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Reduction theorems for the
Strong Real Jacobian Conjecture

by L. Andrew Campbell (Palm Desert, CA)

Abstract. Implementations of known reductions of the Strong Real Jacobian Con-
jecture (SRJC), to the case of an identity map plus cubic homogeneous or cubic linear
terms, and to the case of gradient maps, are shown to preserve significant algebraic and
geometric properties of the maps involved. That permits the separate formulation and re-
duction, though not so far the solution, of the SRJC for classes of nonsingular polynomial
endomorphisms of real n-space that exclude the Pinchuk counterexamples to the SRJC, for
instance those that induce rational function field extensions of a given fixed odd degree.

1. Introduction. The Jacobian Conjecture (JC) [1, 11] asserts that a
polynomial map F : kn → kn, where k is a field of characteristic zero, has a
polynomial inverse if it is a Keller map [16], which means that its Jacobian
determinant, j(F ), is a nonzero element of k. The JC is still not settled for
any n > 1 and any specific field k of characteristic zero. It is well known
that it would suffice to prove the JC for k = R and all positive n. There
are many generalizations to endomorphisms of Rn [20, 18]. The most nat-
ural is the Strong Real Jacobian Conjecture (SRJC), which asserts that a
polynomial map F : Rn → Rn has a real analytic inverse if it is nonsingular,
meaning that j(F ), whether constant or not, vanishes nowhere on Rn. How-
ever, Sergey Pinchuk [19] exhibited a family of counterexamples for n = 2.
They are also counterexamples to the Rational Real Jacobian Conjecture
(RRJC) [7], which is the extension of the SRJC to include everywhere de-
fined rational nonsingular endomorphisms. Everywhere defined means that
each component of the map can be expressed as the quotient of two poly-
nomials with a nowhere vanishing denominator. Any such F : Rn → Rn

has finite fibers of size at most the degree of the associated finite algebraic
extension of rational function fields.

Let dex denote that extension degree, mfs the maximum fiber size, and
sag the size of the automorphism group of the extension. While dex and mfs
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are not generally equal, they are always of the same parity. The conditions
dex odd, mfs odd, and sag = 1 are all necessary for invertibility, and mfs
= 1 or dex = 1 is sufficient. All the Pinchuk counterexamples satisfy dex =
6, mfs = 2, and sag = 1 [5, 6]. Thus the simplest unproved and unrefuted
challenge conjecture in this arena is that dex = 3 and sag = 1 is sufficient
in the polynomial case.

Two known reduction procedures for the SRJC, to the case of maps of
cubic homogeneous, or even better cubic linear, type [15, 1, 8, 11] and to
the case of a symmetric Jacobian matrix [17], are shown here to preserve
the numerical attributes dex, mfs, and sag.

In consequence, the two reductions can be applied to conjectures involv-
ing those attributes, such as the above challenge conjecture.

2. Background. There are two classic reductions of the ordinary JC
to Yagzhev maps [15, 1] and to Drużkowski maps [8]. A Yagzhev map is
a polynomial map of the form F = X + H, where X = (x1, . . . , xn), and
each component of H is a cubic homogeneous polynomial in the variables
x1, . . . , xn. Yagzhev maps are also called maps of cubic homogeneous type.
A Drużkowski map (or map of cubic linear type) is a Yagzhev map for which
the components of H are cubes of linear forms (hi = l3i ). In a departure from
the convention in some other works, these definitions impose no restriction
on j(F ), beyond the obvious j(F )(0) = 1. Note, however, that a Yagzhev
map F = X + H is a Keller map if, and only if, H has a Jacobian matrix,
J(H), that is nilpotent, since both assertions are just different ways of saying
that the formal power series matrix inverse of J(F ) is polynomial.

Reduction theorem proofs use the strategy of transforming an original
map into a map of the desired form in a succession of steps that preserve
the truth value of certain key properties (and typically increase the number
of variables).

For the JC, C is usually selected as the ground field, and the key prop-
erties are the Keller property and the existence of a polynomial inverse.
Such proofs then apply over any ground field of characteristic zero, includ-
ing R. But the strategy and specific steps can be applied more generally
than just to polynomial Keller maps and yields, for instance, a reduction of
the SRJC to the cubic linear case [8]. Drużkowski noted this explicitly, with
the preserved properties being a nowhere vanishing Jacobian determinant
and bijectivity.

