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Abstract. This article is concerned with a boundary value problem on the half-line
for nonlinear two-dimensional delay differential systems. By the use of the Schauder–
Tikhonov theorem, a result on the existence of solutions is obtained. Also, via the Banach
contraction principle, another result concerning the existence and uniqueness of solutions
is established. Moreover, these results are applied to the special case of ordinary differential
systems and to a certain class of delay differential systems. Furthermore, applications to
differential systems of Emden–Fowler type and to linear differential systems are presented,
and two specific examples are given.

1. Introduction and statement of the main results. In the last
few years, there is a great activity in studying the problem of the existence
of solutions of boundary value problems on the half-line for second order
nonlinear delay (and, in particular, ordinary) differential equations (see, for
example, [7, 23, 25, 26, 30, 36, 37, 39, 40]). A closely related problem is
that of the existence of solutions with prescribed asymptotic behavior for
delay (and, especially, ordinary) differential equations. Among numerous
articles dealing with this problem, we refer to [19, 20, 28, 29, 31, 32] and
the references cited therein.

On the other hand, several articles have appeared in the literature, which
are concerned with the asymptotic behavior of solutions of nonlinear ordi-
nary differential systems. See, for example, [18, 21, 22, 38]; in particular, see
the monograph by Mirzov [27] and the references therein.

For the basic theory of delay differential equations and systems, we refer
to the books by Diekmann et al. [11], Driver [12], Hale [15], and Hale and
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Verduyn Lunel [16]. In particular, for infinite interval problems (including
boundary value problems on the half-line), the reader is referred to the book
by Agarwal and O’Regan [1].

This paper is essentially motivated by the recent work by Mavridis, the
present author and Tsamatos [25] (the paper by the same authors [26] as well
as the paper by Agarwal, the present author and Tsamatos [2] are closely
related). Here, we deal with the existence of solutions and the existence and
uniqueness of solutions of a boundary value problem on the half-line for
nonlinear two-dimensional delay differential systems. Our results include,
as special cases, those obtained in [25] for second order nonlinear delay
differential equations.

For any interval J of the real line and any subset Ω of R, we denote
by C(J,Ω) the set of all continuous functions defined on J and having
values in Ω. Moreover, r will be a nonnegative real number. Furthermore,
if t ∈ [0,∞) and χ is a continuous real-valued function defined at least on
[t−r, t], the notation χt will be used for the function in C([−r, 0],R) defined
as follows:

χt(τ) = χ(t+ τ) for −r ≤ τ ≤ 0.

Notice that C([−r, 0],R) is a Banach space with the sup-norm ‖·‖:

‖ω‖ = max
−r≤τ≤0

|ω(τ)| for ω ∈ C([−r, 0],R).

Consider the nonlinear two-dimensional delay differential system

(1.1) x′(t) = g(t, y(t)), y′(t) = −f(t, xt, y(t)),

where g is a continuous real-valued function on [0,∞) × R, and f is a

continuous real-valued function defined on [0,∞) × C([−r, 0],R) × R.
Our interest concentrates on global solutions of (1.1), i.e., on solutions

on the whole interval [0,∞). By a solution on [0,∞) of (1.1), we mean two
functions x in C([−r,∞),R) and y in C([0,∞),R), which are continuously
differentiable on [0,∞) and satisfy (1.1) for all t ≥ 0.

With (1.1), we associate an initial condition of the form

(1.2) x0 = φ

or, equivalently,

(1.2′) x(t) = φ(t) for −r ≤ t ≤ 0,

where φ in C([−r, 0],R) is given. In what follows, it will be assumed that

φ(0) = 0.

Also, along with (1.1), we impose a condition of the form

(1.3) lim
t→∞

y(t) = ξ,

where ξ is a given real number.
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Equations (1.1)–(1.3) constitute a boundary value problem (BVP , for
short) on the half-line.

A useful integral representation of the BVP (1.1)−(1.3) is given by
Proposition 1.1 below, which will be used in proving the main results of the
paper.

Proposition 1.1. Let x ∈ C([−r,∞),R) and y ∈ C([0,∞),R). Then

(x, y) is a solution of the BVP (1.1)–(1.3) if and only if

(1.4) x(t) =





φ(t) for −r ≤ t ≤ 0,
t\
0

g(s, y(s)) ds for t ≥ 0,

and

(1.5) y(t) = ξ +

∞\
t

f(s, xs, y(s)) ds for t ≥ 0.

Proof. Suppose, first, that (x, y) satisfies (1.4) and (1.5). Then we can
easily see that (x, y) is a solution of (1.1)–(1.3).

Conversely, assume that (x, y) is a solution of (1.1)–(1.3). In view of
(1.2′), we have x(0) = φ(0) = 0. Hence, the first equation of (1.1) gives

x(t) =

t\
0

g(s, y(s)) ds for t ≥ 0,

which together with (1.2′) guarantees that (1.4) is satisfied. Furthermore,
from the second equation of (1.1) it follows that

y(u) − y(t) = −

u\
t

f(s, xs, y(s))ds for u ≥ t ≥ 0,

and consequently, by (1.3),

ξ − y(t) = −

∞\
t

f(s, xs, y(s)) ds for t ≥ 0,

i.e., (1.5) holds true.

