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An improved Chen–Ricci inequality
for special slant submanifolds in Kenmotsu space forms

by Simona Costache and Iuliana Zamfir (Bucureşti)

Abstract. B. Y. Chen [Arch. Math. (Basel) 74 (2000), 154–160] proved a geometrical
inequality for Lagrangian submanifolds in complex space forms in terms of the Ricci curva-
ture and the squared mean curvature. Recently, this Chen–Ricci inequality was improved
in [Int. Electron. J. Geom. 2 (2009), 39–45].

On the other hand, K. Arslan et al. [Int. J. Math. Math. Sci. 29 (2002), 719–726]
established a Chen–Ricci inequality for submanifolds, in particular in contact slant sub-
manifolds, in Kenmotsu space forms.

In this article, we improve the latter inequality for special slant submanifolds in Ken-
motsu space forms. We also investigate the equality case.

1. Preliminaries. S. Tanno [13] has classified, into three classes, the
connected almost contact Riemannian manifolds whose automorphism group
has maximum dimension:

1. homogeneous normal contact Riemannian manifolds with constant φ-
holomorphic sectional curvature;

2. global Riemannian products of a line or circle and a Kaehlerian space
form;

3. warped product spaces L×f F , where L is a line and F a Kaehlerian
manifold.

K. Kenmotsu [7] studied the third class and characterized it by tensor
equations. Below, such a manifold is called a Kenmotsu manifold.

More precisely, a (2m + 1)-dimensional Riemannian manifold (M̃, g) is
said to be a Kenmotsu manifold if it admits an endomorphism φ of its
tangent bundle TM̃ , a vector field ξ and a 1-form η, which satisfy:
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(1.1)


φ2 = −Id + η ⊗ ξ, η(ξ) = 1, φξ = 0, η ◦ φ = 0,

g(φX, φY ) = g(X,Y )− η(X)η(Y ), η(X) = g(X, ξ),

(∇̃Xφ)Y = −g(X,φY )ξ − η(Y )φX,

∇̃Xξ = X − η(X)ξ,

for any vector fieldsX,Y on M̃ , where ∇̃ denotes the Riemannian connection
with respect to g (see also [12], [14]).

We denote by ω the fundamental 2-form of M̃ , i.e. ω(X,Y ) = g(φX, Y )
for all X,Y ∈ Γ (TM̃). It is known that the pairing (ω, η) defines a locally
conformal cosymplectic structure, i.e.

(1.2) dω = 2ω ∧ η, dη = 0.

A Kenmotsu manifold with constant φ-holomorphic sectional curvature c is
called a Kenmotsu space form. Then its curvature tensor field R̃ is expressed
by [7]

(1.3) 4R̃(X,Y )Z = (c− 3){g(Y,Z)X − g(X,Z)Y }
+ (c+ 1){η(X)η(Z)Y − η(Y )η(Z)X + g(X,Z)η(Y )ξ

− g(Y, Z)η(X)ξ + ω(Y,Z)φX − ω(X,Z)φY − 2ω(X,Y )φZ}.
By analogy with submanifolds in a Kaehler manifold, various classes of sub-
manifolds in a Kenmotsu manifold have been considered (see, for example,
[9], [10]).

The notion of a slant submanifold in a Hermitian manifold was intro-
duced by B. Y. Chen [2]. The corresponding notion in an almost contact
Riemannian manifold was defined by A. Lotta [8].

A submanifold M isometrically immersed in an almost contact Rieman-
nian manifold M̃ is said to be a contact slant submanifold if the angle θ(X)
between φX and TpM is a constant θ, for any point p ∈M and any vector
X ∈ TpM linearly independent of ξ. The angle θ of a contact slant immersion
is called the slant angle of the immersion.

Invariant and anti-invariant submanifolds are particular cases of contact
slant submanifolds (with θ = 0 and θ = π/2, respectively).

A contact slant submanifold which is neither invariant nor anti-invariant
is called a proper contact slant submanifold.

A proper contact slant submanifold of a Kenmotsu manifold is said to
be a special contact slant submanifold if

(∇XT )Y = (cos2 θ)[−η(Y )TX + g(Y, TX)ξ]

for any vector fields X,Y tangent to M , where TX is the tangential com-
ponent of φX.

We remark that any 3-dimensional proper contact slant submanifold of
a Kenmotsu manifold is a special contact slant submanifold.
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2. Chen–Ricci inequality. In [3], B. Y. Chen established a sharp re-
lationship between the Ricci curvature Ric and the squared mean curvature
‖H‖2 for any n-dimensional submanifold M of a real space form M̃(c) of
constant sectional curvature c; namely,

Ric(X) ≤ (n− 1)c+
n2

4
‖H‖2,

which is known as the Chen–Ricci inequality. The same inequality holds
for Lagrangian submanifolds in a complex space form M̃(4c) (see [4]). As a
general reference for such inequalities we mention [5].

