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The Lax—Phillips infinitesimal generator and the
scattering matrix for automorphic functions

by Yoicur UETAKE (Poznan)

Abstract. We study the infinitesimal generator of the Lax—Phillips semigroup of
the automorphic scattering system defined on the Poincaré upper half-plane for SL2(Z).
We show that its spectrum consists only of the poles of the resolvent of the generator,
and coincides with the poles of the scattering matrix, counted with multiplicities. Using
this we construct an operator whose eigenvalues, counted with algebraic multiplicities
(i-e. dimensions of generalized eigenspaces), are precisely the non-trivial zeros of the Rie-
mann zeta function. We give an operator model on L*(R) of this generator as explicit as
possible. We obtain a condition equivalent to the Riemann hypothesis in terms of cyclic
vectors for a weak resolvent of the scattering matrix.

1. Introduction. Since the scattering theoretic view of the theory of
automorphic functions was suggested by Gelfand [Ge] in 1962, Pavlov and
Faddeev [PavFa] showed in 1972 that the Lax—Phillips scattering theory,
applied to the non-Euclidean wave equation, is a natural tool in the theory
of automorphic functions. This was taken up and further studied by Lax
and Phillips themselves and culminated in their monograph [LP1] and its
important supplement [LP2].

In [LP1], the poles of the scattering matrix of the non-Euclidean wave
equation on the Poincaré upper half-plane are related to the poles of the
resolvent (and so to the eigenvalues) of the infinitesimal generator of the
Lax—Phillips semigroup. See also [LP2, Cor. 4.3]. In this paper we study
this relation in more detail.

To make the paper as self-contained as possible, we begin in §2 with a de-
scription of the Lax—Phillips scattering theory for automorphic functions on
the fundamental domain of SLy(Z). Then in §§3 and 4 we develop a general
spectral theory of discrete-time and continuous-time Lax—Phillips scatter-
ing, respectively, except that a unitary factor of the scattering matrix we
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have in mind consists of the non-trivial zeros of the Riemann zeta-function.
The only result we use from scattering theory is a translation representation
theorem (see e.g. Theorem 1.1 of Ch. II in [LP3]) for the discrete scattering
system. In §§5 and 6 we treat scattering theory in the setting of automorphic
functions.

In §2, we briefly review the Lax—Phillips scattering theory for automor-
phic functions. For more details, see [LP1], [LP2], Epilogue of [LP3] and the
references there. In the general case of a congruence subgroup I" of SLa(Z),
the behavior of the eigenvalues for cusp forms is complicated. However in
our case (and in most of [LP1]), where I" = SLa(Z), it is well-known (see
Motohashi [Mo], Zagier [Z]) that the eigenvalues A; of the non-Euclidean
Laplacian A for the cusp forms ¢; are all real and A\; > 1/4. In §2 we apply
this fact to describe explicitly the subspaces P and 7 introduced in [LP1, 2].
We also use the Eisenstein transform to explain that the energy form FE is

positive definite on the subspace corresponding to the continuous spectrum
of A.

In §3 we study discrete-time Lax—Phillips scattering systems correspond-
ing to their continuous-time counterparts. We define the subspace K of the
whole Hilbert space H (H is a subspace of the L?-space of functions on the
fundamental domain § for SL2(Z)) on which the Lax—Phillips semigroup and
generator will be defined. This space is defined by using a unitary causal
factor Sgo(z) of the discrete scattering matrix. We decompose Sgo(z) into a
weak resolvent form. This procedure allows one to carve out an operator Ay
on a Hilbert space K. We show in §6 that this A4 has a cyclicity property.
We base our development on the methods of shift operator realization of
linear systems from Helton [H] and [U2].

In §4 we define our Lax—Phillips semigroup and study some spectral
properties of its infinitesimal generator A.. We call this generator the Lax—
Phillips (infinitesimal) generator, as in the title of the paper. We show that
the operator Ay carved out from the discrete scattering matrix is related to
A, by the Cayley transform. Using this relation, we prove that the resolvent
of A, is meromorphic. Then we show that the spectrum of A. corresponds
precisely (i.e. counted with multiplicities) to the poles of the unitary causal
factor Sco(s) of the continuous scattering matrix, corresponding to K.

In [LP1, 2], the original Lax—Phillips generator denoted by B” acting
on K" is defined. There the meromorphy in C of its resolvent is proved by
showing compactness of the resolvent. It turns out that our space K is ob-
tained by discarding a one-dimensional non-essential generalized eigenspace
of B”. Actually o(B") \ 0(A.) = {—1/2}. So the meromorphy of B"’s re-
solvent proved in [LP1, 2] follows from that of A.’s resolvent. Our proof of
Theorem 4.2(i) gives a simple proof of this.
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In §4 we also construct an operator acting on K with eigenvalues cor-
responding precisely to the non-trivial zeros of the Riemann zeta-function.
For discussions of this kind of operator, see e.g. Lax and Phillips [LP2, §6]
and Patterson [Pat, §5.18].

The underlying mechanism of pole correspondence between the scatter-
ing matrix and the resolvent of the Lax—Phillips generator is the cyclicity
of the two vectors in the weak resolvent decomposition of the scattering
matrix. This has been shown in [Ul] and [U3]. In this paper we show this
pole correspondence directly in Lemma 4.1 used to prove Theorem 4.2(ii).
The cyclicity will be used in §6.

In §5 we represent A. acting on K as minus the left L?-derivative re-
stricted to the subspace K. of L%(R_), using the explicit formulas for trans-
lation representations for the scattering system in §2 obtained in [LP2].
Here K. is the image of K under the outgoing representation. We give an
expression of K. as explicit as possible.

In §6 we show cyclicity of the two vectors in the weak resolvent decom-
position of Syp(z). Using these and the operator model in §5, we formulate
a condition equivalent to the Riemann hypothesis in terms of cyclic vectors.
To deduce this condition, we use a result on absence of zero-pole cancellation
in cascade connection of dynamical systems in Hilbert space [U3].

Notations. I denotes the identity operator; Ry = [0,00) and R_ =
(—o0,0]; Py is the orthogonal projection onto the Hilbert space W; Sy: 0
— (2 is the (discrete) scattering operator; Sy: L?(T) — L?(T) is the (dis-
crete) scattering matrix; S.: L?(R) — L?(R) is the (continuous) scattering
operator; S.: L2(iR) — L?(iR) is the (continuous) scattering matrix.

2. Lax—Phillips scattering theory on the fundamental domain
of SLy(Z). Consider the fundamental domain § = I'\$) of I' := SLs(Z),
where $ = {w = x + iy; y > 0} is the Poincaré upper half-plane, and I" is
the modular group defined by

F:{[a b};a,b,c,dEZ, ad—bc:l}7
c d

a b aw +b
HOIwr [c d}w'_cw—i—deﬁ'

§ has a cusp at ico.
Let L%(F) be the Hilbert space defined by

12(3) = {u=u(w),w € §; ||ull 2z = /() 2z < o0}
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with the inner product

dx dy

(u,0) 123 = § U0 =
5 Y
It is well-known that L?(F) has the following spectral decomposition
with respect to the non-Euclidean Laplacian A = —y?(9%/02% + 0% /0y?)