Historical note. At the 1997 conference in Lincoln, Nebraska, to
honor the mathematical work of Gary H. Meisters, it was suggested by
T. Parthasarathy that the SRJC reduction be attempted for the 1994 coun-
terexample of Pinchuk. The challenge was taken up by Engelbert Hubbers,
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and in 1999 he demonstrated the existence of a counterexample to the SRJC
of cubic linear type, coincidentally in dimension 1999. He started with ex-
actly the specific Pinchuk map of total degree 25 circulated by Arno van den
Essen in June 1994, which can be found in [11]. He then used a computer
algebra system to verify a human guided reduction path to a Yagzhev map
in dimension 203, then explicitly computed a Gorni–Zampieri pairing [12] to
a Drużkowski map in dimension 1999, using sparse matrix representations
as necessary. These details are excerpted from a comprehensive unpublished
note by Hubbers, which he made available.

Remark. Drużkowski obviously did not use GZ pairing, since it was
unknown at the time. But it also preserves the same two key properties in
the SRJC context.

More recently, reductions of the ordinary JC to the symmetric case have
been considered, primarily over R and C. Let k denote a field of character-
istic zero. In the JC world a polynomial map F : kn → kn is often called
symmetric, in a startling abuse of language, if J(F ) is a symmetric matrix.
In that case, F is the gradient map of a polynomial function h : kn → k and
J(F ) is the Hessian matrix of second order partial derivatives of h. So in the
symmetric case, the JC becomes the Hessian Conjecture (HC), namely that
gradient maps of polynomials with constant nonzero Hessian determinant
have polynomial inverses. In [17], Guowu Meng proves the equivalence of
the JC and the HC, using what he refers to as a trick. Meng’s trick replaces
a map F = (f1, . . . , fn) in the variables x1, . . . , xn by the map in the 2n
variables y1, . . . , yn, x1, . . . , xn obtained by taking the gradient of the scalar
function y1f1 + · · ·+ynfn. For k = R, this construction works even for twice
continuously differentiable maps. In the SRJC context it provides a one step
reduction to the symmetric case that also preserves the Keller property in
both directions.

In [2], Michiel de Bondt and Arno van den Essen prove a more targeted
reduction over C, namely to symmetric Keller–Yagzhev maps. The reduction
process involves the use of

√
−1, and if applied to a real Keller map may

yield a Yagzhev map that is not real. Interestingly, it has been shown that
all complex symmetric Keller–Drużkowski maps have polynomial inverses
[3, 9].

3. Stable and Segre equivalence. Two maps, F and G, from a
topological space A to another one B, are called topologically equivalent
if F = hB ◦G ◦ hA, where hA and hB are homeomorphisms, respectively of
A to itself and of B to itself. In other words, F and G are the same map up
to coordinate changes in the domain and codomain by topological automor-
phisms. Topological stable equivalence for the set of all maps F : Rn → Rn in
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all dimensions n > 0 is the equivalence relation generated by (1) topological
equivalences, and (2) the equivalence of any map F = (f1, . . . , fn), and its
extension by fresh variables to G = (f1, . . . , fn, xn+1, . . . , xm) for any m > n.
There are many other types of stable equivalence, such as real-analytic or
polynomial, each characterized by the type of automorphisms allowed for
(global) coordinate changes. Stable equivalence, unqualified, will refer to the
least restrictive, purely set-theoretic, type, with all bijections allowed as
automorphisms.

For brevity, call F : Rn → Rn

(1) nondegenerate if j(F ) is not identically zero,
(2) nonsingular if j(F ) 6= 0 everywhere, and
(3) a Keller map if j(F ) is a nonzero constant.

These terms are meant to imply that J(F ), the Jacobian matrix of F , exists
at every point of Rn, and can be applied to any such F if the correspond-
ing restriction on j(F ) is satisfied. For polynomial stable equivalence, the
applicable automorphisms are polynomial maps with polynomial inverses,
making it obvious that such equivalence preserves each of the above three
properties. All preservation properties in this paper apply equally well in
both directions. Polynomial stable equivalence also clearly preserves each of
the properties of being everywhere defined rational, polynomial, injective,
surjective, or bijective. If the maps are nonsingular, it preserves the existence
of a rational or polynomial inverse.