K. Arslan et al. [1] proved a similar inequality for submanifolds of Ken-
motsu space forms (see also [11]).

Theorem 2.1. Let M̃(c) be a (2m + 1)-dimensional Kenmotsu space
form and M an n-dimensional submanifold, tangent to ξ. Then:

(i) for any unit vector X ∈ TpM , orthogonal to ξ,

Ric(X) ≤ 1
4

{
(n− 1)(c− 3) + 1

2(3‖TX‖2 − 2)(c+ 1) + n2‖H‖2
}
,

where TX is the tangential component of φX;
(ii) if H(p) = 0, then a unit vector X ∈ TpM orthogonal to ξ yields

equality in the inequality above if and only if X ∈ Np (the kernel of
the second fundamental form);

(iii) equality holds for all unit tangent vectors orthogonal to ξ at p if and
only if p is a totally geodesic point.

In particular, if M is a contact slant submanifold, one has

Ric(X) ≤ 1
4

{
(n− 1)(c− 3) + 1

2(3 cos2 θ − 2)(c+ 1) + n2‖H‖2
}
.

The Chen–Ricci inequality was further improved by S. Deng [6] for La-
grangian submanifolds in complex space forms:

Theorem 2.2. Let M be a Lagrangian submanifold of dimension n ≥ 2
in a complex space form M̃(4c) of constant holomorphic sectional curvature
4c and X a unit tangent vector in TpM , p ∈M . Then

Ric(X) ≤ (n− 1)

(
c+

n

4
‖H‖2

)
.

Equality holds for any unit tangent vector at p if and only if either:

(i) p is a totally geodesic point, or
(ii) n = 2 and p is an H-umbilical point with λ = 3µ.

Moreover, Lagrangian submanifolds in complex space forms achieving
equality were also determined in [6].

In the proof of the above inequality, S. Deng used the following lemmas.
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Lemma 2.1. Let f1(x1, . . . , xn) be the function on Rn defined by

f1(x1, . . . , xn) = x1

n∑
j=2

xj −
n∑
j=2

x2j .

If x1 + · · ·+ xn = 2na, then

f1(x1, . . . , xn) ≤ n− 1

4n
(x1 + · · ·+ xn)2.

Equality holds if and only if 1
n+1x1 = x2 = · · · = xn = a.

Lemma 2.2. Let f2(x1, . . . , xn) be the function on Rn defined by

f2(x1, . . . , xn) = x1

n∑
j=2

xj − x21.

If x1 + · · ·+ xn = 4a, we have

f2(x1, . . . , xn) ≤ 1
8(x1 + · · ·+ xn)2.

Equality holds if and only if x1 = a, x2 + · · ·+ xn = 3a.

3. An improved Chen–Ricci inequality. In this section we shall
improve the Chen-Ricci inequality from [1] for special slant submanifolds in
a Kenmotsu space form.

Definition. A proper 3-dimensional slant submanifold M in a Ken-
motsu manifold M̃ is called H-umbilical if its second fundamental form h
takes the following form:

h(e1, e1) = λFe1, h(e2, e2) = µFe1, h(e1, e2) = µFe2,

with respect to an orthonormal frame {e0 = ξ, e1, e2}, where FX is the
normal component of φX.

We state the main result of this paper.

Theorem 3.1. Let M̃(c) be a (2n + 1)-dimensional Kenmotsu space
form and M an (n + 1)-dimensional special contact θ-slant submanifold.
Then, for any p ∈M and any unit vector X ∈ TpM orthogonal to ξ,

(3.1) Ric(X) ≤ (n+ 1)2(n− 1)

4n
‖H‖2−1+

(n− 1)(c− 3)

4
+

3(c+ 1)

4
cos2 θ.

Moreover, equality holds in (3.1) for any p ∈ M and any unit vector X ∈
TpM orthogonal to ξ if and only if either

(i) M is a totally geodesic submanifold, or
(ii) n = 2 and M is H-umbilical.

Proof. Let p ∈M and X ∈ TpM be a unit vector orthogonal to ξ.
We choose an orthonormal basis {e0 = ξ, e1, . . . , en, en+1, . . . , e2n} of
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TpM̃ such that e0, e1, . . . , en are tangent to M at p and X = e1, and en+j =
1

sin θFej , j = 1, . . . , n.

We denote

hrij = g(h(ei, ej), en+r), ∀i, j, r = 1, . . . , n.

By using the expression (1.3) of the curvature tensor of a Kenmotsu
space form and the Gauss equation for X = Z = e1 and Y = W = ej ,
j = 2, . . . , n, we get

R(e1, ej , e1, ej) =
c− 3

4
+

3(c+ 1)

4
g2(φe1, ej) +

n∑
r=1

[hr11h
r
jj − (hr1j)

2].