The proof is complete.

Our main results are Theorems 1.2 and 1.3 below. Theorem 1.2 provides
sufficient conditions for the BVP (1.1)–(1.3) to have at least one solution,
while Theorem 1.3 establishes sufficient conditions for the existence of a
unique solution.

Theorem 1.2. Assume that

(1.6) |g(t, z)| ≤ G(t, |z|) for all (t, z) ∈ [0,∞) × R,
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where G is a nonnegative continuous real-valued function on [0,∞)× [0,∞)
which satisfies the following condition:

(A) For each t ≥ 0, the function G(t, ·) is increasing on [0,∞).

Moreover , assume that

(1.7) |f(t, ω, z)| ≤ F (t, |ω|, |z|)

for all (t, ω, z) ∈ [0,∞) × C([−r, 0],R) × R,

where F is a nonnegative real-valued function defined on [0,∞)×C([−r, 0],
[0,∞))× [0,∞), which satisfies the Continuity Condition: F (t, |χt|, |ψ(t)|) is

continuous with respect to t in [0,∞) for any given functions χ in

C([−r,∞),R) and ψ in C([0,∞),R). Suppose that :

(H) For each t ≥ 0, the function F (t, ·, ·) is increasing on C([−r, 0], [0,∞))
×[0,∞) in the sense that F (t, ω1, z1) ≤ F (t, ω2, z2) for any ω1 , ω2 in

C([−r, 0], [0,∞)) with ω1 ≤ ω2 (i.e., ω1(τ) ≤ ω2(τ) for −r ≤ τ ≤ 0)
and any z1, z2 in [0,∞) with z1 ≤ z2.

Let there exist a real number c with c > |ξ| so that

(1.8)

∞\
0

F (t, ηt, c)dt ≤ c− |ξ|,

where the function η in C([−r,∞), [0,∞)) depends on φ, c, G and is defined

by

(1.9) η(t) =





|φ(t)| for −r ≤ t ≤ 0,
t\
0

G(s, c) ds for t ≥ 0.

Then the BVP (1.1)–(1.3) has at least one solution (x, y) which satisfies

(1.10) −c+ |ξ| + ξ ≤ y(t) ≤ c− |ξ| + ξ for every t ≥ 0;

if

(B) for each t ≥ 0, the function g(t, ·) is increasing on R,

then it also satisfies

(1.11)

t\
0

g(s,−c+ |ξ| + ξ) ds

≤ x(t) ≤

t\
0

g(s, c− |ξ| + ξ) ds for every t ≥ 0.

Theorem 1.3. Let the assumptions of Theorem 1.2 hold. Furthermore,
let the following generalized Lipschitz conditions be satisfied :

(1.12) |g(t, z1)−g(t, z2)| ≤ L(t)|z1− z2| for all (t, z1), (t, z2) in [0,∞)×R
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and

(1.13) |f(t, ω1, z1) − f(t, ω2, z2)| ≤ K(t) max{‖ω1 − ω2‖, |z1 − z2|}

for all (t, ω1, z1), (t, ω2, z2) in [0,∞) × C([−r, 0],R) × R,

where L and K are nonnegative continuous real-valued functions on the

interval [0,∞) such that

(1.14)

∞\
0

K(t) max
{t\

0

L(s) ds, 1
}
dt < 1.

Let there exist a real number c with c > |ξ| so that (1.8) holds, where η is

defined by (1.9). Then the BVP (1.1)–(1.3) has exactly one solution (x, y)
with

(1.15) |y(t)| ≤ c for all t ≥ 0.

This unique solution satisfies (1.10); if condition (B) holds, it also satisfies

(1.11).

2. Proofs of the theorems. To prove Theorem 1.2 we will use the
Schauder–Tikhonov theorem (see [33, 34]).

The Schauder–Tikhonov Theorem. Let µ be a fixed positive con-

tinuous real-valued function on an interval J , and let Y be the set of all

functions y in C(J,R) which satisfy

|y(t)| ≤ µ(t) for all t ∈ J.

Let M be a mapping of Y into itself with the properties:

(i) M is continuous in the sense that , for each y in Y and any se-

quence (yn)n≥1 ⊂ Y , if limn→∞ yn = y uniformly on every compact

subinterval of J , then limn→∞Myn = My uniformly on every such

subinterval ;
(ii) the image set MY is equicontinuous at every point of J .

Then M has at least one fixed point in Y .

Let V be a set of real-valued functions defined on an interval J , and let
t0 ∈ J . The set V is said to be equicontinuous at t0 if, for each ε > 0, there
exists a δ ≡ δ(ε) > 0 such that, for all v in V , |v(t) − v(t0)| < ε for every
t ∈ J with |t− t0| < δ. Also, V is called bounded at t0 if there exists a Θ > 0
such that |v(t0)| ≤ Θ for all functions v in V .

