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Differential inclusions in the Almgren sense

on unbounded domains

by Johnny Henderson (Waco, TX) and

Abdelghani Ouahab (Sidi-Bel-Abbès)

Abstract. We prove the existence of solutions of differential inclusions on a half-
line. Our results are based on an approximation method combined with a diagonalization
method.

1. Introduction. The theory of multiple-valued functions in the sense
of Almgren [2] has several applications in the framework of geometric mea-
sure theory. It gives a very useful tool to approximate some abstract
objects arising from geometric measure theory. For example, Almgren [2]
used multiple-valued functions to approximate mass-minimizing rectifiable
currents, hence successfully obtaining their partial interior regularity.
Solomon [11] succeeded in proving the closure theorem without using the
structure theorem. His proof relies on various facts about multiple-valued
functions. There are also other objects similar to these functions, such as
the union of Sobolev functions graphs introduced by Ambrosio, Gobbino
and Pallara (see [4]). In complex function theory one often speaks of the
multiple-valued function

√
z. It can be considered as a function C→ A2(C).

Almgren [3] introduced AQ(Rn)-valued functions to tackle the problem of es-
timating the size of the singular set of mass-minimizing integral currents (see
[2] for a summary). Almgren’s multiple-valued functions are a fundamental
tool for understanding geometric variational problems in codimension higher
than 1.

The success of Almgren’s regularity theory raises the need of further
studying multiple-valued functions. For more information concerning multi-
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ple-valued functions, see [5, 6, 7–10]. For some local existence results for
differential inclusions in the sense of Almgren, we cite Goblet [7].

Agarwal and O’Regan [1] considered some classes of boundary value
problems on a half-line, in which they used the diagonalization process com-
bined with fixed point theory.

We use the iteration method combined with the diagonalization process
for the existence of a continuously differentiable solution for a class of dif-
ferential inclusions with nonconvex right-hand side in the sense of Almgren.

2. Preliminaries. In this section, we recall from the literature some
notations, definitions, and auxiliary results which will be used throughout
the paper.

Definition 2.1. We denote by [[pi]] the Dirac mass at pi ∈ Rn, and we
define the space of Q-points as

AQ(Rn) :=
{ Q∑
i=1

[[pi]] : pi ∈ Rn for every i = 1, . . . , Q
}
.

Definition 2.2. For any T1, T2 ∈ AQ(Rn), with T1 =
∑

[[pi]] and
T2 =

∑
i[[si]], we define

dA(T1, T2) := min
σ∈PQ

√√√√ Q∑
i=1

|pi − sσ(i)|2,

dA(T1, T2) := min
σ∈PQ

Q∑
i=1

|pi − sσ(i)|,

or

dA(T1, T2) := min
σ∈PQ

{max |pi − sσ(i)| : i = 1, . . . , Q},

where PQ denotes the group of permutations of {1, . . . , Q}.

A multiple-valued function in the sense of Almgren is an AQ(Rn)-valued
function.

Definition 2.3. Let Ω ⊂ Rm and f : Ω → AQ(Rn) be an AQ(Rn)-
valued function. If there exist single-valued maps gi : Ω → Rm, i = 1, . . . , Q,
such that

f(x) =

Q∑
i=1

[[gi(x)]] for each x ∈ Rm,

then we say that the vector (g1, . . . , gQ) is a selection for f.
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Theorem 2.1 ([3, 6]). Let f : [0, b]→ AQ(Rn) be a continuous multiple-
valued function. Then there are continuous functions f1, . . . , fQ : [0, b]→ Rn
such that

f =

Q∑
i=1

fi.

Remark 2.1. If for each i ∈ {1, . . . , Q}, gi is continuous, then f has a
continuous selection.

Lemma 2.2 ([7]). Let f : R → AQ(Rn) be a continuous multiple-valued
function and g : R → Rn be a continuous function. If h : [0, b] × R →
AQ−1(Rn) satisfies

f = [[g]] + h,

then h is a continuous function.

Remark 2.2. An AQ(Rn)-valued function is essentially a rule assign-
ing Q unordered and not necessarily distinct elements of Rn to each element
of its domain.

Lemma 2.3 ([7]). Let {fi} : [0, b] → AQ(Rn) be a sequence of multiple-
valued functions pointwise converging to f , and let {gi} : [0, b] → Rn be a
sequence of functions pointwise converging to g such that gi is a selection of
fi for each i ∈ N. Then g is a selection of f .