(—A is called the Laplace—Beltrami operator):
L*(3) = L3(3) @ L2(F), L3(F) = C o L*(3),
°L*(F) = cl span{t;; j € N}.
Here cl means topological closure. Each subspace is an invariant subspace

of L?(F) with respect to A. v; is a cusp form and it is known (Motohashi
[Mo], Zagier [Z]) that Ay; = (1/4 + £7)¢; with k; > 0. Let

L=—-A+1/4.

Then Li; = —Ii?¢j. Therefore the only non-negative eigenvalue of L is
1/4 with a constant eigenfunction c: Lc = (1/4)c. Note that |[c||lp25) =

V7/3 el ([Mo]).

The Fisenstein series of two variables E(z, s) on $ is by definition

E(z1/2+s) = 3 [Sy(z)V2
YEL NI

Here for v € I's, 7(2) = z + n for some n € Z. For convenience the second
variable s is shifted by 1/2. E(z,1/2 + s) is an automorphic function, that
is, E(v(2),1/2+s) = E(z,1/2+ s) for all v € I', thus E(z,1/2 + s) can be
viewed as a function on §.

The Eisenstein series is a (non-L2-)eigenfunction of A:

(A—1/4)E(2,1/2 +i€) = —(i€)*E(z,1/2 + i)

for all £ € C.
The Eisenstein transform Eis: L2(F) — L?(Ry) is defined by
1 dx dy
Eis = — 2)E(z,1/2 —i&)dp, du= ,
s = = /@B /2= du, du==73

5

for f = f(z) € L2(3) (Lang [La], Motohashi [Mo]). This transform is unitary
(see §4 for the inner product of L?(R) D L?(R,)) and the inverse is given
by
1 o0
Eis 'w](z) = — \ w(&)E(z,1/2 +if)d
[w](2) \/ﬁg () E(z,1/2 +i€) d¢

for w = w(§) € L3(Ry) ([Mo)).
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Note that by the above eigenfunction property of the Eisenstein series,

o0

(A—1/4) \ w(©)E(z,1/2 + i€) d¢

0

| w(©)(A—-1/9)E(z,1/2+ i€) d¢
0

(A —1/4)Eis tw](z) =

s~ S~
3 3

_ \/LQ_W [ w©eB(=,1/2 + i) de
0

for w € C(R4) (the space of compactly supported C'*°-functions). Note
also that Eis™'[C°(R, )] is dense in L2(F) D dom(A). So we see that —L =
A —1/4 is still positive definite on L2(F). Consequently, the energy form E
defined below is positive definite on L2(F) x L2(F).
Consider the solutions of the following automorphic wave equation on §:
up(w,t) = Lu(w,t), w==x+iy€F,

with initial values u(w, 0) and u(w, 0). Rewrite the above wave equation in
the first order form as df /dt = L f, where

F = F(0) = LA falt)) = {ulw, 1), ue(w, 1)} = [ v

0 1

v=17 .
L 0

The operator L is denoted by A in [LP1,2].
The bilinear energy form FE is given by

E(f,9) = (fi, —Lg1) 12z + (f2, 92) 12()

for f = {f1, fo},9 = {91, 92} € L*(F) x L*(3).

The E-energy form E(f) := E(f, f) for data f = {f1, fo} will be zero for
e.g. f = {¢,£c/2}. To avoid this disadvantage of indefiniteness, we introduce
another bilinear energy form defined by

G(f,9) = E(f,9)+2K(f,9g),

and

where

K(1.9) = {2 dvdy. so-5nty<a)a>L

o
We denote by Hg the completion with respect to the G-norm defined
via G(f) := G(f, f) of the space of C*-solutions with compact support
in §. It is known ([LP1]) that the E- and G-forms are equivalent on any
closed subspace of Hg on which E is positive. The operator L generates
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a one-parameter group {U(t)}ier of unitary operators with respect to the
indefinite energy form E. We also write U(t) as el
The incoming and outgoing solutions of the above wave equation are

given by
u_(w,t) = y"?¢(ye") and uy(w,t) =y p(ye™),

respectively, where ¢ is chosen to be C*° and vanishing for y < a. Then the
incoming and outgoing subspaces Dy_ and Dy (denoted by D_ and D in
[LP1,2]) are defined to be the closure in H¢ of the initial data corresponding
to the above incoming and outgoing solutions, respectively:

Do = cl{{y'6(y),v**¢'(y)}}, Dot = {{y"?o(v), —v**¢' (1)}},

where ¢ is chosen as above. Actually, instead of the above Dg+, we will use
D4 (denoted by D', or DY in [LP1,2]) defined below as our incoming and
outgoing subspaces.

In [LP1, 2], the case where L has a finite number of positive eigenvalues
)\?, Jj = 1,...,m, is treated. Let ¢;, j = 1,...,m, be the corresponding
eigenfunctions. As we saw above, in our case of I' = SLy(Z), m = 1, \? = 1/4
and ¢ = c. Then Lp = +\ipf, where p = {q1,+\q1} = {c, £c/2}.
Recall that E(pf) =0. Let P =span{p~;j=1,...,m} = span{p;,p; } =
span{p, ¢}, where p = {1,0}, ¢ = {0,1}. Note that E(p,q) = G(p,q) = 0
(i.e. pand g are E- and G-orthogonal). Denote the E-orthogonal complement
of P in Hg by H/,. Define Hj, to be the quotient space H¢,/Z, where 7 is
the finite-demensional subspace spanned by the null vectors of L. Note that
Lf=0,f ={fi,fo} & Lfi =0, f, = 0. However, neither the cusp form
¥ nor the constant c satisfies Lfi = 0 as we saw above. Hence it turns
out that Z = {0} and Hj, = H(, after all. On Hy, E is positive definite
and equivalent to G. Thus U(t) is unitary on HJ,. However the subspaces
Dy and Dy do not lie in Hf,. Thus we define two types of incoming and
outgoing subspaces in H7, as follows:

D/i = PHJ’EDO:I: or Dl = Do+ N H};

Here PH}; is the E-orthogonal projection onto Hf, from Hg. Define H (de-
noted by H/ in [LP1,2]) to be the E-orthogonal complement of the eigen-
functions in HY, from the point spectrum of L. It is seen that the eigenfunc-
tions of L in Hj, are g]j-[ = {4, *ir;1;} with eigenvalues +ix; for the cusp
forms ;. Since H is invariant under U(t), U(¢) is also unitary on H. The
subspaces Dy = D/ or D satisfy the following conditions:

(2.1) U#)D_CD_, Vt<0, and U(t)DyC Dy, Vt>D0;

(2.2) NU®D- = {0} = UMD

t<0 >0
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(2.3) cl[U U(t)D_] —H= cl[U U(t)DJr} .