The Schauder–Tikhonov theorem has been stated, in the form presented
above, by Coppel [8; p. 9], under the additional assumption that MY is

bounded at every point of J . But this assumption is not needed. Indeed, as
MY ⊆ Y , it follows that |(My)(t)| ≤ µ(t) for all y in Y and every t ∈ J ,
which implies that MY is always bounded at every point of J . A proof of the
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Schauder–Tikhonov theorem stated above, based on Brouwer’s well-known
fixed point theorem for mappings in Euclidean spaces, can be found in [8;
pp. 9–10].

In order to prove Theorem 1.3, we will make use of the Banach contrac-
tion principle (see Banach [3]; see also Kartsatos [17; p. 27]).

The Banach Contraction Principle. Let E be a Banach space and

Y any nonempty closed subset of E. If M is a contraction of Y into itself ,
then M has exactly one fixed point in Y .

Proof of Theorem 1.2. Let Y be the set of all y in C([0,∞),R) which
satisfy (1.15). For any y in Y, let x ∈ C([−r,∞),R) be defined by (1.4).
(Note that φ(0) = 0.)

Fix y in Y . Then, by (1.15) and assumption (A), we get

G(t, |y(t)|) ≤ G(t, c) for t ≥ 0.

But, in view of hypothesis (1.6),

|g(t, y(t))| ≤ G(t, |y(t)|) for t ≥ 0.

Hence, we have

|g(t, y(t))| ≤ G(t, c) for every t ≥ 0.

Thus, by taking into account the definition of x by (1.4), we obtain, for
t ≥ 0,

|x(t)| ≤
∣∣∣

t\
0

g(s, y(s)) ds
∣∣∣ ≤

t\
0

|g(s, y(s))| ds ≤

t\
0

G(s, c) ds.

So, by (1.9),

|x(t)| ≤ η(t) for every t ≥ −r,

and consequently

|xt| ≤ ηt for all t ≥ 0.

Since y ∈ Y , using assumption (H), we get

F (t, |xt|, |y(t)|) ≤ F (t, ηt, c) for t ≥ 0.

On the other hand, hypothesis (1.7) gives

|f(t, xt, y(t))| ≤ F (t, |xt|, |y(t)|) for t ≥ 0.

Consequently,

(2.1) |f(t, xt, y(t))| ≤ F (t, ηt, c) for all t ≥ 0.

As hypothesis (1.8) implies, in particular, that

(2.2)

∞\
0

F (t, ηt, c) dt <∞,
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by (2.1) we have
∞\
0

|f(t, xt, y(t))| dt <∞,

which guarantees that

(2.3)

∞\
0

f(t, xt, y(t)) dt exists in R.

As (2.3) holds true for any y ∈ Y , the formula

(2.4) (My)(t) = ξ +

∞\
t

f(s, xs, y(s)) ds for t ≥ 0

makes sense for any y in Y , and defines a mapping M of Y into C([0,∞),R).
We first show that M maps Y into itself. Let y ∈ Y . Then, by using (2.1),
from (2.4) we obtain, for t ≥ 0,

|(My)(t) − ξ| ≤

∞\
t

|f(s, xs, y(s))| ds ≤

∞\
0

|f(s, xs, y(s))| ds ≤

∞\
0

F (s, ηs, c) ds,

and consequently, in view of (1.8),

(2.5) |(My)(t) − ξ| ≤ c− |ξ| for all t ≥ 0,

which obviously gives

|(My)(t)| ≤ c for every t ≥ 0,

so indeed My ∈ Y .

Next, by (2.4) and (2.1), for any y in Y and all t0, t ≥ 0,

|(My)(t) − (My)(t0)| =
∣∣∣−

t\
t0

f(s, xs, y(s)) ds
∣∣∣ ≤

∣∣∣
t\
t0

|f(s, xs, y(s))| ds
∣∣∣

≤
∣∣∣

t\
t0

F (s, ηs, c) ds
∣∣∣.

So, by (2.2), MY is equicontinuous at every point t0 ≥ 0.

Now, we prove that M is continuous in the sense described in (i) of the

Schauder–Tikhonov theorem. Let y ∈ Y and (yn)n≥1⊂Y with limn→∞ yn =y
uniformly on every compact subinterval of [0,∞). For any integer n ≥ 1, let
xn ∈ C([−r,∞),R) be defined by (1.4) with xn in place of x and yn instead
of y, i.e.,

xn(t) =





φ(t) for −r ≤ t ≤ 0,
t\
0

g(s, yn(s)) ds for t ≥ 0.
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By (2.1), we have

|f(t, (xn)t, yn(t))| ≤ F (t, ηt, c) for all t ≥ 0 (n = 1, 2, . . .).

So, because of (2.2), we can apply the Lebesgue dominated convergence
theorem to obtain, for every t ≥ 0,

lim
n→∞

∞\
t

f(s, (xn)s, yn(s)) ds =

∞\
t

f(s, xs, y(s)) ds.

