating (6.14]) with respect to v® gives (n — De(F~1),6Ci, = 0, and
so ¢ = 0. Thus F' reduces to a Landsberg metric. »

From Proposition and Theorem we deduce

COROLLARY 6.7. Every proper DWP-Finsler manifold with relatively iso-
tropic Landsberg curvature is Riemannian.

(6.13) = cF~'h\Cyjp.

(6.14) = (n— 1)cF 1 Cyjy..

7. Relatively isotropic mean Landsberg DWP-Finsler manifolds.
In this section, we consider DWP-Finsler metrics with relatively isotropic
mean Landsberg curvature. First, by the definition of mean Landsberg cur-
vature and Lemma [6.1] we get

LEMMA 7.1. Let (f,M1 x y,M>, F') be a DWP-Finsler manifold. Then the
mean Landsberg curvature of F is as follows:

1 1
(7.1)  Ji = " Lijk + =597 Liga
3 i

gt P A L T of3 vy g™ g 0fF
8 Oyldyidyk oxzh? " 2f2 Our 4 90Pa0 aur "

1 . 1
(7.2) Ja = ﬁgjkLajk + fzgﬁALag)\
2 1

= J +

0 g” B OfF g Lay"OfF  wg™ 99" OfF
8 OwrduBIA durt T 22 Oxh 4 Oyiogyk Oxh ™
THEOREM 7.2. Let (y,M1 x y,Ma, F') be a DWP-Finsler manifold.

(i) If f1 is constant and fy is not constant, then (f,My X s Mo, F) is
a weakly Landsberg manifold if and only if (M1, F1) is Riemannian,
(Ma, Fy) is weakly Landsbergian and

y Py g af3
TOvovP OV O

(ii) If fo is constant and fi is not constant, then (f,My % 5, Mo, F) is a
weakly Landsberg manifold if and only if (M, F1) is weakly Lands-
bergian, (M, F3) is Riemannian and

3 01h a2
Y 'ag' g]kaf1 =0.
Oytoyioyk” Ozl

= Jo+
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Proof. Let (f,M; x § My, F') be a weakly Landsberg manifold and f; be
constant on Mj. Then by ([7.1)) and ([7.2)), we have
) N )
7.3 Ji + =5 Iiv” - Pr 2
(73) - 23 v Hur * 17 9uBa? v
1 83 g'yy o f2
J - BA 2
“ T 3o dur
By differentiating (7.4)) with respect to y*, we get
o3 g'yz/ o f2
7.5 Ar -2
(75) Y ovedutann?  dur
Contracting ([7.5)) with v® gives
g 5\ 0f3

yizoa

(7.4) F? =0.

7.6 =
(7.6) ouBan? ur
Inserting ([7.6) into ([7.3)) implies that

1 of3

By differentiating (7.7) with respect v?, we conclude that I; = 0, i.e.,
(My, Fy) is a Riemannian manifold. By inserting (7.5) into (7.2)), we get
Jo =0, ie., (Ma, F3) is a weakly Landsberg manifold. =

From Theorem we deduce

COROLLARY 7.3. A proper WP-Finsler manifold (My x s Mo, F') is a
weakly Landsberg manifold if and only if (Mi, F1) is weakly Landsberg,
(My, F») is Riemannian and

339lh ik of 12
Woyioyioyr? oxh

Now, we consider DWP-Finsler manifolds with relatively isotropic mean
Landsberg curvature.

THEOREM 7.4. Let (s,M; x § M3, F') be a DWP-Finsler manifold with
relatively isotropic mean Landsberg curvature. If fy is constant on My (resp.

f2 is constant on Ms), then the DWP-Finsler manifold is a weakly Landsberg
manifold.

=0.

Proof. Let (M1 x g My, F') be a relatively isotropic mean Landsberg
manifold and f; be constant on M;j. Then by (7.4]) we have

1 Pg o0f?

.4+ = BAOT2

8§ Gravion? dur
Differentiating (7.8)) with respect to 4* implies that

1, g g of3 e = Cf22yk
4 7 OveouP o our F

(7.8) F? = cFI,.

(7.9)

Iy.
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Contracting (7.9) with y* gives

1’[) 83971/ gﬂ)\ af22 F2 _ Cf22F12[
4 7 ovedvBovrT guv ! F ¢

By inserting ([7.10)) into (7.8)), it follows that
f3F}
F

(7.10)

(7.11) 2J0 + c( - QF) I, =0.

4 12
By differentiating (7.11)) with respect to y*, we obtain cfQFZI Yrla = 0. There-

fore, ¢ = 0 and F reduces to a weakly Landsberg metric. =

COROLLARY 7.5. Every WP-manifold (My x s, Ma, F') with relatively iso-
tropic mean Landsberg curvature is a weakly Landsberg manifold.

8. Locally dually flat DWP-Finsler manifolds. Dually flat Finsler
metrics form a special and useful class of Finsler metrics in Finsler informa-
tion geometry, which play an important role in studying flat Finsler infor-
mation structure. In this section, we study locally dually flat DWP-Finsler
metrics. We recall that a Finsler metric F' = F(z,y) on a manifold M is lo-
cally dually flat if at any point there is a standard coordinate system (x?,y")
in TM such that

0*F? , _OF?

1 —y" = 2—.
(8.1) Oxk oyl 4 Ox!

In this case, the coordinate system (%) is called adapted.

THEOREM 8.1. Let (f,My1 x §,Ms, F') be a DWP-Finsler manifold. Then
F is locally dually flat if and only if F1 and Fy are locally dually flat and fi
and fo are constant.

Proof. Let (M x f,M>, F') be a locally dually flat doubly DWP-Finsler
manifold. Then

2 2
(82) fgaa,f;ll R %F; NPy L AL )
Off OF v\ o O°FF o 20F2 5013 o
(®.3) ock 907 Y T guap,s =2 25581

Differentiating (8.2) with respect to v” and then with respect to y* and using
non-singularity of g;; yields
of2

our
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which means that f; is constant. Similarly, f; is constant. In this case, (8.2)

and (88.3]) reduce to
(8.4) O*F? S = OF}
’ Oxk oy oxl’
2F2 F2
(8.5) OF5 o 2872

duednB’ T Tous

Hence F; and F5 are locally dually flat. =

From Theorem we deduce

COROLLARY 8.2. There is no locally dually flat proper DWP-Finsler

manifold.
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