>0 <0
Note that DY L D” but D/ and D’ are not orthogonal to each other.
We call this the continuous(-time) Lax—Phillips (automorphic) scattering
system.

3. The discrete-time Lax—Phillips scattering system. Recall that
L is the infinitesimal generator of the one-parameter group {U(t)}icr of
unitary operators acting on H, that is, L = lim;|o(U(t) — I)/t. Then the
Cayley transform V = (I + L)(I — L)~! is a unitary operator on H ([LP3,
Chap.II, §3]). Moreover it can be shown that the same subspace D_ (or
D) of the continuous Lax-Phillips scattering system (2.1)-(2.3) will be
incoming (or outgoing) for V' ([LP3, Lemma 3.2]) in the following sense:

(3.1) V*D_cD_, VYn<0, and V"D, C D,, Vn >0

(3.2) (V"D ={0} =) V"Dy;

n<0 n>0
(3.3) Cl|:U V”D_] —H= CI[U V”DJ.
n>0 n<0

We call this quadruple (V, H, D_, D) the discrete(-time) Laz—Phillips (au-
tomorphic) scattering system.

In the case of the automorphic wave equation on the fundamental domain
T = SL2(Z)\$ of §1, dim(D, &V Dy ) = dim(D_oV~1D_) = #{cusps} = 1.
In this case we have the following discrete incoming and outgoing represen-
tations.

First let

2 = (~00,00) = {u = Sl 3 [unl? < 00}

Here (), is the vector in 2 that has a € C in the nth place and zeros
elsewhere. Thus {(1),, }necz constitutes an orthonormal basis of £2. The inner

product of £2 is given by (u,v)p = 350w,y for u = 39 (u,),
and v = ;?io_ oo(Un)n. There exist unitary discrete incoming and outgoing

representations ([LP3, Theorem 1.1, pp. 38, 40])
W_: H — (*(—00,00) and Wy: H — (*(—00,00)
such that
P_(D_) ={*(—oc0,~1) =: {2 and W, (Dy)=¢*(0,00) =: (2.

Furthermore, in these representations V is transformed into the bilateral
shift o on £2, that is, W_V =oW¥_ and ¥, V =oW, . Here for u = 3.7 (up)n

n=-—o00o
€ 62, ou = ff,m(un—l)N‘
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The (discrete) scattering operator Sy: £> — (% is defined to be S; =
WJFW:l; it is unitary.

To define the discrete scattering matrix, we introduce the Fourier trans-
form (for the discrete case) Fy: ¢2 — L?(T) defined by

[o.¢]
= 3w, zeT={x]s =1},

n=—oo

for u = 3.9 (uy), € £%2. Here L*(T) is the Hilbert space of square inte-

n=-—oo
grable functions on the unit circle T equipped with the inner product

2

(F9)1m) = 5= | F()gle®) db §z—1f =Y 1
0

n=—oo

for f(z) =300 o fu2™ g(2) =D 00 gnz", z € T. Note that {z"}32__,
z € T, is an orthonormal basis of L?(T). The operator F, is unitary. Then
Sq = ]-'de]-'d_lz L?*(T) — L*(T) is a unitary operator, which we call the
(discrete) scattering matriz.

Now set Sq(1)g = Y.0°° _(tn)n- Define a complex-valued function Sy(2)

by Sa(z) = FalSa(1)o](2) = D02 oo tn2™.

We collect some known facts in the following lemma with proof.

LEMMA 3.1.

(i) The discrete scattering operator Sq commutes with o™, that is, o™ Sy
= Sqo”, for all n € Z.
(ii) For Fylu] € L*(T), u € £2, we have (SgF[u])(z) = Sq(2) - Falu](2).
(iii) The following are equivalent: (a) D_ 1 Dy; (b) Sg¢%2 C £?; and
(¢) tn =0 forn > 1, that is, Sg(z) = 3.0 tn2™.

Proof. (i) Since oW, =¥,V and o¥_ =¥_V, we get 0S40 ' = S,;. The
assertion follows by using this recursively.
(ii) Write u = S5 _ (uy,),. Since Fylo™u](z) = 2" Fylu](z) for all n €

n=—oo

Z, we have, by using (i),

(SuFalu)(2) = FlSan2) = Fafsa( 3 wa)n)] 2

n=—oo

= Fafsu( 3" o (o) 2

= fd|: Z unO’nSd(l)():| (Z) = Z Unznfd[sd(l)o](z)

n=—oo n=—oo

= Fa[Sa(1)o](2) - Falu](2) = Sa(2) - Falu](2).
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(iii) Since ¥y is unitary, if D_ L D, then
Sgl? = S;w (D) =w, 0w (D_)=w,(D_) C ¥ (D))"

from which (a)=(b) follows. If Sg¢2 C ¢% then ¥, (D_) = EQ_ C 52_ =
[, (Dy)]*. Thus (b)=(a). (b)<(c) follows from (ii). m

By Lemma 3.1(ii), we also write Sy(z) for the discrete scattering matrix
with a slight notation abuse.

Suppose that the discrete scattering matrix decomposes as Sy(z) =
Sa1(2)Sq0(2), where Sgi(2) (j = 0,1) are unitary. Then the discrete scat-
tering operator has the corresponding decomposition S; = S41540 with
Sqj ( = 0,1) unitary. Let us call Sqgo (or Suo(z)) causal if Sgol* C (*.

For causal Sy, let g = (2 © Sgof? and K = W;llCd.
0

If Sqo is causal, then Syo is written as Sgo(2) = >, __ . sn2™ by the
same argument of Lemma 3.1(iii) and its proof. Set 83 = >.%~1_ (s,),, and

04 = so. Thus Sqo(1)o = B4 @ (d4)o- Let P be the orthogonal projection of
22 onto 2.

LEMMA 3.2. Let
N

Xy = cl span{(Pp2 0)"Ba; n > 0} := CI{Z an(Pp )" Ba; an € C, N < oo}.
n=0
Then for causal Sgo, we have
Ka = Pp Sawpli = X,

Proof. We have Kq® Sqol?> @ Ei = (2. So, since Sy is unitary, Sd_ollCd &)
2 @Sd_olﬁi = Sd_olﬂ = (2, from which we see Sd_ollCd@SCE)léi = Ki. Therefore
Kq @ Ki = Sd0£2+7 which proves the first equality.