Theorem 2.4 ([3]). Suppose f1, . . . , fQ : [0, b] → Rn are continuous

functions and f =
∑Q

i=1[[fi]] : [0, b]→ AQ(Rn). Then there exists a constant
Cn,Q > 0, depending only on n and Q, such that

ωfi ≤ Cn,Q ωf for each i = 1, . . . , Q,

where ωf is the modulus of continuity of f, i.e.,

ωf (δ) = sup{dA(f(s1), f(s2)) : s1, s2 ∈ [0, b] and |s1 − s2| ≤ δ},

and

ωfi(δ) = sup{|fi(s1)− f(s2)| : s1, s2 ∈ [0, b] and |s1 − s2| ≤ δ}.

3. Existence result. We consider the following problem:

(3.1)

{
y′(t) ∈ {f1(t, y(t)), . . . , fQ(t, y(t))}, t ∈ [0,∞),

y(0) = a,

where fi : [0,∞)× RN → RN , 1 ≤ i ≤ Q, are single-valued functions.

Theorem 3.1. Let fi : [0, b]×RN → RN , i = 1, . . . , Q, be single-valued
functions with which we associate the continuous multiple-valued function
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in the sense of Almgren

f =

Q∑
i=1

[[fi]] : [0,∞)× R→ AQ(RN ).

Assume that there exists M1,M2 > 0 such that

(3.2) dA(f(t, x), Q(0)) ≤M1 +M2|x| for all x ∈ RN , t ∈ [0,∞).

Then problem (3.1) has at least one solution in C([0,∞),RN ).

Proof. The proof involves several steps.

Step 1. We begin by constructing two sequences {ym}∞m=0 and {gm}∞m=0

by first defining

y0(t) = a for all t ∈ [0, n],

y1(t) =

{
y0(t) if t ∈ [0, n/2],

a+
	t−n/2
0 g2,1(s) ds if t ∈ (n/2, n],

where g2,1 : [0, n/2] → RN is a continuous selection of f(·, y1(·)) : [0, n/2]
→ AQ(RN ). From Theorem 2.1 we can find a continuous selection g1 :
[0, n] → RN for f(·, y1(·)) : [0, n] → AQ(RN ) such that g1(·) = g2,1(·) on
[0, n/2]. Next, we define

y2(t) =


y0(t) if t ∈ [0, n/3],

a+
	t−n/3
0 g3,1(s) ds if t ∈ [n/3, 2n/3],

a+
	t−n/3
0 g3,2(s) ds if t ∈ [2n/3, n],

where g3,1 : [0, n/3]→ RN is a continuous selection of f(·, y2(·)) : [0, n/3]→
AQ(RN ) and g3,2 : [0, 2n/3] → RN is a continuous selection of f(·, y2(·)) :
[0, 2n/3] → AQ(RN ) such that g3,1(·) = g3,2(·) on [0, n/3]. Again by Theo-
rem 2.1 we can choose a continuous selection of f(·, y3(·)) : [0, n]→ AQ(RN )
such that g2(·) = g3,2(·) on [0, 2n/3]. Finally, for m > 2, we define induc-
tively,

ym(t) =

{
y0(t) if t ∈ [0, n/m],

a+
	t−n/m
0 gm(s) ds if t ∈ (n/m, n],

where gm : [0, n] → RN is a continuous selection of f(·, ym(·)) : [0, n] →
AQ(RN ).

Now, we show that {ym : m ∈ N ∪ {0}} is relatively compact. First, we
exhibit that {ym}∞m=0 is bounded. Since

|ym(t)| ≤ |a|+
t�

0

|gm(s)| ds ≤ |a|+
t�

0

(M1 +M2|ym(s)|) ds,
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it follows from Gronwall’s lemma that there exists M > 0 such that

‖ym‖∞ ≤M for each m ∈ N ∪ {0}.

Next, we show that {ym}∞m=0 is equicontinuous. Let t1, t2 ∈ [0, n/m].
Then

|ym(t1)− ym(t2)| = 0 if t1, t2 ∈ [0, n/m];

for 0 < t1 ≤ b/m < t2 < n, we have

|ym(t1)− ym(t2)| ≤
t2−b/m�

0

|gm(s)| ds ≤M |t2 − b/m| ≤M |t2 − t1|;

and

|ym(t1)− ym(t2)| ≤
t2−b/m�

t1−n/m

|gm(s)| ds ≤M |t1 − t2|, t1, t2 ∈ (b/m, n].

