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On the attractors of Feigenbaum maps

by Guifeng Huang and Lidong Wang (Dalian)

Abstract. A solution of the Feigenbaum functional equation is called a Feigenbaum
map. We investigate the likely limit set (i.e. the maximal attractor in the sense of Milnor)
of a non-unimodal Feigenbaum map, prove that it is a minimal set that attracts almost
all points, and then estimate its Hausdorff dimension. Finally, for every s ∈ (0, 1), we con-
struct a non-unimodal Feigenbaum map with a likely limit set whose Hausdorff dimension
is s.

1. Introduction. In order to explain the famous phenomenon of quan-
titative universality of approaching chaos via period doubling bifurcation,
Mitchell J. Feigenbaum [F2] introduced in 1978 the Feigenbaum functional
equation g2(−λx) +λg(x) = 0. This attracted many scholars, and a lot of
research on the existence and dynamical properties of solutions of this equa-
tion was undertaken. In [HWL], we discussed the dynamical properties of a
class of unimodal Feigenbaum maps, estimated the Hausdorff dimension of
the likely limit set (the maximal attractor in the sense of Milnor) for a uni-
modal Feigenbaum map, and proved that for every s ∈ (0, 1), there always
exists a unimodal Feigenbaum map such that the Hausdorff dimension of the
likely limit set is s. We also discussed the kneading sequences of unimodal
Feigenbaum maps.

In this article, we study a class of non-unimodal Feigenbaum maps sim-
ilar to [HWL], show that their likely limit sets are minimal sets, and then
consider the Hausdorff dimension of the likely limit set. We prove that for
every s ∈ (0, 1) there exists a non-unimodal Feigenbaum map with likely
limit set whose Hausdorff dimension is exactly s.

The main results are Theorems 3.1 and 3.3.
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2. Basic definitions and preparations. X is always a compact metric
space. Let x ∈ X and A ⊂ X. Define the distance between x and A by

ρ(x,A) = inf{ρ(x, a) : a ∈ A}.
If A ⊂ X and ε > 0, define the ε-neighbourhood of A by

Aε = {x ∈ X : ρ(x,A) < ε}.
Let B be the class of non-empty closed bounded subsets of X. Define the

Hausdorff metric d on B by

d(A,B) = sup{ρ(a,B), ρ(b, A) : a ∈ A, b ∈ B}.
|E| denotes the diameter of a subset of X, i.e., |E| = sup{ρ(x, y) :

x, y ∈ E}.
If E ⊂

⋃
i Ui and 0 < |Ui| ≤ δ for each i, we say that {Ui} is a δ-cover

of E.
Let E ⊂ X and 0 ≤ s <∞. For δ > 0, define

Hsδ(E) = inf

∞∑
i=1

|Ui|s,

where the infimum is over all (countable) δ-covers {Ui} of E.
The Hausdorff s-dimensional outer measure of E is defined by

H(E) = lim
δ→0+

Hsδ(E).

Then there is a unique value, dimE, called the Hausdorff dimension of E,
such that

Hs(E) =∞ if 0 ≤ s < dimE, Hs(E) = 0 if dimE < s <∞.
A mapping ψ : Rn → Rn is called a contraction if there exists c < 1 such

that |ψ(x)− ψ(y)| ≤ c|x− y| for all x, y ∈ Rn. We call the infimum of such
c the ratio of the contraction.

We call a set E ⊂ Rn invariant for a set of contractions ψ1, . . . , ψm if

E =

m⋃
j=1

ψj(E).

We will use the following lemmas.

Lemma 2.1 (see [H]). Let ϕ1, . . . , ϕm be contractions on Rn with con-
traction ratios rj < 1. Then there exists a unique non-empty compact set E
such that

E = ϕ(E) =
m⋃
i=1

ϕi(E).