On the other hand,

Pp Sqol%. = {Pzzsdo i@(an)n} <f0f i@(an)n € gi)
=0 n=0

Pez SdOZ OénU 1)0}

n=0

=1
{Pg i ano"Sqo(1 } (Lemma 3.1(i))
{

Z (P2 0)" P2 Sap(1 )}

(since Pp 0" = (Ppo)"Pp, ¥Yn > 0)
C cl span{(Pp 0)"B4; n > 0} = Ay.



108 Y. Uetake

We also see that span{(Pp 0)"84; n > 0} C PgS’dOEi. Since Pp Sdofi =
02 & Syol? is closed, we have X; C Py Sdoﬁi by taking closure. Thus X, =
Pp Sdgﬂi. This proves the second equality. m

THEOREM 3.3. There exist a bounded operator Ag: K — K, bg,cq € K
and dg € C such that Sy(2) = ((2I — Ag)"1bg, ca) i + dg for |2| > 1. Here
(-, )k s the restriction of the inner product on H to K. The function Sy(z)
is holomorphic in |z| > 1.

Proof. Note that Xy = Ky is Py o-invariant by construction. Thus we
can define Ay: Kg — Kg by Ugx = Pp2 ox. Set 74 = Pi,(1)-1. Since g =

Z@n_foo( n)n € Kq, we have, for n < —1,
Sn = ((Pr o) "By, (1) 1) = (Pic, (P o) "™ 84, (1) 1)
= ((Pe o)~ "5y, P, (1) 1)z = (" Ba,va)x,

((-,)x, is the restriction of (-,-)s,2 to Kg). Since 24 is obviously a contrac-
tion, we see that

0 -1
Sa(z)= > sai"= > (2 ", " B, va) i, + 8

= <(ZI - Q’ld)ilﬂth 7d>/€d + 5d

for |z| > 1 and hence that S;(z) is holomorphic in |z| > 1. Since ¥, | : K —
K4 is unitary, the weak resolvent form in the theorem can be obtained by
setting Ag = (U4 |k) AW |, ba = (Pi|r) ' Ba ca = (Ps|x) 'ya and
dg = d4. This completes the proof. m

4. The continuous-time Lax—Phillips scattering system. We now
recall the continuous incoming and outgoing translation representations for
continuous(-time) Lax—Phillips scattering systems. Let L?(R) be the Hilbert
space of square integrable complex-valued functions on R with the inner
product (f,g)r2®) = " f(T)g(r)dr for f,g € L*(R). For f € L*(R), we
define the Fourier transform (for the continuous case) F.: L*(R) — L?(iR)
by
oo

S eTf(r)dr, s€iR, i=+v—1.

Here L2(iR) is the Hilbert space of square integrable complex-valued func-
tions of iR with the inner product (F,G)2(r) = i F(s)G(s)ds =

200

(= F(=i)G G(—i€) d¢ for F,G € L?(iR). The operator F, is unitary with
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respect to these inner products and its inverse is given by
1 100 1 0
FAF)(r) = e T F(s)ds = — | €S F(—if) dE.
S = o § TG s = o | R (i) de
Recall that L?(T) is the Hilbert space of square integrable functions on
T (see §3). Define the Cayley transform C: L?(iR) — L?(T) by

f(s) Qﬁf(z_l).

z+1 z+1
Then C is unitary. Its inverse is given by

1605 (1)

Now we define the continuous incoming spectral representation &_: H
— L2(iR) for the continuous Lax-Phillips scattering system by &_ =
C~1F,¥_. The continuous outgoing spectral representation @ : H — L?(iR)
is defined by @, = C~!F,¥,. The continuous incoming and outgoing trans-
lation representations 7_: H — L?*(R) and 7,: H — L*(R) are defined
respectively by 7. = F'®_ and T, = F. 1o,

We recall that H? C L?(T) is the Hardy space (p = 2) with the orthonor-
mal basis {2"}%° . Let H2 be its orthogonal complement (the conjugate
Hardy space) in L?(T) with the orthonormal basis {2"},1 We see that

n|—1
HEBZ”S& for n < 0,
AL+ )

n Ct (1 + S)n

VAR s
Now define a unitary operator G: 2 — L?(R) by G = F.'C~'F;. Then
we see that G(¢2) = L*(R_) and G(¢2) = L*(Ry). Since 7_ = G¥_ and
W_(D_) = (2, we see that 7_(D_) = L*(R_). Similarly, we have T, (D) =
L*(Ry).

For the incoming representations, we have the following commutative
diagram:

¢! , -

L*F) D H =H 72 L*(T) —— L2(iR) —— L2*(R)

_aljar
Aol 4 e el
w_ -1 ~1
*F) > H=H e T2y L 26R) T LA(R)
Here all the maps are unitary. By replacing ¥_ by ¥, , we get a commutative
diagram for the outgoing representations. From this we have similarities

between generators L ~ s ~ —d’/dr. Here ~ means that two operators are
similar, and d‘/dr is the left L?-derivative. Thus we also have similarities

oo
H?> 2

for n > 0.

v Fa
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between one-parameter groups U(t) = e ~ e!* ~ T(t), where [T(t) f](7) =
f(r—1t), f € L?(R), for each of the incoming and outgoing representations.
We therefore have 7_U(t) = T'(t)7- and T U (t) = T'(t)7+.

The (continuous) scattering operator S.: L?(R) — L?(R) is defined to
be S, = 7,7 . It is obviously unitary. Now the operator S.: L%(iR) —
L?(iR) is defined to be S, = F.S.F.!. Since F, is unitary with respect
to the above inner products, S, is also unitary. From the definition we see
that S, = C~1S;C. Thus we can check that its action is multiplication by
the complex-valued function Se(s) = Sy(F2£), s € iR. We call S.(s) the
(continuous) scattering matriz. Thus we also see that the action of S, is
realized as a convolution.

Summarizing all the incoming and outgoing representations, we have the
following commutative diagram:

H L e Toop2m S [2(R) L2(R)
I Sdl Sdl Scl Se

— —1
H 2o T L par) . 2R

—1
Fe
e

Here all the maps are unitary.

Suppose that the scattering matrix decomposes as S¢(s) = S¢1(5)Seo(s),
where S;j(s) (j = 0,1) are unitary. Then equivalently S. = S¢S, with
Se;j (4 =0,1) unitary. Let us say Seo is causal if SqoL?(R_) C L?*(R_). This
is equivalent to Syf? C (2 for Syg = G 1S.0G.

For the above S, let K. = L?(R_) © S;oL?(R_). Note that TJr_lICC =
K (=¥, 'Ky), defined in §3.

Let Px be the orthogonal projection of H onto K. Define the Laz—
Phillips semigroup {Z(t)}4>0 by Z(t) = PrU(t)|x for t > 0, and let A,
be its infinitesimal generator; that is, Ack = limy ot~ (PxU(t) — I)k with
dom(A.) C K consisting of those k& € K for which the above limit exists.
Note that A, = PxL|x and dom(A.) = dom(L|x) = dom(L) N K. Since
Z(t) is strongly continuous (because U (t) is), dom(A.) is dense in K (see
e.g. [LP3, App. 1]).