Hence limn→∞Myn = My pointwise on [0,∞). It remains to show that the
convergence is uniform on every compact subinterval of [0,∞). To this end,
let (Myλn

)n≥1 be any subsequence of (Myn)n≥1. Since MY is equicontin-
uous at every point of [0,∞), and clearly also bounded at each point, the
Arzelà–Ascoli theorem yields a subsequence (Myλνn

)n≥1 and a function v
in C([0,∞),R) such that limn→∞Myλνn

= v uniformly on every compact
subinterval of [0,∞). Since uniform convergence on every compact subin-
terval of [0,∞) implies pointwise convergence on [0,∞) to the same limit
function, we have v = My. So, (Myn)n≥1 converges to My uniformly on
every compact subinterval of [0,∞). Consequently, M is continuous.

We have seen that all assumptions of the Schauder–Tikhonov theorem
are satisfied. Hence, there exists at least one y in Y with y = My. By (2.4),
y satisfies (1.5). On the other hand, by the definition of x, (1.4) is also
satisfied. So, by Proposition 1.1, (x, y) is a solution of (1.1)–(1.3). As y ∈ Y
and y = My, it follows from (2.5) that

|y(t) − ξ| ≤ c− |ξ| for every t ≥ 0

and consequently (1.10) holds true. Finally, suppose that condition (B) is
satisfied. Then, in view of (1.10),

t\
0

g(s,−c+ |ξ| + ξ) ds ≤

t\
0

g(s, y(s)) ds

≤

t\
0

g(s, c− |ξ| + ξ) ds for every t ≥ 0,

which, because of (1.4), coincides with (1.11).
The proof of the theorem is complete.

Proof of Theorem 1.3. Consider the Banach space E ≡ BC([0,∞),R)
of all bounded continuous real-valued functions on [0,∞), endowed with the
sup-norm ‖ · ‖ defined by

‖v‖ = sup
t≥0

|v(t)| for v ∈ BC([0,∞),R).

Consider also the set Y of all y in C([0,∞),R) which satisfy (1.15). Clearly,
Y = {y ∈ BC([0,∞),R) : ‖y‖ ≤ c}. The set Y is a nonempty closed
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subset of BC([0,∞),R). For any y in Y , we will denote by x the function
in C([−r,∞),R) defined by (1.4). (We notice that φ(0) = 0.)

As in the proof of Theorem 1.2, we show that the formula (2.4) makes
sense for any y in Y , and defines a mapping M of Y into itself. We now
prove that M is a contraction. Let y, ỹ ∈ Y . Let x̃ ∈ C([−r,∞),R) be
defined by (1.4) with x̃ in place of x and ỹ in place of y, i.e.,

(2.6) x̃(t) =





φ(t) for −r ≤ t ≤ 0,
t\
0

g(s, ỹ(s)) ds for t ≥ 0.

By (1.13), for t ≥ 0,

|(My)(t) − (Mỹ)(t)| ≤

∞\
t

|f(s, xs, y(s)) − f(s, x̃s, ỹ(s))| ds

≤

∞\
t

K(s) max{‖xs − x̃s‖, |y(s) − ỹ(s)|} ds.

Consequently,

‖My −Mỹ‖ = sup
t≥0

|(My)(t) − (Mỹ)(t)|(2.7)

≤

∞\
0

K(t) max{‖xt − x̃t‖, |y(t) − ỹ(t)|} dt.

By (1.4) and (2.6), we have x(t) = x̃(t) = φ(t) for −r ≤ t ≤ 0 and so

(2.8) |x(t) − x̃(t)| = 0 for −r ≤ t ≤ 0.

Furthermore, by (1.4) and (2.6) as well as the hypothesis (1.12), we obtain,
for t ≥ 0,

|x(t) − x̃(t)| ≤

t\
0

|g(s, y(s)) − g(s, ỹ(s))| ds ≤

t\
0

L(s)|y(s) − ỹ(s)| ds.

But it is obvious that

(2.9) |y(t) − ỹ(t)| ≤ ‖y − ỹ‖ for all t ≥ 0.

Thus, we get

|x(t) − x̃(t)| ≤
[t\
0

L(s) ds
]
‖y − ỹ‖ for every t ≥ 0.

This inequality together with (2.8) implies that

|x(t) − x̃(t)| ≤ σ(t)‖y − ỹ‖ for all t ≥ −r,
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where

σ(t) = 0 for −r ≤ t ≤ 0, σ(t) =

t\
0

L(s) ds for t ≥ 0.

Therefore,

|x(t+ τ) − x̃(t+ τ)| ≤ σ(t+ τ)‖y − ỹ‖ for t ≥ 0 and −r ≤ τ ≤ 0,

i.e.,

|xt(τ) − x̃t(τ)| ≤ σ(t+ τ)‖y − ỹ‖ for t ≥ 0 and −r ≤ τ ≤ 0.

This gives

max
−r≤τ≤0

|xt(τ) − x̃t(τ)| ≤ [ max
−r≤τ≤0

σ(t+ τ)]‖y − ỹ‖ for t ≥ 0.

But, as σ is increasing on [−r,∞), we have

max
−r≤τ≤0

σ(t+ τ) = σ(t) =

t\
0

L(s) ds for t ≥ 0.