Further, if F is any non-empty compact subset of Rn, the iterates ϕk(F )
converge to E in the Hausdorff metric as k →∞.
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Lemma 2.2 (see [F1]). Let {ϕi}mi=1 be contractions on R for which the
open set condition holds, i.e., there is an open interval V such that

(1) ϕ(V ) =
⋃m
i=1 ϕi(V ) ⊂ V,

(2) ϕ1(V ), . . . , ϕm(V ) are pairwise disjoint.

Moreover, suppose that for each i, there exist qi, ri such that

qi|x− y| ≤ |ϕi(x)− ϕi(y)| ≤ ri|x− y|

for all x, y ∈ V . Then s ≤ dimE ≤ t, where s and t are defined by
∑m

i=1 q
s
i =

1 =
∑m

i=1 r
s
i .

Definition 2.3. Let M be a compact manifold (possibly with bound-
ary), and f a continuous map of M into itself. The likely limit set Λ = Λ(f)
of f is the smallest closed subset of M with ω(x, f) ⊂ Λ for Lebesgue almost
every x ∈M (ω(x, f) denotes the ω-limit set of x under f).

As described in [M], the likely limit set always exists and it is the unique
maximal attractor which contains all the others (in the sense of Milnor).

Let I = [0, 1]. A set E ⊂ I is called a minimal set of f if E 6= ∅ and
ω(x, f) = E for any x ∈ E. As is well known, the minimal set is a non-empty,
closed and invariant subset of f , and it has no proper subset with these three
properties (see [BC]). Therefore, if E is a minimal set with ω(x, f) ⊂ E for
almost all x ∈ I, then E = Λ(f).

In 1978, Mitchell J. Feigenbaum [F2] put forward the Feigenbaum func-
tional equation

(2.1)

{
g2(−λx) = −λg(x),

g(0) = 1, −1 ≤ g(x) ≤ 1, x ∈ [−1, 1],

where λ ∈ (0, 1) is to be determined.

In 1985, L. Yang and J. Z. Zhang [YZ] proposed another Feigenbaum
type functional equation,

(2.2)

{
f2(λx) = λf(x),

f(0) = 1, 0 ≤ f(x) ≤ 1, x ∈ [0, 1].

where λ ∈ (0, 1) is to be determined.

There is a close link between solutions of these two types of equations.

Lemma 2.4.

(1) If g(x) is a non-unimodal solution of (2.1), then f(x) = |g(x)| (x ∈
[0, 1]) is a non-unimodal solution of (2.2).

(2) If f(x) is a non-unimodal solution of (2.2), then there is µ ∈ (0, 1)
such that f(µ) = 0 is the minimum value, and g(x) = (sgn(µ −
|x|))f(|x|) is a non-unimodal solution of (2.1).



58 G. F. Huang and L. D. Wang

Definition 2.5. A continuous solution of (2.2) is said to be a non-
unimodal Feigenbaum map if f |[λ,1] is univallecular (i.e., there exists µ ∈
(λ, 1) such that f |[λ,µ] strictly decreases and f |[µ,1] strictly increases), but f
is non-univallecular.

Non-unimodal Feigenbaum maps have the following properties.

Lemma 2.6 (see [L]). Let f : I → I be a non-unimodal Feigenbaum map.
Then

(1) f(1) = λ, f2(λ) = λ2.
(2) If µ is the minimum point of f on [λ, 1], then

(a) f(x) = 0⇔ x = µ,
(b) f(λ) > µ,
(c) f(x) = λx has only one solution x = 1 on [µ, 1].

Conversely, if a continuous univallecular map f0 : [λ, 1] → I satisfies (1)
and (2), then it can be uniquely extended to a non-unimodal Feigenbaum
map on I.

3. Main theorems and their proofs. In this section, we investigate
attractors of non-unimodal Feigenbaum maps. We have

Main Theorem 3.1. Let f be a non-unimodal Feigenbaum map. If f ′(x)
< −1 for x ∈ [λ, µ], and f ′(x) ≥ 1 for x ∈ [µ, 1] (considering the left or
right derivative at the end points), where λ, µ are as above, then there exists
a set of contractions such that its invariant set is the likely limit set and a
minimal set of f .