To verify this last assertion in the case of extension by fresh variables, one
checks the Jacobian matrices to see that the appropriate part of an inverse
in the larger number of variables is independent of the fresh variables and
restricts to an inverse in the smaller number of variables.

The slightly more general and less familiar concept of birational stable
equivalence allows the use of automorphisms that are everywhere defined
rational maps with everywhere defined rational inverses. By inspection of
the arguments in the polynomial case, one sees easily that birational stable
equivalence has all the preservation properties listed above for the polyno-
mial case, except that it need not preserve polynomial maps, polynomial
inverses, or the Keller property.

If F = (f1, . . . , fn) is an everywhere defined rational map and is nonde-
generate, then its components are algebraically independent over R in the
field R(X) of rational functions in the coordinate variables X = x1, . . . , xn,
and so they generate a subfield R(F ) ⊆ R(X) over R, that is also a ratio-
nal function field in n variables over R. Even without nonsingularity, the
extension R(X)/R(F ) permits the definition of dex and sag as in the intro-
duction. The extension degree d = dex is finite and equal to the degree of
the minimal polynomial over R(F ) of any h ∈ R(X) that is primitive, mean-
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ing that h generates R(X) as a field over R(F ). For such an h, the powers
hi for i = 0, . . . , d − 1 are a basis for R(X) as a vector space over R(F ).
An automorphism of the extension is, by definition, a field automorphism
of R(X) that fixes every element of R(F ). So it is linear over R(F ), and
a multiplicative homomorphism, hence completely determined by its value
on h. That value must be a root of the minimal polynomial of h and must
lie in R(X), and any such root determines a unique automorphism of the
extension. Thus sag is the number of such roots, which is therefore the same
for any choice of h.

In another relaxation of assumptions, it suffices to assume that F is an
everywhere defined nondegenerate rational map and an open map in order to
conclude that it is quasifinite and that the maximum fiber size is at most dex.

The main concern here is the case of everywhere defined rational non-
singular maps, for which all the assertions in the introduction are proved
in [7].

Theorem 1. Assume F : Rn → Rn and G : Rm → Rm are birationally
stably equivalent. If either one is an everywhere defined rational nonsingular
map, then so is the other, and each of the numerical attributes dex, sag, and
mfs has the same value for both maps.

Proof. Only the equality of the numerical attributes needs checking. And
it needs to be checked only for the generating equivalences.

Suppose first that m > n and G = (F,Z), with Z a list of fresh vari-
ables. For any y ∈ Rn and z ∈ Rm−n, the fiber of F over y is the same
size as the fiber of G over (y, z), so mfs is preserved. A primitive element
for R(X)/R(F ) is clearly also a primitive element for R(X,Z)/R(G). Since
the tensor product over R with R(Z) is an exact functor, the associated
power basis for the first extension is also one for the second, and so dex is
preserved. An automorphism of the extension R(X,Z)/R(G) is determined
by the image of the primitive element. That image is a root of the minimal
polynomial for the primitive element. That polynomial has coefficients inde-
pendent of the fresh variables in Z. On a Zariski open subset of Rm, where
the root is a real-analytic function of the coefficients, the root is independent
of the fresh variables. So the first order partials with respect to those vari-
ables are identically zero and the root lies in R(X). Thus the automorphism
is uniquely the natural lift of an automorphism of R(X)/R(F ), and so sag
is preserved.

Second, suppose that m = n and G = A ◦ F ◦ B, with A and B ev-
erywhere defined birational automorphisms. Viewing them as coordinate
changes makes it clear that mfs is preserved. It suffices to consider further
only the special cases (i) G = A ◦F and (ii) G = F ◦B, and A, B and their
inverses do not need to be defined everywhere.
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In case (i), A induces an automorphism of R(F ), so R(F ) and R(A ◦ F )
are the same subfield of R(X), hence the two extensions are the same and so
have the same properties. In case (ii) the two extensions are R(X)/R(F ) and
R(X)/R(F ◦ B), which are generally different extensions. Take a primitive
element h for the first extension, then apply the automorphism of R(X)
induced by B to h, its minimal polynomial over R(F ), and the roots of
that polynomial in R(X). The image of h is primitive over R(F ◦ B), the
new polynomial is irreducible there, and the roots of the two polynomials
correspond. So dex and sag are preserved.