Note that if S;; = 1 and S,9 = S, itself is causal then D_ 1 D, and
K =Ho (D_- @ Dy) by Lemma 3.1(iii), and {Z(t)}+>0 coincides with the
original Lax—Phillips semigroup.

Now we go back to the continuous Lax—Phillips automorphic scattering
system for SLg(Z) described in §2. If Dy = D/, then the scattering matrix
is

Su(s) = _<s - 1/2>2 P(1/2)I(s)0(25) s —1/2 £(25)
) s+1/2) T(s+1/2)C(2s+1)  s+1/2 &(=2s)’

where £(s) = £(1 — s) = 4s(s — 1)n*/2I'(s/2)((s). In [LP1] it is denoted
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by 8”(z) = S.(iz). £(s) is an entire function, and its zeros are non-trivial
zeros of the Riemann zeta-function ((s). So £(2s)/&(—2s) has non-real poles
in —1/2 < Rs < 0. The Riemann hypothesis is equivalent to saying that all
the poles (or zeros) of £(2s)/&(—2s) lie on Rs = —1/4 (or 1/4). The case of
Dy = D!, will be treated in §5.

It is easy to see that K" in [LP1] is given by 7, *(L}(R_) © S.L*(R_))
since S, itself is causal. The corresponding Z(t) and A. are denoted by
Z"(t) and B” respectively in [LP1]. It has been shown in [LP1, Th. 6.17]
that (sI — B")~! is meromorphic in the whole complex plane C.

Throughout the rest of this paper, let

1 €(2s)
(=2s)"°
For this Seo, let K. = L2(R_) © SoL*(R_) and K = 7 'K,.
For Ay: K — K obtained in Theorem 3.3, we have the following lemma.

S0 = f;

LEMMA 4.1.

(i) (2I — Agq)~! is meromorphic in CU {oco} \ {—1}.

(i) (2I — Ag)~" has a pole of order m(zo) at zo if and only if Sy(2)
has a pole of order m(zy) at z.

(iii) o(Aq) \ {—1} consists only of the poles of the resolvent (thus the
eigenvalues) of Aq. The closure of the set of finite linear combina-
tions of generalized eigenvectors (i.e., the vectors from the subspaces
Ker (20l — Ag)™=0) with aforementioned poles 20) is K.

Proof. Recall the Hadamard product formula (e.g. [Pat, p. 34])

- )0-2)

n=0
the product being absolutely convergent for all s € C. Here 9,,0 < o, < 1,
Son>0,n=0,1,2,..., are the non-trivial zeros counted with multiplicities
of the Riemann zeta-function in {s; s > 0}. Hence

25 = (1—2s/0,)(1 —25/3,
Seofs) = 56((—22) B ,IIO El + 2s§gn§§1 + 28%71;'
However, it is easy to check that if A = g,,/2 then
(1—5/A)(1—s/X) _lela—z [ala-=z
(T+s/A)(1+s/N) al—-az al-—az

)

where
2 1—-1 1-—2 1—)\
fry pry a:—
7141 142 1+

s €{z€C; |z| < 1}.
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Since £(5) = £(s), Seo(5)Sxo(s) = 1 for all s € iR. Thus Syg(z~') € H*®
and is inner. Since the decomposition of an inner function into Blaschke and
singular parts is unique,

-1
1y 27 —1\ 1—2z
Sao(z )—3c0<—z_1+1> —5c0(1+z)

consists only of the Blaschke product.

Kq =% © Syl? is isometrically isomorphic to My := H? © Sy(2~ 1) H?
via u — 271 Fy[u](z71). Tt is known that My C L?(T) is Py2z~'-invariant
(e.g. Radjavi and Rosenthal [RaRo], Nikol’skii [N]). Let ag := P2zt as, =
PMdz_l\Md. Then we have Ay ~ g = Py, 0|k, ~ 4. (A4 is defined in the
proof of Theorem 3.3.)

It is known that zy € o(ag) if and only if Zy is a zero of order myg
of the Blaschke product Sgo(z~1), and in that case dim Ker(zg — ag)™ =
dim span{(1 — 2z9z)7"; 1 < v < mg} = mg, which is the algebraic multiplic-
ity and the Riesz index (e.g. Theorem 3.14 of [RaRo] and its proof). The
operator «y is bounded and o(ay) accumulates at —1. So it is easy to see
that (z — ag) ™! is meromorphic in CU {oo} \ {—1}, and that z( is a pole of
order mq of (z — ag)~! if and only if zg is a pole of order mg of Sy(2). It is
known that the generalized eigenvectors of oy span My densely if a singular
part does not exist (see Nikol’skil [N, p.83]). Thus the proof is complete. m

From the above proof, we see that the dimension of K” in [LP1] is 1
greater than that of our K. The main result of this section is the following
theorem.

THEOREM 4.2.

(i) (sI — A.)~! is meromorphic in the whole complex plane C.
(i) (sI—A:)~! has a pole of order m(sg) at sq if and only if Seo(s) has
a pole of order m(sp) at sg.
(iii) The closure of the set of finite linear combinations of generalized
eigenvectors (i.e., the vectors from Ker (soI — A.)™0) with afore-
mentioned poles sy) is K.

From (i) of the above theorem, we also see that (s —B"”)~! is meromor-
phic in C since B” acts on a space of dimension only 1 greater than that
of K. To prove this theorem, we need (i) of the following lemma. (ii) will be
used in §6.

LEMMA 4.3.

(i) (sI — A.)~! has a pole of order m at s = (20 — 1)/(20 + 1) # oo if
and only if (zI — Aq)~! has a pole of order m at zg # —1.
(ii) 0.(Aq) = {—1}, that is, —1 is in the continuous spectrum of Aq.
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Proof. Recall that V = (I + L)(I — L)~!. From this V(I — L) =T + L
on dom(L), and so
PKV|K—PKVL|KIIK+PKL’K on dOIIl(L|K).
Let L; be the infinitesimal generator of T(t). Recall L; = —d/dr. Let
V = (I+Ly)(I — L1)~ !, which is a unitary operator on L?(R) since L1 ~ L.
First note that VL?(Ry) C L*(R4) [this follows from V ~ o, L*(R}) = ¢2

(= denotes isometric isomorphism) and o¢2 C %] and K. C L*(R_). Hence
we have

P[(:CVL]_]C - PK:CVPLQ(R_)le + P’CCVPLZ(RJ'_)L].k: == P]CCVPLQ(R_)LllC
for k € dom(Lq).