Proof. By Lemma 2.6, f([0, λ]) = [µ, 1]. To show that f([µ, 1]) = [0, λ],
it is enough to show that µ is the minimum value of f on [0, λ]. We know

f(x) = µ ⇔ f2(x) = 0 ⇔ λf(x/λ) = 0 ⇔ x/λ = µ ⇔ x = λµ.

Combining f(0) = 1 > µ with f(λ) > µ, we infer that f(y) > µ for every
y ∈ [0, λ] except y = λµ. This shows that λµ is the minimum point and µ is
the minimum value of f on [0, λ].

Define ϕ1, ϕ2 : I → I by setting ϕ1(x) = λx, ϕ2(x) = [µ, 1] ∩ f−1(λx)
for any x ∈ I. It is easy to see that ϕ1, ϕ2 are both contractions. Since

ϕ1((0, 1)) = (0, λ) ⊂ (0, 1), ϕ2((0, 1)) = (µ, 1) ⊂ (0, 1),

and (0, λ) ∩ (µ, 1) = ∅, it follows that ϕ = ϕ1 ∪ ϕ2 satisfies the open set
condition. By Lemma 2.1, there exists a unique non-empty compact set E
such that

E = ϕ(E) = ϕ1(E) ∪ ϕ2(E).

For simplicity, we write ϕi1···ik for ϕi1 ◦ · · · ◦ ϕik .
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We will get E = Λ(f) by showing that E is a minimal set which attracts
almost all points. To this end, we need the following three claims; the proofs
are similar to those in [HWL].

Claim 1. For any x ∈ I, f ◦ ϕ1(x) = ϕ2 ◦ f(x) and f ◦ ϕ2(x) = ϕ1(x).

Claim 2. For any k > 0, ϕk(I) =
⋃2
i1,...,ik=1 ϕi1···ik(I) is a forward

invariant set of f , i.e. f(ϕk(I)) ⊂ ϕk(I).

Claim 3. For any subsets ϕi1···ik(I) and ϕj1···jk(I), there is n > 0 such
that

fn ◦ ϕi1···ik(I) = ϕj1···jk(I).

We will show that (1) and (2) below hold.

(1) For almost all x ∈ I, ω(x, f) ⊂ E.

It is obvious that f has a unique fixed point e ∈ (λ, µ) on I. Since

f2(λx) = λf(x) implies f2
k
(λkx) = λkf(x), it follows that λke is a fixed

point of f2
k
. Let

A =

∞⋃
k=0

O(λke, f),

where O(λke, f) denotes the orbit of λke under f . Then A is a countable
set. Let

B =
∞⋃
i=0

f−i(A).

Because f−1(x) has at most two points for every x ∈ I, and A is count-
able it follows that B is countable. In particular, B has Lebesgue measure
zero.

Let x ∈ I − B. If x ∈ ϕ(I), then fN1(x) ∈ ϕ(I) for N1 = 0. If x 6∈ ϕ(I),
then x ∈ (λ, µ). Obviously, x 6= e. As f ′(y) < −1 for every y ∈ [λ, µ], there
must be some N1 > 0 such that fN1(x) 6∈ [λ, µ], so fN1(x) ∈ ϕ(I). Thus
there is always N1 ≥ 0 such that fN1(x) ∈ ϕ(I).

Suppose that, for k = p, there is Np ≥ 0 such that fNp(x) ∈ ϕp(I). It is
easy to see that fNp(x) belongs to some ϕi1···ip(I). By Claim 3, there exists
l > Np such that

f l(x) ∈ ϕ11···1(I) = [0, λp].

f l(x) 6= λpe implies λ−pf l(x) 6= e, so there is N1 ≥ 0 such that
fN1(λ−pf l(x)) ∈ ϕ(I). By (2.2), we have

fN1·2p+l(x) = fN1·2p(λp(λ−pf l(x))) = fN1·2p ◦ ϕ11···1(λ
−pf l(x))

= ϕ11···1 ◦ fN1(λ−pf l(x)) ∈ ϕ11···1 ◦ ϕ(I) ⊂ ϕp+1(I).
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By induction on k, for every k ≥ 1, there is Nk ≥ 0 such that

fNk(x) ∈ ϕk(I).