Hence,

‖xt − x̃t‖ ≤
[t\
0

L(s) ds
]
‖y − ỹ‖ for all t ≥ 0.

By using this inequality as well as (2.9), from (2.7) we obtain

‖My −Mỹ‖ ≤
[∞\

0

K(t) max
{t\

0

L(s) ds, 1
}
dt

]
‖y − ỹ‖.

Thus, by hypothesis (1.14), M is a contraction, so it has a unique fixed point
y in Y . By Proposition 1.1, this means that the BVP (1.1)–(1.3) has exactly
one solution (x, y) satisfying (1.15). As in the proof of Theorem 1.2, this
unique solution is such that (1.10) holds; in addition, when condition (B) is
satisfied, (1.11) also holds.

The proof of the theorem is now complete.

3. Application to ordinary differential systems and to a specific

class of delay differential systems. Consider, first, the nonlinear two-
dimensional ordinary differential system

(3.1) x′(t) = g(t, y(t)), y′(t) = −f0(t, x(t), y(t)),

where f0 is a continuous real-valued function on [0,∞) × R
2.

We restrict our attention to solutions of (3.1) on the whole interval [0,∞).
With (3.1), we associate the initial condition

(3.2) x(0) = 0
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as well as condition (1.3). In this special case, the BVP (1.1)–(1.3) reduces
to the BVP (3.1), (3.2), (1.3).

By specifying Theorems 1.2 and 1.3 to this case, we get Corollaries 3.1
and 3.2 below.

Corollary 3.1. Assume that (1.6) holds, where G is a nonnegative con-

tinuous real-valued function on [0,∞)× [0,∞) which satisfies condition (A).
Moreover , assume that

|f0(t, w, z)| ≤ F0(t, |w|, |z|) for all (t, w, z) ∈ [0,∞) × R
2,

where F0 is a nonnegative continuous real-valued function on [0,∞)×[0,∞)2.
Suppose that , for each t ≥ 0, the function F0(t, ·, ·) is increasing on [0,∞)2.
Let there exist a real number c with c > |ξ| so that

(3.3)

∞\
0

F0

(
t,

t\
0

G(s, c) ds, c
)
dt ≤ c− |ξ|.

Then the BVP (3.1), (3.2), (1.3) has at least one solution (x, y) which sat-

isfies (1.10); if condition (B) holds, it also satisfies (1.11).

Corollary 3.2. Let the assumptions of Corollary 3.1 hold. Further-

more, let the generalized Lipschitz conditions (1.12) and

|f0(t, w1, z1) − f0(t, w2, z2)| ≤ K(t) max{|w1 − w2|, |z1 − z2|}

for all (t, w1, z1), (t, w2, z2) in [0,∞) × R
2

be satisfied , where L and K are nonnegative continuous real-valued functions

on the interval [0,∞) such that (1.14) holds. Let there exist a real number c
with c > |ξ| so that (3.3) holds. Then the BVP (3.1), (3.2), (1.3) has exactly

one solution (x, y) satisfying (1.15). This unique solution satisfies (1.10); if

condition (B) holds, it also satisfies (1.11).

Next, consider the nonlinear two-dimensional delay differential system

(3.4)

{
x′(t) = g(t, y(t)),

y′(t) = −f1(t, x(t− T1(t)), . . . , x(t− Tm(t)), y(t)),

where m is a positive integer, f1 is a continuous real-valued function on

[0,∞)×R
m+1, and Tj (j = 1, . . . ,m) are nonnegative continuous real-valued

functions on [0,∞) with

max
j=1,...,m

sup
t≥0

Tj(t) = r.

A solution on [0,∞) of (3.4) is two functions x in C([−r,∞),R) and y
in C([0,∞),R), which are continuously differentiable on [0,∞) and satisfy
(3.4) for all t ≥ 0. The initial condition (1.2′) as well as condition (1.3) are
associated with (3.4). In this case, the BVP (1.1)–(1.3) reduces to the BVP
(3.4), (1.2′), (1.3).
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If the delay differential system (1.1) is to be equivalent to (3.4), we must
define

f(t, ω, z) = f1(t, ω(−T1(t)), . . . , ω(−Tm(t)), z)

for (t, ω, z) ∈ [0,∞) × C([−r, 0],R) × R. Hence, by applying Theorems 1.2
and 1.3 to the BVP (3.4), (1.2′), (1.3), we are led to Corollaries 3.3 and 3.4
below.

Corollary 3.3. Assume that (1.6) holds, where G is a nonnegative con-

tinuous real-valued function on [0,∞)×[0,∞), which satisfies condition (A).
Moreover , assume that

|f1(t, w1, . . . , wm, z)| ≤ F1(t, |w1|, . . . , |wm|, |z|)

for all (t, w1, . . . , wm, z) ∈ [0,∞) × R
m+1,

where F1 is a nonnegative continuous real-valued function on [0,∞) ×
[0,∞)m+1. Suppose that , for each t ≥ 0, the function F1(t, ·, . . . , ·, ·) is in-

creasing on [0,∞)m+1. Let there exist a real number c with c > |ξ| so that

(3.5)

∞\
0

F1(t, ̺1(t), . . . , ̺m(t), c) dt ≤ c− |ξ|,

where, for each j ∈ {1, . . . ,m}, the function ̺j in C([0,∞), [0,∞)) depends

on φ, c, G and is defined by

(3.6) ̺j(t) =





|φ(t− Tj(t))| if 0 ≤ t ≤ Tj(t),

t−Tj(t)\
0

G(s, c) ds if t ≥ Tj(t).