Note that K. = GKgq, Kq = €2 © Sqol? for Sq9 = G 'S4G and G =
FAC Fy: 2 — L*(R). However, Kg = Pp Sgof3 (Lemma 3.2). If y =
Py x for some z € £? then Gy=Pgp2 Gr=Pra2g_)gx since G is unitary. Thus

GPp Sqol = Pg2 G(G'S0G) 03 = Prar_)ScoL*(Ry).

Hence we have K, = PLz(Ri)ScoLQ(RJF).

So any f € K. can be written as f = Prag_)Scog for some g € L2(Ry).
Since T'(t) and S carry over to multiplication by e’ and S.o(s) respectively
in the Fourier transforms, they commute: T'(t)S.0g9 = Se0T'(t)g. So, since
T(t)g € L*(Ry) for t > 0, we have

PL2(R,)T(t)PL2(R,)SCOQ = PLQ(Ri)T(t)SC()g = PL2(R7)560T<75)9 e K.
Hence K. is Pr2g_yT(t)-invariant for ¢ > 0.

Therefore, since K. is closed, for k € dom(L1|,) we have

PLQ(R_)le = ltingLQ(R_)% (T(t)k‘ - k?) e K..
Therefore
Pc,VPx,Lik = Pc,VPc, Prag_yLik + Pe,VPc, Pra.,) Lik

== P’CCVPICCPLQ(R_)le = P’CCVPLQ(R_)le = P]CCVle’.

Going back to L, this means that PxVLk= PgV PgLk for k€ dom(L|k).
Therefore we have PxVL|x = PxV|xPxL|k. Since V ~ ¢ and K = Ky,
we have Ay = PxV|k. Consequently, Ag— AgA. = I+ A, on dom(A,) C K.

Since Z(t) is a contraction for all ¢ > 0, the spectrum o(A.) of the
generator A. is contained in the left half-plane (see e.g. [LP3, App. 1]). Thus
1 ¢ o(A.). Since for z = (1+5s)/(1 —s),

1_L1-s -1 1 -1
(2l —Ag) " = 5 (I—A)(sI —A) " = o (I —A)(sI—A) 7,

l-s 1 _ 27 (20 + 1) [(= — ZO()zJF—(ZZS)Z 1)]’”‘17
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where zg = (1+50)/(1— s0), and I — A, has a bounded inverse (I +
Ag) on K, it follows that (2I — Ag)~! has a pole of order m at zyg =
(14 s0)/(1 —s09) # oo, —1 if and only if (sI — A.)~! has a pole of order
m at so # 1,00. Note that z = oo (resp. s = 1) is not a singular point
of the resolvent of A; (resp. A.). This completes the proof of (i). Since
I+ Ay =2(I—A.)"!, we see that I + Ay is one-to-one, cl[Im(I + Ay)] = K
but Im(7 + Ay) # K. Thus —1 is in the continuous spectrum of A;. m

Proof of Theorem 4.2. (i) follows from Lemma 4.1(i) and Lemma 4.3(i)
and its proof. Given that (2I — A4)~! is meromorphic in C U {oo} \ {~1},
it can be seen that the equality Sy(z) = ((2I — Ag) 1ba, ca) i + dg for
|z| > 1 (Theorem 3.3) extends uniquely to CU{oo}\{—1} as a meromorphic
function. It is clear that Sco(s) has a pole of order m at sg € C if and only
if Sqo(z) has a pole of order m at zgp = (1 + sg)/(1 — so). Thus (ii) follows
from Lemma 4.1(ii) and Lemma 4.3(i).

By Theorem 4.2(i), so € o(A.) if and only if s¢ is a pole of (sI — A.)~L.
So each sy € o(A.) is isolated. Since A. ~ —Pg, d’/dr|x,, it is easy to
see that A, is a closed operator. So we can use the theorem of Gohberg,
Goldberg and Kaashoek [GGK, Th. XV.2.1] (see also [U3, Th. 3.1]) to get
A. = Diag(Ac(s0), Ae(7)), where A.(sp) (bounded) is the Riesz projection
(2mi)~ 1§ (sI — Ac)~!ds, where the path of integration I" is a small circle
about sp containing no other spectral point of A., and o(A.(7)) = 7 =
C\ {so}. Let Ag(z0) = [I + Ac(s0)][I — Ac(s0)]7!. Note that

2
Z()I - Ad =
1-— S0
Since [sol — Ac(80)][I — Ac(s0)]™F = [I — Ac(s0)] Hsol — Ac(so)], we see
that [20] — Agq(z0)]™x = 0 if and only if [sof — A¢(s0)]™x = 0, m > 0. This
together with Lemma 4.1(iii) proves (iii). m

(SOI - Ac)(I - Ac)_l’ 1 =50 7£ 0.

The operator A, = PxL|k has the following properties, where Ik stands
for the identity operator on K.

THEOREM 4.4.

(i) The resolvent of —2A. is meromorphic in C. So the spectrum of
—2A. consists of eigenvalues of finite algebraic multiplicities.

(ii) so is a non-trivial zero of multiplicity mo of ((s) if and only if s is
an eigenvalue of algebraic multiplicity mo of —2A.. The set of the
generalized eigenvectors corresponding to each eigenvalue is a basis
of K.

(iii) The spectrum of 2A.+ %IK consists of eigenvalues on the imaginary
axis if and only if the Riemann hypothesis is true.

(iv) The algebraic multiplicity of any eigenvalue of 2A. + %IK is one if
and only if all the non-trivial zeros of ((s) are simple.
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Proof. Sco(s) has non-real poles in {s; —1/2 < Rs < 0} which corre-
spond one-to-one, counted with multiplicities, to the non-trivial zeros of {(s).
The critical line Rs = 1/2 of ((s) corresponds to the line s = —1/4. Hence
assertions (i)—(iv) are immediate consequences of Theorem 4.2(i)—(iii). =

5. An operator model for A, on L?(R_). In [LP2] Lax and Phillips
obtained explicit formulas for translation representations for the continuous
scattering system in §2 with H = H] and Dy = D/.. In this section, us-
ing their representations, we give expressions as explicit as possible for IC.
defined in §4.

Let u(x,y,t) be the solution to the non-Euclidean wave equation with
automorphic initial data f = {f1, fo}:

ug = Lu,  u(0) = f1,  w(0) = fo.
Here f = {f1, f2} is defined on $) with finite G-norm. The solution u(x,y,t)
is periodic in & with period 1 for all y > 0. Thus the zero Fourier coefficient
uO(y,t) = Sl_/2/2 u(x,y,t)dr, 0 < y < oo, satisfies the equation

1
ugg) = yzuz(’,%) + 1 u®  for all y > 0.
The change of variables 7 = logy, v = v(r,t) = u(®/ /¥ transforms the
non-Euclidean wave equation into the classical wave equation vy = vrr.