Let F : Rn → Rn be a polynomial map satisfying F (0) = 0. Then
H(x, t) = (1/t)F (tx) is polynomial and provides, for 0 ≤ t ≤ 1, a homotopy
between the linear part of F and F itself.

This Segre homotopy [21] can be generalized in many ways, e.g. to the
case of a complex map or parameter t and to analytic or rational maps, not
to mention formal and convergent power series. It is used here to define the
concept of Segre equivalence on the set of real-analytic endomorphisms of
Rn (n > 0) that fix 0. It is the equivalence relation generated by declaring
F : Rn → Rn equivalent to G : Rn+1 → Rn+1 with G(x, t) = (F (tx)/t, t). In
that case, for t 6= 0 consideration of the Jacobian matrix of G shows that
j(G)(x, t) = j(F )(tx), a result that then also holds for t = 0, by continuity.
So Segre equivalence preserves nondegeneracy, nonsingularity, and the Keller
property. Again all preservation properties apply in both directions. It also
preserves polynomial maps and everywhere defined rational maps, because
G(x, 1) = (F (x), 1). For t 6= 0, the set G−1(y, t) is {(x/t, t) | x ∈ F−1(ty)}
for any y ∈ Rn. This implies that injectivity and surjectivity are preserved
provided that G is bijective on the set of points (x, 0), a condition equivalent
to j(F )(0) 6= 0. In particular, for bijective nonsingular F one has G−1(y, t) =
(F−1(ty)/t, t), and so polynomial and everywhere defined rational inverses
are also preserved.

Theorem 2. Assume F : Rn → Rn and G : Rm → Rm are real-analytic
maps sending 0 to 0 and that they are Segre equivalent. If either one is an
everywhere defined rational nonsingular map, then so is the other, and each
of the numerical attributes dex, sag, and mfs has the same value for both
maps.

Proof. Only the equality of the attributes needs checking, and only for
the case G(x, t) = (F (tx)/t, t).

Fibers over points (y, 0) are of size 1 and for t 6= 0 the fiber of G over
(y, t) has the same size as the fiber of F over ty, by the formula given above
for the set G−1(y, t). So mfs is preserved.

Now consider the automorphism of the field R(X, t) that sends xi to txi
and t to itself. It restricts to an isomorphism of R(F, t) onto R(G).
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This is just an instance of the special case (ii) in the proof of the previous
theorem. So dex and sag have the same value for G as for (F, t), and hence,
by the previous theorem, as for F .

The coimage of a map F : Rn → Rn is the set Rn\F (Rn) of points in the
codomain that are not in the image of F . In the complex JC context, it is
well known that the coimage has complex codimension at least two. Briefly,
the reasoning is as follows. Since the coimage is closed and constructible,
if it has codimension less than two it contains an irreducible hypersurface
h = 0, h◦F vanishes nowhere and so is constant, contradicting the algebraic
independence of the components of F . In the SRJC and RRJC contexts,
there are no parallel results for the real codimension of the coimage, even
if the map has dense image. The Pinchuk maps, however, do have finite
coimages, which are indeed of codimension two in R2.

Theorem 3. Assume F : Rn → Rn and G : Rm → Rm are everywhere
defined rational nonsingular maps and that they are birationally stably or
Segre equivalent. Then the codimension of the coimage is the same for both
maps.

Proof. Only the Segre case is not totally trivial, and in the base Segre
case the coimage of G consists of the point (a/t, t) for a in the coimage of F
and t 6= 0.

4. Gorni–Zampieri pairing. Let fi = xi + l3i be the components of a
map F of cubic linear type in dimension n. It is customary to write F in
the compact form F (x) = x + (Ax)∗3, where A is the matrix of coefficients
of the linear forms, and the exponent indicates componentwise cubing. Let
G be a map of cubic homogeneous type in dimension m < n. A GZ pairing
between G and F is given by two matrices B and C, respectively of sizes
m × n and n ×m, satisfying BC = I, kerB = kerA, and G(x) = BF (Cx)
for all x ∈ Rm. The original definition [12] writes F as F (x) = x− (Ax)∗3,
but the different sign affects only some formulas not used here.