Then the BVP (3.4), (1.2′), (1.3) has at least one solution (x, y) which sat-

isfies (1.10); if condition (B) holds, it also satisfies (1.11).

Corollary 3.4. Let the assumptions of Corollary 3.3 hold. Further-

more, let the generalized Lipschitz conditions (1.12) and

|f1(t, w
(1)
1 , . . . , w(1)

m , z1) − f1(t, w
(2)
1 , . . . , w(2)

m , z2)|

≤ K(t) max{|w
(1)
1 − w

(2)
1 |, . . . , |w(1)

m − w(2)
m |, |z1 − z2|}

for all (t, w
(1)
1 , . . . , w

(1)
m , z1), (t, w

(2)
1 , . . . , w

(2)
m , z2) in [0,∞) × R

m+1 be satis-

fied , where L and K are nonnegative continuous real-valued functions on

[0,∞) such that (1.14) holds. Let there exist a real number c with c > |ξ|
so that (3.5) holds, where, for each j ∈ {1, . . . ,m}, ̺j is defined by (3.6).
Then the BVP (3.4), (1.2′), (1.3) has exactly one solution (x, y) satisfying

(1.15). This unique solution satisfies (1.10); if condition (B) holds, it also

satisfies (1.11).
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4. Application to differential systems of Emden–Fowler type

and to linear differential systems. Examples. Consider the nonlinear
two-dimensional Emden–Fowler ordinary differential system

(4.1)

{
x′(t) = q(t)|y(t)|σ sgn y(t),

y′(t) = −a(t)|x(t)|γ sgnx(t) − b(t)|y(t)|β sgn y(t),

as well as the nonlinear two-dimensional delay differential system of Emden–
Fowler type

(4.2)

{
x′(t) = q(t)|y(t)|σ sgn y(t),

y′(t) = −a(t)|x(t− r)|γ sgnx(t− r) − b(t)|y(t)|β sgn y(t),

where q, a and b are continuous real-valued functions on the interval [0,∞),
and σ, γ and β are positive real numbers. Consider also the linear two-
dimensional ordinary differential system

(4.3) x′(t) = q(t)y(t), y′(t) = −a(t)x(t) − b(t)y(t)

as well as the linear two-dimensional delay differential system

(4.4) x′(t) = q(t)y(t), y′(t) = −a(t)x(t− r) − b(t)y(t).

We denote by Q the nonnegative continuous real-valued function on [0,∞)
defined by the formula

Q(t) =

t\
0

|q(s)| ds for t ≥ 0.

By applying Theorem 1.2 (more specifically, Corollary 3.1) to the BVP
(4.1), (3.2), (1.3), we are led to Corollary 4.1 below. Similarly, in the case of
the BVP (4.2), (1.2′), (1.3), Theorem 1.2 (more specifically, Corollary 3.3)
leads to Corollary 4.2 below.

Corollary 4.1. Let there exist a real number c with c > |ξ| so that

(4.5) cσγ
∞\
0

[Q(t)]γ|a(t)| dt+ cβ
∞\
0

|b(t)| dt ≤ c− |ξ|.

Then the BVP (4.1), (3.2), (1.3) has at least one solution (x, y) which sat-

isfies (1.10); if

(4.6) q is nonnegative on [0,∞),

it also satisfies

(4.7) [|−c+ |ξ| + ξ|σ sgn(−c+ |ξ| + ξ)]

t\
0

q(s) ds ≤ x(t)

≤ [|c− |ξ| + ξ|σ sgn(c− |ξ| + ξ)]

t\
0

q(s) ds for every t ≥ 0.
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Corollary 4.2. Let there exist a real number c with c > |ξ| so that

(4.8)

r\
0

|φ(t− r)|γ |a(t)| dt+ cσγ
∞\
r

[Q(t− r)]γ |a(t)| dt

+ cβ
∞\
0

|b(t)| dt ≤ c− |ξ|.

Then the BVP (4.2), (1.2′), (1.3) has at least one solution (x, y) which sat-

isfies (1.10); if (4.6) holds, it also satisfies (4.7).

If we apply Theorem 1.3 (more specifically, Corollary 3.2) to the BVP
(4.3), (3.2), (1.3), then we arrive at Corollary 4.3 below. Moreover, by an
application of Theorem 1.3 (more specifically, of Corollary 3.4) to the BVP
(4.4), (1.2′), (1.3), Corollary 4.4 below is obtained.

Corollary 4.3. Assume that

(4.9)

∞\
0

max{Q(t), 1}[|a(t)|+ |b(t)|] dt < 1.