The initial data goes over into
v(7,0) = e_T/Qfl(O)(eT) and  v(1,0) = 6_7—/2f2(0)(€T),
where
1/2

O =\ file,y)de, 0<y<ooi=12
—1/2

Since v, + v; (resp. vy — v;) is a function of 7 + ¢ (resp. 7 — t), it can be
shown that T_: H! — L%*(R) defined by

5 [07(=7.0) 4 (7.0 = = [0, (0(=7.0)) + u(~7.0)]
- ‘% 0,1 (e) = PR, —oo <7 <ox,
for the initial data f = {f1, fo} is an incoming translation representation.
Here v, (—7,0) = (0,v)(—7,0) = (Ov/0T1)(—7,0). Similarly, for f = {f1, f2},
TS = <5 [on(r0) =l 0)) = 5 [onle A0 (@) AN
for —oo < 7 < oo defines an outgoing translation representation 7' : H. —
L?(R).

T f=
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Given k_ € Ly(R), h = T~'k_ € H! is obtained as follows: Set

go(w) = {y"?6(v),v**¢' (v)}, v = Suw,

where
1 logy 1 o)
o(y) \/5_800 (—o)do ﬂ_lggy (r)dr
Then define

g(w) = > go(yw).

T\l

Lastly project g onto Hp: h = Py g. Then h € H!. Similarly, given k, in
Ly(R), h =T} 'ky € H. is obtained as follows: Set

go(w) = {y"*6(y), —y**¢' ()}, y=Sw,

where
1 logy
P(y) = 7 | ki(r)dr
Then define

g(w) =Y go(yw).
T\l
Lastly project g onto Hy: h = Py, g. Then h € H..

Note that in the last step of inversion of T4 into an element h € H/,
it suffices to project g onto Hy = Hy, not onto H/. See p. 277 of [LP2].
Thanks to this, we do not need any knowledge about the cusp forms v; and
their eigenvalues.

For the above two translation representations 7_: H. — L?(R) and
T, : H. — L%*(R), one can define the scattering operator S.: L?(R) — L*(R)
by S. = T, T-!. The corresponding scattering matrix S.(s) (denoted by
S'(z) = S:(s),s =iz in [LP3]) is given by

__IQ/2)res)c2s)

SC(S) - _F(S + 1/2)C(28 + 1) - 560(5)861(8))
_&(2s) _1/2+s

SCO(S) - g(_28)7 SCI(S) - 1/2 - S.

Note S.1(s) is different from that in §4.

Take e, = e,(7) € L*(R,), n > 0, that span L*(R,) densely; e.g.,
we can choose e, = e,(7) = F. 'C 1 F[(1),] = Gl(1),] = F.IC7M2" €
L?(Ry). Hence by Lemma 3.2, k,, = kn(T) = Praw_yScoen, n > 0, span K.
Note that x, = Przg_)Sccn = PLQ(Ri)T_f_T__lCn = Pr2wr_)T%4 hy, where we
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set ¢, = Sc_llen and h, = T~ '¢,,. Since

1+ s)”
en(7) = .7'—0_1(3_1[2”] = ]-"c_l [ﬁ} for n >0,
ey is a finite linear combination of
£ [ k! ] _ {Tke_T (t>0),
© LA -k 0 (r<0),

0 < k < n. From e,, ¢, is easy to calculate: ¢, (1) = F. 1[Se1(s) ' Felen]]:
Note that

FNSal) ) = 7| 1] = VER(u(n) - 60)

where §(7) is the Dirac function and

eT/? (1 <0)
Using this as an integral kernel, we have
0
(1) = V2 | en(r — 0)w(o) do — V2en(7).

To obtain h, = T"'¢, € H, !, we start with a solution of the wave equa-
tion given by g, (w,t) = y*/%¢,(yet) for

1 oo
Pn(y) 7 _I(S)gycn(f) dr

To make this solution automorphic, we sum over the right cosets I'n,\I" as
in [LP2, p. 186]:

U (w, t) = ugn(w,t)
S y 2 ye!
"o wortarrar) (e taren)

c,d):l m=—00
0<d<c

Hence we have

gn = gn(w) = {gn,l(w)vgn,Q(w)} = {un(w7 0)7 (atun)(wvo)}

and

E(gn,p) E(gn,q)
hn = Prygn = gn — p- q.
n I I B, p) E(q,q)

We recall that p = {1,0}, ¢ = {0,1} span P and E(p,q) = 0. Here

™

1
E(gnvp) = -7 <gn,17 1>L2(§)’ E(p7p) = _Ea

4
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T
E(gn, ) = {gn2: 1123,  Ela,0) = 5

Pulling back &, = Pra@ T4 hn = P Thn € Ke to K C H, we see
that Pxhy, (n > 0) span K.
o get gn 0 (W) = {o\1(v),955(v)}, mote that uy’ (y,?)
{ /12/2 un(z,y,t) dr is obtained as in [LP2, p.187]:

0 1/2 12 =~ E(m) T 1 el
w0 =y o)+ > =0 it e )
m=1 —0o0

Here E is the Euler function, E(m) =}, )= 1. Thus

0) (N _ . 1/2 1/2 1 1
9na) =y *0n(y) + vV E: S GEDEAG <wn%ﬂ4—m>dr

(0) /2 ~1/2 1 !
In,2(y) = Pouly) +yV Z ms X (12 +1)3/2 ¢"<ym2(7°2 + 1)) dr.

BO) = g0 _ E(gn. p) RO E(9n,4) (o).
E(p,p) E(q,q)
Note that p = p(®, ¢ = ¢(¥. Now applying the outgoing representation,
using this h&o), we obtain kn, = Pr2g_)T4hy. This construction is summa-
rized in the following theorem. We recall that d*/dr is the left L2-derivative
(see §4).

THEOREM 5.1. Using the aforementioned hﬁ?), K. c L*(R_) can be ex-
pressed as the closure of the span of

Hn(T)—L[jT( *T/Zh 0)1( ))_eT/Qh(D)Q(eT):| (—OO<TSO), n> 0.

n, n,

The operator —de/dT restricted to K. satisfies all the spectral properties in
Theorems 4.2 and 4.4, which A, satisfies.

Proof. Since K, is Prz2g_)T'(t)-invariant for ¢t > 0, as we saw in the proof
of Lemma 4.3, we infer that
d@

d’ d*
Pe [ —— =P - -
KC( d7'> Ke LQ(R_)< d7'> i dr i

Since this operator is similar to A. on K, the remaining assertions follow
from Theorems 4.2 and 4.4. =

6. Cyclic conditions for weak resolvent decomposition. First we
recall the notion of a cyclic vector for a bounded operator.
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DEFINITION 6.1. Let X be a separable complex Hilbert space. Let A: X
— X be a bounded operator on X and b € X. We say that b is cyclic for A
if X = cl span{A"b; n > 0}.

LEMMA 6.2. For Ag: K — K and by, cq € K as in Theorem 3.3, the
following properties hold;

(i) bg is cyclic for Aq.