Theorem 4. If G and F are GZ paired, then they are polynomially
stably equivalent.

Proof. Note that kerC = 0, ImB = Rm, and that Rn is the direct sum
of ImC and kerB. Choose a linear isomorphism D from Rn−m to kerB.
Let E be its inverse. Consider the extension of G by fresh variables to
G′ = (g1, . . . , gm, zm+1, . . . , zn). Let C ′(x, z) = Cx+D(z) ∈ Rn and B′(x) =
(Bx,E′(x)), where E′ is the linear extension of E to Rn that is 0 on ImC.

Note that both B′ and C ′ are linear automorphisms of Rn. Observe that
F (Cx+D(z)) = Cx+D(z) + (ACx)∗3. Consequently, (B′ ◦F ◦C ′)(x, z) =(
G(x), z+E′((ACx)∗3)

)
= G′◦(x, z+H(x)), where H is cubic homogeneous.
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Since (x, z + H(x)) has the obvious inverse (x, z −H(x)), it follows that G
and F are polynomially stably equivalent.

Remarks. The same reasoning works over any ground field k. There
is also nothing special about the use of 3 as the exponent. All works just
as well for power homogeneous and power linear maps of the same degree
d > 1.

In a GZ pairing the rank of the map of cubic linear type, meaning the
rank of the coefficient matrix A, is the same as the dimension m of the map
of cubic homogeneous type. In [10] the SRJC is proved for all maps of cubic
linear type and rank 2. The heart of the proof is a theorem proving that the
SRJC is true for all maps of cubic homogeneous type in dimension 2. These
facts are of interest when considering structured counterexamples in higher
dimensions.

Remarks. For reasons not clear to me, [10] presents the results men-
tioned above for maps with an everywhere positive Jacobian determinant,
which is automatically true for nonsingular maps of cubic homogeneous
type. Other results include the SRJC for all maps of cubic linear type in
dimension 3.

The dimension 2 results were later [13] improved to cover polynomial
maps with components of degree at most 3, and then [4] to polynomial
maps with one component of degree at most 3.

5. Main results

Theorem 5. There is an algorithm that transforms a nondegenerate,
polynomial map F : Rn → Rn into a map G : Rm → Rm of cubic homo-
geneous type, where m is generally much larger than n, using polynomially
stable equivalences and a single Segre equivalence.

Proof. In each step below, a map F is replaced by a map G, which
becomes the new F for the next step. At each step, both F and G are
nondegenerate, since that property is preserved by the equivalences.

Step 1: Lower the degree. Suppose F = (f1, . . . , fn). Then F is poly-
nomially stably equivalent to (f1 − (y + a)(z + b), f2, . . . , fn, y + a, z + b),
where a, b are polynomials that depend only on x1, . . . , xn. Thus, if a term
of f1 has the form ab, with deg(a) > 1 and deg(b) > 1, it can be removed
at the cost of introducing two new variables and some terms of degree less
than deg(ab). Repeating this for terms of maximum degree until there are
no more maximal degree terms of the specified form in any component, one
finally obtains a polynomial map G (in a generally much higher dimension)
all of whose terms are of degree no more than three. This is a standard
algorithm [1, 11]. There is flexibility in the choice of term to remove next,
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and one can opportunistically remove a product ab that is not a single term,
making choices to reach a cubic map more quickly. This step is a polynomial
stable equivalence.

Step 2: Normalize. F is now cubic and (still) nondegenerate. Let n be
the current dimension. Choose x0 ∈ Rn with j(F )(x0) 6= 0. After suitable
translations, (J(F )(x0))

−1F becomes a cubic map G such that G(0) = 0
and G′(0) = J(G)(0) is the identity matrix I. This step is an affine (in the
vector space sense) equivalence.

Step 3: Segre equivalence. Now F = X + Q + C, where Q and C are,
respectively, the quadratic and cubic homogeneous components of F . Let
t be a new variable, and put G = (X + tQ + t2C, t). This is a polynomial
Segre equivalence, as defined previously.