Let there exist a real number c with c > |ξ| so that

(4.10) c
[∞\

0

Q(t)|a(t)| dt+

∞\
0

|b(t)| dt
]
≤ c− |ξ|.

Then the BVP (4.3), (3.2), (1.3) has exactly one solution (x, y) satisfying

(1.15). This unique solution satisfies (1.10); if (4.6) holds, it also satisfies

(4.11) (−c+ |ξ| + ξ)

t\
0

q(s) ds ≤ x(t)

≤ (c− |ξ| + ξ)

t\
0

q(s) ds for every t ≥ 0.

Corollary 4.4. Assume that condition (4.9) is satisfied. Let there exist

a real number c with c > |ξ| so that

(4.12)

r\
0

|φ(t− r)| |a(t)| dt+ c
[∞\

r

Q(t− r)|a(t)| dt+

∞\
0

|b(t)| dt
]
≤ c− |ξ|.

Then the BVP (4.4), (1.2′), (1.3) has exactly one solution (x, y) satisfying

(1.15). This unique solution satisfies (1.10); if (4.6) holds, it also satisfies

(4.11).

Note that, by taking r = 0, systems (4.2) and (4.4) lead to (4.1) and (4.3)
respectively. On the other hand, conditions (4.5) and (4.10) are obtained
from (4.8) and (4.12), respectively, for r = 0.
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Assume that condition (4.9) is satisfied. Since
∞\
0

Q(t)|a(t)| dt+

∞\
0

|b(t)| dt ≤

∞\
0

max{Q(t), 1}[|a(t)|+ |b(t)|] dt,

it follows from (4.9) that

(4.13)

∞\
0

Q(t)|a(t)| dt+

∞\
0

|b(t)| dt < 1.

Furthermore, we see that assumption (4.10) is equivalently written as

(4.14) c
[
1 −

∞\
0

Q(t)|a(t)| dt−

∞\
0

|b(t)| dt
]
≥ |ξ|.

Suppose, first, that ξ = 0. Then, by (4.13), we immediately see that (4.14)
holds true for any c > 0 = |ξ|. Next, suppose that ξ 6= 0. Assume that at
least one of the functions Qa and b is not identically zero on [0,∞). This
assumption guarantees that

(4.15)

∞\
0

Q(t)|a(t)| dt+

∞\
0

|b(t)| dt > 0.

By (4.13) and (4.15), the formula

(4.16) c =
|ξ|

1 −
T∞
0 Q(t)|a(t)| dt−

T∞
0 |b(t)| dt

defines a real number c with c > |ξ|. For this real number c, inequality (4.14)
holds true (as an equality). After the above observations, we conclude that
Corollary 4.3 leads to the following result.

Corollary 4.5. Assume that condition (4.9) is satisfied. Then we have:

(i) Let c be any positive real number. Then the BVP (4.3), (3.2),

(4.17) lim
t→∞

y(t) = 0

has exactly one solution (x, y) satisfying (1.15); if (4.6) holds, it also

satisfies

(4.18) − c

t\
0

q(s) ds ≤ x(t) ≤ c

t\
0

q(s) ds for every t ≥ 0.

(ii) Suppose that Qa or b is not identically zero on [0,∞). Let ξ 6= 0 and

let c be defined by (4.16). (c is a real number with c > |ξ|). Then the

conclusion of Corollary 4.3 holds.

By an analysis similar to that in deducing Corollary 4.5 from Corol-
lary 4.3, one can derive Corollary 4.6 below from Corollary 4.4. We restrict
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ourselves to noting that
∞\
r

Q(t− r)|a(t)| dt+

∞\
0

|b(t)| dt ≤

∞\
r

Q(t)|a(t)| dt+

∞\
0

|b(t)| dt

≤

∞\
0

Q(t)|a(t)| dt+

∞\
0

|b(t)| dt

≤

∞\
0

max{Q(t), 1}[|a(t)|+ |b(t)|] dt,

and so condition (4.9) implies that
∞\
r

Q(t− r)|a(t)| dt+

∞\
0

|b(t)| dt < 1.

Corollary 4.6. Assume that condition (4.9) is satisfied. Then we have:

(i) Let c be any positive real number. Then the BVP (4.4), (4.19), (4.17),
where

(4.19) x(t) = 0 for −r ≤ t ≤ 0,

has exactly one solution (x, y) satisfying (1.15); if (4.6) holds, it also

satisfies (4.18).
(ii) Define U(t) = Q(t− r)a(t) for t ≥ r. Suppose that U is not identi-

cally zero on [r,∞) or b is not identically zero on [0,∞). Let ξ 6= 0
and let c be defined by

c =
|ξ| +

Tr
0 |φ(t− r)| |a(t)| dt

1 −
T∞
r Q(t− r)|a(t)| dt−

T∞
0 |b(t)| dt

(c is a real number with c > |ξ|). Then the conclusion of Corollary

4.4 holds.

Now, in order to demonstrate the applicability of our results, we give
two specific examples. We restrict ourselves to ordinary differential systems.
In Example 4.7, Corollary 4.1 is applicable, while in Example 4.8, Corollary
4.5 can be used.