Summing for j from 2 to n and taking into account that K(e1 ∧ ξ) = −1,
we obtain

Ric(X) = − 1 +
(n− 1)(c− 3)

4
+

3(c+ 1)

4

n∑
j=2

g2(φe1, ej)

+
n∑
r=1

n∑
j=2

[hr11h
r
jj − (hr1j)

2].

Then

(3.2) Ric(X) + 1− (n− 1)(c− 3)

4
− 3(c+ 1)

4
‖Te1‖2

=
n∑
r=1

n∑
j=2

[hr11h
r
jj − (hr1j)

2] ≤
n∑
r=1

n∑
j=2

hr11h
r
jj −

n∑
j=2

(h11j)
2 −

n∑
j=2

(hj1j)
2.

Since M is a special contact θ-slant submanifold, we have

(∇XT )Y = (cos2 θ)[−η(Y )TX + g(Y, TX)ξ],

which implies

hrij = hirj , ∀i, j, r = 1, n.

The previous relation becomes

Ric(X) + 1− (n− 1)(c− 3)

4
− 3(c+ 1)

4
cos2 θ

≤
n∑
r=1

n∑
j=2

hr11h
r
jj −

n∑
j=2

(h11j)
2 −

n∑
j=2

(hj1j)
2

=
n∑
r=1

n∑
j=2

hr11h
r
jj −

n∑
j=2

(hj11)
2 −

n∑
j=2

(h1jj)
2.
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We denote

f1(h
1
11, h

1
22, . . . , h

1
nn) = h111

n∑
j=2

h1jj −
n∑
j=2

(h1jj)
2,

fr(h
r
11, h

r
22, . . . , h

r
nn) = hr11

n∑
j=2

hrjj − (hr11)
2, ∀r = 2, n.

Since (n+ 1)H1 = h111 + h122 + · · ·+ h1nn, Lemma 2.1 yields

f1(h
1
11, h

1
22, . . . , h

1
nn) ≤ n− 1

4n
((n+ 1)H1)2 =

(n+ 1)2(n− 1)

4n
(H1)2.

Analogously, by Lemma 2.2, we obtain, for any 2 ≤ r ≤ n,

fr(h
r
11, h

r
22, . . . , h

r
nn) ≤ 1

8((n+ 1)Hr)2 ≤ (n+ 1)2(n− 1)

4n
(Hr)2.

Thus,

Ric(X) + 1− (n− 1)(c− 3)

4
− 3(c+ 1)

4
cos2 θ

≤ (n+ 1)2(n− 1)

4n

n∑
r=1

(Hr)2 =
(n+ 1)2(n− 1)

4n
‖H‖2.

Therefore,

Ric(X) ≤ (n+ 1)2(n− 1)

4n
‖H‖2 − 1 +

(n− 1)(c− 3)

4
+

3(c+ 1)

4
cos2 θ,

i.e., (3.1).

Next we study the equality case. For n ≥ 3, we choose Fe1 parallel to H
and we have Hr = 0, for r ≥ 2; from Lemma 2.2, we get

h11j = hj11 =
(n+ 1)Hj

4
= 0, ∀j ≥ 2,

h1jk = 0, ∀j, k ≥ 2, j 6= k.

Lemma 2.1 yields h111 = (n+1)a and h1jj = a for all j ≥ 2, with a = (n+1)H1

2n .

In (3.2) we computed Ric(X) = Ric(e1). Similarly, by computing Ric(e2)
and using the equality case of (3.1), we get

hr2j = h2jr = 0, ∀r 6= 2, j 6= 2, r 6= j.

Then we obtain

h211
n+ 1

= h222 = · · · = h2nn =
(n+ 1)H2

2n
= 0.

The argument is also valid for matrices
(
hrjk
)

because equality holds for all

unit tangent vectors; so, h22j = hj22 = (n+1)Hj

2n = 0 for all j ≥ 3.
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The matrix (h2jk) (respectively (hrjk)) has only two possible nonzero en-

tries h212 = h221 = h122 = (n+1)H1

2n (respectively hr1r = hrr1 = h1rr = (n+1)H1

2n for
r ≥ 3). Now, by the Gauss equation we obtain

R̃(e2, ej , e2, ej) = R(e2, ej , e2, ej)−
(

(n+ 1)H1

2n

)2

, ∀j ≥ 3.

Similarly we get

R̃(e2, e1, e2, e1) = R(e2, e1, e2, e1)− (n+ 1)

(
(n+ 1)H1

2n

)2

+

(
(n+ 1)H1

2n

)2

.