Step 4: Final step. Now F = (X + tQ + t2C, t), with Q quadratic
homogeneous and C cubic homogeneous, and both independent of t. Define
two polynomial automorphisms A1, A2 in X,Y, t, where Y is a sequence of
n additional variables, by A1 = (X− t2Y, Y, t) and A2 = (X,Y +C, t). Then
G = A1 ◦ (X + tQ + t2C, Y, t) ◦ A2 is the map of cubic homogeneous type
(X − t2Y + tQ, Y + C, t). This step is a polynomial stable equivalence.

The theorem and proof are valid over C as well as over R, and, indeed,
more generally for Keller maps. All proofs of reduction to cubic homoge-
neous type start with reduction to degree 3, followed by elimination of the
quadratic terms. The given proof most closely follows that of Drużkowski in
[8], which explicitly allows for nonconstant Jacobian determinants.

The main point of the given proof is that for nonsingular polynomial
maps, by the preservation results previously proved, the reduction preserves
(in both directions) not only bijectivity, but also dex, mfs, sag, the Keller
property, and the codimension of the coimage.

So if it is applied to a Pinchuk map, it yields a Yagzhev map G for which
j(G) is not constant and J(G) is not unipotent. Up to inessential details,
Hubbers follows the above steps in the first part of his 1999 reduction,
obtaining a cubic map in dimension n = 101 and then a map of cubic
homogeneous type in dimension 2n + 1 = 203. Hubbers’ Yagzhev map in
dimension 203 is thus not Keller and satisfies dex = 6, mfs = 2, sag = 1,
and has a coimage of codimension 2.

A further reduction to a map of cubic linear type can be effected using
the method of Drużkowski in [8] or the method of GZ pairing developed by
Gianluca Gorni and Gaetano Zampieri in [12]. Since GZ pairing has been
shown to be a polynomial stable equivalence, Hubbers’ final Drużkowski map
in dimension 1999 has the same properties as those stated for his Yagzhev
map in dimension 203.
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Theorem 6. Any nonsingular C2 map F : Rn → Rn is stably equivalent
to a C1 nonsingular map G : R2n → R2n with a symmetric Jacobian matrix.
The equivalence is birationally stable if F is everywhere defined rational, and
polynomially stable if F is a polynomial Keller map.

Proof. This is Meng’s trick with a reordering of the variables. Let z =
(x, v) be any point of R2n, with x = (x1, . . . , xn) and v = (xn+1, . . . , x2n). Let
h = x ·F (v), where the dot denotes the standard inner product of n-vectors.
Let G be the gradient of the scalar function h. Then G has a symmetric
Jacobian matrix and G = (F (v), x · J(F )(v)), with the dot now denoting a
vector matrix product and J(F ) the Jacobian matrix of F . But (F (v), x ·
J(F )(v)) = (F (x), v · J(F )(x)) ◦ (v, x) and (F (x), v · J(F )(x)) = (F (x), v) ◦
(x, v · J(F )(x)). Since (x, v · J(F )(x)) has the C1 inverse (x, v · J(F )−1(x)),
the composition A = (x, v ·J(F )(x))◦(v, x) is a C1 automorphism. Moreover,
if F is an everywhere defined rational or polynomial Keller map, it is clear
that A has the claimed properties.

This theorem reduces the entire RRJC, not just the SRJC, to the case
of a symmetric Jacobian matrix and preserves dex, sag, and mfs.

It is natural to attempt to combine the two main results by applying
Theorem 6 to a Yagzhev map. The resulting map is polynomial, with only
its linear and cubic homogeneous components nonzero. But its linear part
is not the identity.

Acknowledgements. Thanks especially to Engelbert Hubbers for pro-
viding complete details on his reduction procedure [14]. Michiel de Bondt
helped simplify the last step of the proof of Theorem 5. And both he and
Gianluca Gorni sent me proofs that GZ pairing preserves mfs, when I first
raised the question.
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[9] L. M. Drużkowski, The Jacobian conjecture: symmetric reduction and solution in
the symmetric cubic linear case, Ann. Polon. Math. 87 (2005), 83–92.
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