Consequently, {ym}∞m=0 is bounded and equicontinuous. By the Arzelà–
Ascoli theorem, there exists a subsequence of {ym}∞m=0 converging to some
y in C([0, b],RN ). Let K = [0, b]×B(0,M), and

ω|f |K (δ) = sup{dA(f(t1, x1), f(t2, x2)) : |(t1, x1)− (t2, x2)| ≤ δ,
where (t1, x1), (t2, x2) ∈ K}

be the modulus of continuity of f restricted toK. Hence for eachm ∈ N∪{0},
we have

ω|f(·,ym(·))(δ2) = sup{dA(f(t1, ym(t1)), f(t2, ym(t2))) : |t1 − t2| ≤ δ,
and t1, t2 ∈ [0, n]}

≤ sup{dA(f(t1, x1), f(t2, x2)) : |t1−t2| ≤ δ2, |x1−x2| ≤ ψ(M)δ,

and (t1, x1), (t2, x2) ∈ K}
≤ ω|fK (δ

√
1 +M2).

It is clear that f(·, ym(·)) − [[gm(·)]] : [0, n] → AQ−1(RN ) is a continuous
multiple-valued function. Then there exist hm1 , . . . , h

m
Q−1 : [0, n] → RN con-

tinuous functions such that

f(·, ym(·)) = [[gm(·)]] +

Q−1∑
i=1

[[hmi (·)]].

Then

‖gm‖∞ ≤ L1 for each m ∈ N ∪ {0}

and

ω|gm ≤ ω|fK (δ2) for every m ∈ N ∪ {0}.
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Consequently, {gm}∞m=0 is bounded and equicontinuous. From the Arzelà–
Ascoli theorem, we conclude that {gm}∞m=0 is compact in C([0, n],RN ).
Hence there exists a subsequence, denoted {gm}∞m=0, converging uniformly
to g. Hence

‖ym − z‖∞ ≤ n‖gm − gn‖∞ → 0 as m→∞,
where

z(t) = a+

t�

0

g(s) ds =: yn(t), t ∈ [0, n].

By Lemma 2.3 we conclude that gn is a continuous selection of f(·, yn(·))
on [0, n]. Then

yn(t) = a+

t�

0

gn(s) ds, t ∈ [0, n],

is a solution of problem (3.1) on [0, n].

Step 2. By the same methods used in Step 1, we construct two new
sequences {ym}∞m=0 and {gm}∞m=0 by

y0(t) = yn(n) for all t ∈ [n, n+ 1],

y1(t) =

{
y0(t) if t ∈ [n, (n+ 1)/2],

yn(n) +
	t−(n+1)/2
0 g2,1(s) ds if t ∈ ((n+ 1)/2, n+ 1],

where g2,1 : [n, (n+ 1)/2] → RN is a continuous selection of f(·, y1(·)) :
[n, (n+ 1)/2] → AQ(RN ). From Theorem 2.1 we can find a continuous se-
lection g1 : [n, n + 1] → RN of f(·, y1(·)) : [n, n + 1] × RN → AQ(RN ) such
that g1(·) = g2,1(·) on [n, (n+ 1)/2]. We define

y2(t) =


y0(t) if t ∈ [n, (n+ 1)/3],

yn(n) +
	t−(n+1)/3
n g3,1(s) ds if t ∈ [(n+ 1)/3, 2(n+ 1)/3],

yn(n) +
	t−(n+1)/3
n g3,2(s) ds if t ∈ [2(n+ 1)/3, n+ 1],

where g3,1 : [n, (n+ 1)/3] → RN is a continuous selection of f(·, y2(·)) :
[n, (n+ 1)/3] → AQ(RN ) and g3,2 : [n, 2(n+ 1)/3] → RN is a continuous

selection of f(·, y2(·)) : [n, 2(n+ 1)/3]→ AQ(RN ) such that g3,1(·) = g3,2(·)
on [n, (n+ 1)/3]. By Theorem 2.1 we can choose a continuous selection of
f(·, y3(·)) : [n, n+ 1]→ AQ(RN ) such that g2(·) = g3,2(·) on [n, 2(n+ 1)/3].
Finally, we define inductively