After combining the last two relations, we find

Ric(e2) + 1− (n− 1)
c− 3

4
− 3

4
(c+ 1) cos2 θ = 2(n− 1)

(
(n+ 1)H1

2n

)2

.

On the other hand, the equality case of (3.1) implies that

Ric(e2) + 1− (n− 1)
c− 3

4
− 3

4
(c+ 1) cos2 θ =

(n+ 1)2(n− 1)

4n
‖H‖2

= n(n− 1)

(
(n+ 1)H1

2n

)2

.

Since n 6= 1, 2, by equating the last two equations we find H1 = 0. Thus,
(hrjk) are all zero, i.e., M is a totally geodesic submanifold in M̃(c). Now,
let us assume that n = 2. If M is not totally geodesic, one has

h(e1, e1) = λe3, h(e2, e2) = µe3, h(e1, e2) = µe4,

with λ = 3µ = 9
4H

1, i.e., M is H-umbilical.

4. An inequality for the scalar curvature. Let M be an (n + 1)-
dimensional special contact slant submanifold of a (2n+1)-dimensional Ken-

motsu space form M̃(c). For any vector field X tangent to M we write
φX = TX + FX, where TX and FX are the tangential and normal com-
ponents of φX, respectively. An orthonormal basis of TpM , p ∈ M, is
given by {e0 = ξ, e1, . . . , en} and an othonormal basis of T⊥p M is given

by {e∗1, . . . , e∗n}, with e∗k = 1
sin θFek, k = 1, n.

We denote hkij = g(h(ei, ej), e
∗
k) for i, j = 0, n and k = 1, n.

For a special contact slant submanifold, hkij = hijk = hjik (= hkji = hikj
= hjki) for all i, j, k ∈ {1, . . . , n}.

From the Gauss equation it follows that

(n+ 1)2‖H‖2 = 2τ + ‖h‖2 − n(n+ 1)
c− 3

4
− (3‖T‖2 − 2n)

c+ 1

4
.
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By the definition,

(n+ 1)2‖H‖2 =

n∑
i=1

[ n∑
j=1

(hijj)
2 + 2

∑
1≤j<k≤n

hijjh
i
kk

]
.

We derive

2τ = n(n+ 1)
c+ 3

4
+ (3‖T‖2 − 2n)

c+ 1

4
+ (n+ 1)2‖H‖2 − ‖h‖2

= n(n+ 1)
c− 3

4
+ (3‖T‖2 − 2n)

c+ 1

4

+ 2
∑
i

∑
j<k

hijjh
i
kk − 2

∑
i 6=j

(hijj)
2 − 6

∑
i<j<k

(hkij)
2 −

n∑
j,k=1

(hk0j)
2.

If we denote m = n+2
n−1 , we get

(n+ 1)2‖H‖2 −m
[
2τ − n(n+ 1)

c− 3

4
− (3‖T‖2 − 2n)

c+ 1

4

]
=
∑
i

(hiii)
2 + (1 + 2m)

∑
i 6=j

(hijj)
2 +6m

∑
i<j<k

(hkij)
2−2(m−1)

∑
i

∑
j<k

hijjh
i
kk

=
∑
i

(hiii)
2 + 6m

∑
i<j<k

(hkij)
2 + (m− 1)

∑
i

∑
j<k

(hijj − hikk)2

+ [1 + 2m− (n− 2)(m− 1)]
∑
i 6=j

(hijj)
2 − 2(m− 1)

∑
i 6=j

hiiih
i
jj

= 6m
∑
i<j<k

(hkij)
2 + (m− 1)

∑
i 6=j,k

∑
j<k

(hijj − hikk)2

+
1

n− 1

∑
i 6=j

[hiii − (n− 1)(m− 1)hijj ]
2 ≥ 0.

For a contact θ-slant submanifold we have ‖T‖2 = n cos2 θ.

Summing up, we have derived the following.

Theorem 4.1. Let M be an (n + 1)-dimensional special contact slant

submanifold of a (2n+ 1)-dimensional Kenmotsu space form M̃(c). Then

‖H‖2 ≥ 2(n+ 2)

(n− 1)(n+ 1)
τ − n(n+ 2)

(n− 1)(n+ 1)
· c− 3

4

− n(n+ 2)

(n− 1)(n+ 1)2
(3 cos2 θ − 2)

c+ 1

4
.

Equality holds at all p ∈M if and only if there exists a real function µ on M
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such that the second fundamental form satisfies the relations

h(e1, e1) = 3µe∗1, h(e2, e2) = · · · = h(en, en) = µe∗1,

h(ei, ej) = µe∗i , h(ej , ek) = 0 (2 ≤ j 6= k 6= n),

with respect to a suitable orthonormal frame {e0 = ξ, e1, . . . , en} on M ,
where e∗k = 1

sin θFek, k ∈ {1, . . . , n}.
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