Moreover, by Claim 2, for every n ≥ Nk,

fn(x) ∈ ϕk(I).

As ϕk(I)→ E, fn(x)→ E. Since E is compact, it is a closed set. Therefore,
ω(x, f) ⊂ E.

(2) E is a minimal set of f .

It is easy to see that the contraction ratio of ϕ1 is λ, and the one of
ϕ2 is not more than λ, thus the ratio of ϕi1···ik is not more than λk. When
k →∞, |ϕi1···ik(I)| uniformly converges to zero for ir ∈ {1, 2}, r = 1, . . . , k.
Let x ∈ I. For every y ∈ E and every open set V containing y, there exists
some ϕj1···jk(I) ⊂ V . As ϕ(I) ⊂ I, we have ϕi+1(I) = ϕi ◦ ϕ(I) ⊂ ϕi(I) for
any i ≥ 0. Hence, it is not difficult to prove that

(3.1) E =

∞⋂
i=0

ϕi(I).

Since x ∈ E implies x ∈ ϕk(I), it follows that x belongs to some ϕi1···ik(I).
By Claim 3, there is n > 0 such that

fn(x) ∈ fn(ϕi1···ik(I)) = ϕj1···jk(I) ⊂ V.

This shows y ∈ ω(x, f). Therefore,

(3.2) E ⊂ ω(x, f).

By (3.1) and Claim 2, f(E) ⊂ E. Moreover, E is a closed set, so

(3.3) ω(x, f) ⊂ E.

By (3.2) and (3.3), we obtain ω(x, f) = E. Because x is arbitrary, E is
a minimal set of f .

If we combine (1) with (2), we see that E = Λ(f).

Corollary 3.2. If f is a non-unimodal Feigenbaum map as in Theorem
3.1, then

s ≤ dimΛ(f) ≤ t,

where

λs
(

1 + inf
x∈[µ,1]

f ′(x)
)−s

= 1 = λt
(

1 + sup
x∈[µ,1]

f ′(x)
)−t

and dim(·) denotes Hausdorff dimension.
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Proof. By Theorem 3.1 and Lemma 2.2, we have

ϕ′1(x) = λ, ϕ′2(x) = λ(f ′[µ,1](ϕ2(x)))−1.

So s ≤ dimΛ(f) ≤ t, where

(3.4)
(

inf
x∈I
|ϕ′1(x)|

)s
+
(

inf
x∈I
|ϕ′2(x)|

)s
= 1 =

(
sup
x∈I
|ϕ′1(x)|

)t
+
(

sup
x∈I
|ϕ′2(x)|

)t
.

Then (3.4) becomes

λs
(

1 + inf
x∈[µ,1]

f ′(x)
)−s

= 1 = λt
(

1 + sup
x∈[µ,1]

f ′(x)
)−t

.

Main Theorem 3.3. For every s ∈ (0, 1), there always exists a non-
unimodal Feigenbaum map f such that dimΛ(f) = s.

Proof. For any 0 < s < 1, let

λ = e− ln 2/s, µ = 1− λ.
Since ln 2/s > ln 2 implies eln 2/s > 2, it follows that λ < µ < 1 and λ < 1/2.

Now let f0 : [λ, 1] → I be defined by f0(µ) = 0, f0(1) = λ, f0(λ) =
1− λ+ λ2, and f0 be linear on [λ, µ] and [µ, 1].

By Lemma 2.4, f0 can be uniquely extended to a continuous non-uni-
vallecular solution of (2.2), denoted by f . A simple calculation gives f ′(x)=1
for x ∈ [µ, 1] and f ′(x) = (1−λ+λ2)/(2λ−1) = −1+(λ+λ2)/(2λ−1) < −1
for x ∈ [λ, µ]. By Corollary 3.2, we get dimΛ(f) = s.
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