ym(t) =

{
y0(t) if t ∈ [n, (n+ 1)/m],

yn(n) +
	t−(n+1)/m
0 gm(s) ds if t ∈ ((n+ 1)/m, n+ 1],
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where gm : [n, n + 1] → RN is a continuous selection of f(·, ym(·)) :
[n, n + 1] → AQ(RN ). From Step 1, we can show that there exist yn+1 ∈
C([n, n + 1],RN ) and gn+1 ∈ C([n, n + 1],RN ), gn+1(n) = gn(n), a con-
tinuous selection of f(·, yn+1(·)) : [n, n+ 1]→ AQ(RN ) such that

yn+1(t) = yn(n) +

t�

n

gn+1(s) ds, t ∈ [n, n+ 1],

which is a solution of problem (3.1) on [n, n+ 1], with the initial condition
y(n) = yn(n).

For the last part of the proof, we now employ a diagonalization process.
For k ∈ N, let

uk(t) =

{
ỹk(t), t ∈ [0, nk],

ỹk(nk), t ∈ [nk,∞),

where {nk}k∈N is a sequence of numbers satisfying

0 < n1 < · · · < nk < · · · ↑ ∞,
and

ỹ2(t) =

{
y1(t), t ∈ [0, n1],

y2(t), t ∈ [n1, n2],

where

y1(t) =


y1(t), t ∈ [0, 1],

y2(t), t ∈ [1, 2],
...

yn1(t), t ∈ [n1 − 1, n1],

y2(t) =


yn1+1(t), t ∈ [n1, n1 + 1],

yn1+2(t), t ∈ [n1 + 1, n1 + 2],
...

yn2(t), t ∈ [n2 − 1, n2].

Set S = {unk
}∞k=1. It is clear that there exists M∗ > 0 such that, for

every solution y of problem (3.1), we have

‖y‖∗ = sup{e−M2t|y(t)| : t ∈ [0,∞)} ≤M∗.
Notice that

|unk
(t)| ≤ enkM2M∗ for each t ∈ [0, nk], k ∈ N,

and

unk
(t) = a+

t�

0

gnk
(t) dt for every t ∈ [0, nk].
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Then, for each t, τ ∈ [0, n1] and k ∈ N, we have

|unk
(t)− unk

(τ)| =
∣∣∣ t�
0

gn1(s) ds−
τ�

0

gn1(s) ds
∣∣∣

≤
t�

τ

|gn1(s)| ds ≤ en1M2M∗|t− τ |.

The Arzelà–Ascoli theorem guarantees that there is a subsequence N1 of N
and a function z1 ∈ C([0, n1],RN ) such that unk

→ z1 in C([0, n1],RN ) as
k →∞ through N1. Let N∗1 = N1\{1}.

Notice that

|unk
(t)| ≤M for every t ∈ [0, n2], k ∈ N.

Also for k ∈ N, and t, τ ∈ [0, n2], we have

|unk
(t)− unk

(τ)| =
∣∣∣ t�
0

gn2(s) ds−
τ�

0

gn2(s) ds
∣∣∣

≤
t�

τ

|gn2(s)| ds ≤M∗en2M2 |t− τ |.

Again the Arzelà–Ascoli theorem guarantees that there is a subsequence N2

ofN∗1 and a function z2 ∈ C([0, n2],RN ) such that unk
→ z2 in C([0, n2],RN )

as k → ∞ through N2. Note z1 = z2 on [0, n1] since N2 ⊂ N∗1 . Let N∗2 =
N2\{2}.

Proceed inductively to obtain, for each m ∈ {2, 3, . . .}, a subsequence Nm

ofN∗m−1 and a function zm ∈C([0, nm],RN ) with unk
→ zm in C([0, nm],RN )

as k → ∞ through Nm. Let N∗m = Nm\{m}. Define a function as follows:
for t ∈ [0,∞) and n ∈ N with t ≤ nm, define y(t) = zm(t). Then y ∈
C1([0,∞),RN ), y(0) = a and |y(t)| ≤ M for each t ∈ [0,∞). Fix t ∈ [0,∞)
and let m ∈ N with t ≤ nm. Then for each n ∈ N∗m,

unk
(t) = a+

t�

0

gnk
(s) ds.

Let nk →∞ through N∗m to obtain

zm(t) = a+

t�

0

gm(s) ds,

where gm is a continuous selection for f(·, zm(·)). Thus

y(t) = a+

t�

0

g(s) ds, t ∈ [0,∞),

where g is a continuous selection for f(·, y(·)).
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