(ii) cq is cyclic for AY. Here A} denotes the adjoint operator of Ag.

Proof. (i) 4 is obviously cyclic for 2 (cf. the proof of Theorem 3.3) by
definition. (See Lemma 3.2.) The assertion readily follows from this.

(ii) It suffices to show that ~q is cyclic for 2. Suppose that there exists
af = n—foo(fn)n € Kq C % such that (¢, Q(d va)k, = 0 for all & > 0.
Then, since

(& A vy, = (AGE va)ic, = (AGE, Piey(1) 1)
= (P, A5, (1) 1) e = & (jr1),
we have £ = 0. This completes the proof. m

Recall that V = (I + L1)(I — L1)~! is a unitary operator on L?*(R) for
Ly = —d’/dr. Note that

g = Ppolc, = Pc,olc, ~ Pre@ yVik. = PeVlk. = Fea-
Let B. := G(Ba) = G[Pp2 Sao(1)o] = Pr2m_)Scoeo, where eg = G[(1)o]. Then
since (Pp20)"Pp = Ppo", 0"Sg = Sqo™ and 0"(1)g = (1), for n > 0, we
have
cdﬁc = (PLQ R_ )V) PLQ(R )Scoe() = PLQ( 7)VnSC0€0
= Prag_yScoV"e0 = Prar_yScoen = Pr2r_)Sccn = n.
Set 7. = G[Px,(1)-1] = Px.e—1 and d. = 64 (= dg). (See the proof of
Theorem 3.3.) Here
1 0 (t>0),
ﬁ(1+8)] - {GT/ﬁ (r<0).
Then we see from the proof of Theorem 3.3 that Syo(2) = ((2I—F.q) ™ Be, Ye)

+ dc. Let c: Ko — C be defined by cz = (x,7.)2(r), and until the end of
this paper let

ca =0l = e = 5|

A:ch7 b:ﬁm d:(sc

Then Sy(2) = c(2I — A)~b +d.

Now let Sg2(2) = 1/(z — 20). Then it is easy to check that Sg2(2)Sa0(2)
is expressed as a weak resolvent of an augmented operator A,,, of A as
follows:

SdZ(Z)SdO(Z) = Caug(ZI - Aaug)_lbaug7
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where
A 0 b
Aaug = |: :|7 baug = |: :|7 Caug = [O 1]7
c 2 d
Xaug =K. @C, Aaug: Xaug - Xaugy baug € Xauga Caug * Xaug — C.

This construction has a dynamical system theoretic interpretation, namely
a cascade connection of two dynamical systems (see e.g. [U3]).

Note that the zeros of the Riemann zeta-function on the critical line
s = 1/2 correspond to the zeros of the discrete scattering matrix

£(2s) . 1+4s B
£(—25) et on C,=1z 2= 1_8,§Rs—1/4 ,
z+

and that the zeros of ((s) in the critical strip 0 < s < 1 correspond to the
zeros of Sgo(z) in

S.={z;z=(14+s)/(1—35),0<Rs < 1/2}.

Sio(z) =

Thus the Riemann hypothesis is true if and only if Sjo(z) has no zero in
S:\ C..

We can restate the Riemann hypothesis in terms of cyclicity as follows.

THEOREM 6.3.

(i) For a given parameter zy € S; \ C., construct (Aaug, baug) as above.
Then zy is not a zero of Sqo(2) if and only if bayg is cyclic for Aaug.

(ii) The Riemann hypothesis is true if and only if for each zy € S, \ C,
baug s cyclic for Aayg.

Proof. First note that 0(Aaug) = 0p(Aaug) U{—1} and op(Aaug) = {20} U
0p(A). Here 0,(Auug) consists of the poles of (21 — Aaug) ™!, and —1 is in
the continuous spectrum of A, arising from the continuous spectrum of
A ~ Ay (see Lemma 4.3(ii)).

Note that for a fixed zg € S, \ C», zero-pole cancellation between Syo(z)
and Sy2(z) may occur only at zg by construction. So it is easily seen that z
is not a zero of Syo(z) if and only if zero-pole cancellation does not occur at
any spectral point z; in o,(A) U {20}.

Now it is known [U3, Theorem 4.8, Lemmas 3.3 and 3.7] that such zero-
pole cancellation at z; does not occur if and only if bayg is cyclic for Ay and

* [0 when restricted to the generalized eigenspace

S *
¢ 1

ang = | is cyclic for Augs
corresponding to the spectrum point z1. In [U3] the notions of local approxi-
mate controllability and observability at z; are used. Since our operators are
all bounded, all subtle conditions to apply Theorem 4.8 in [U3] are satisfied.
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Since v, (= ¢*) is cyclic for A* by Lemma 6.2, and

[ I T[]

0 z) L1] 1)

[A* c*]kH[O] B [A*kvc—i—zoA*(k_l)v +---+z’5’%}
20

—k+1
0 1 b+

, k=0,

we see that caug is also cyclic for A%, independently of 2.

aug
Suppose zp is not a zero of Sgo(z). Then zero-pole cancellation does not
occur at any spectral point 21 € op(Aaug). If bayg fails to be cyclic for Ay,

then one can decompose (Aaug, bayg) into

(15 =l o))
0 Fpl L0])
where by is cyclic for F11. Then o(Fr2) N op(Aang) = 0 by Theorem 4.8 in

[U3]. Thus o(Fp2) = {—1}. (Note that —1 ¢ S, \ C;.) It is easily seen that
for k > 0,

AE b :[A Or[b]:[ AFp |
augTats c 20 d cAR 1+ zoc AR 20+ - zg_lcb + zé‘“‘d

Hence, as b is cyclic for A by Lemma 6.2, the dimension of the space on
which Fyy acts is one. We thus see that Fyy = —1 and —1 € Up(Aaug), which
is a contradiction. Therefore bayg is cyclic for Auyg.

The converse can be shown similarly, again using Theorem 4.8 in [U3].
This completes the proof of (i). Assertion (ii) readily follows from (i). m

Now, cA™, n > 0, in Aaugbaug can be expressed as follows: Recall

FB. = A" = kp,n > 0. Hence, since x, € K.,
cA" = (kn,Ye) 12R) = (Fns P.e—1)12(R) = (Kny €-1)L2(R)
(= (T4 him, T 1) 12(g) = (Prchn, Ty e1) pag))-
The constant d is calculated from
d = 0c = (Sao(1)o, (1)o)ez = (Scoeo, €0) r2(r) = (T+ho, €0) 12(w)
(= (ho, T{ "e0) 12(3))

where T’y hg is given by the right-hand side of the expression (n = 0) with
7 > 0in Theorem 5.1, and ey = F, }[1/(v/7(1 — s))] = e~ 7/{/7 is supported
on R+.
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