Example 4.7. Consider the nonlinear two-dimensional Emden–Fowler
ordinary differential system

(4.20)





x′(t) =
2t

(t+ 1)3
[y(t)]4 sgn y(t),

y′(t) = −
t

3(t+ 1)3
|x(t)|1/2 sgnx(t) −

1

6(t+ 1)2
y(t),

with the initial condition (3.2) as well as the condition

(4.21) lim
t→∞

y(t) = 1.
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For the BVP (4.20), (3.2), (4.21), condition (4.5) becomes

c2
∞\
0

t2

3(t+ 1)4
dt+ c

∞\
0

dt

6(t+ 1)2
≤ c− 1.

This inequality can easily be written as

1

9
c2 +

1

6
c ≤ c− 1, i.e.,

(
c−

3

2

)
(c− 6) ≤ 0.

So, (4.5) is satisfied if and only if 3/2 ≤ c ≤ 6. Take c = 3/2. By Corollary
4.1, the BVP (4.20), (3.2), (4.21) has at least one solution (x, y) which

satisfies

1/2 ≤ y(t) ≤ 3/2 for every t ≥ 0

and

t2

16(t+ 1)2
≤ x(t) ≤

81t2

16(t+ 1)2
for every t ≥ 0.

Example 4.8. Consider the linear two-dimensional ordinary differential
system

(4.22) x′(t) =
2t

(t+ 1)3
y(t), y′(t) = −

1

2(t+ 1)2
x(t) −

1

6(t+ 1)2
y(t),

with the initial condition (3.2) as well as the condition (4.21). Here, condition
(4.9) becomes

∞\
0

max

{
t2

(t+ 1)2
, 1

}[
1

2(t+ 1)2
+

1

6(t+ 1)2

]
dt < 1.

It is easy to verify that this inequality holds true. Furthermore, in this case,
(4.16) reads

c =
1

1 −
T∞
0

t2

2(t+1)4
dt−

T∞
0

dt
6(t+1)2

and so c = 3/2. By Corollary 4.5, the BVP (4.22), (3.2), (4.21) has exactly

one solution (x, y) with

|y(t)| ≤ 3/2 for all t ≥ 0;

this unique solution (x, y) satisfies

1/2 ≤ y(t) ≤ 3/2 for every t ≥ 0

and

t2

2(t+ 1)2
≤ x(t) ≤

3t2

2(t+ 1)2
for every t ≥ 0.
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5. Discussion. It is an open problem whether the assertions of Theorem
1.3 and Corollaries 3.2 and 3.4 remain valid with the weaker assumption

∞\
0

K(t) max
{t\

0

L(s) ds, 1
}
dt <∞

in place of (1.14). In particular, it is an open question if hypothesis (4.9) in
Corollaries 4.3−4.6 can be replaced by the weaker condition

∞\
0

max{Q(t), 1}[|a(t)|+ |b(t)|] dt <∞.

To investigate the above open problems, one must use a renormalization pro-
cedure due to Bielecki [6]; this technique is very useful in obtaining global
existence criteria and in studying several stability problems (see, for exam-
ple, the books [9, 10] and the recent papers [13, 14, 35]).

Let us consider the second order nonlinear delay differential equation

(5.1) [k(t)x′(t)]′ + f(t, xt, k(t)x
′(t)) = 0,

where k is a positive continuous real-valued function on [0,∞). With (5.1),
we associate the initial condition (1.2) as well as the condition

(5.2) lim
t→∞

k(t)x′(t) = ξ.

The substitution kx′ = y transforms (5.1) into the equivalent nonlinear
two-dimensional delay differential system

(5.3) x′(t) =
1

k(t)
y(t), y′(t) = −f(t, xt, y(t)).

By applying Theorems 1.2 and 1.3 to the BVP (5.3), (1.2), (1.3), we obtain
two results concerning the BVP (5.1), (1.2), (5.2). In particular, in the spe-
cial case where k(t) = 1 for t ≥ 0, the application of Theorem 1.2 to the
BVP (5.1), (1.2), (1.3) leads to the main result in the work by Mavridis,
the present author and Tsamatos [25] which concerns the BVP (5.1), (1.2),
(5.2) (with k ≡ 1).

Now, consider the nonlinear two-dimensional delay differential system

(5.4) x′(t) = d(t, y(t)), y′(t) = −h(t, xt, y(t)),

where d is a continuous real-valued function on (0,∞) × R, and h is a
continuous real-valued function on (0,∞)×C([−r, 0],R)×R. We are inter-
ested in global solutions of (5.4); such a solution is a pair of functions x in
C([−r,∞),R) and y in C((0,∞),R), which are continuously differentiable
on (0,∞) and satisfy (5.4) for all t > 0. With (5.4), one associates the initial
condition (1.2) as well as another initial condition of the form

(5.5) lim
t→0+

y(t) = θ,
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where θ is a given real number. Equations (5.4), (1.2), (5.5) constitute an
initial value problem (IVP, for short).

Next, consider the second order nonlinear delay differential equation

(5.6) [p(t)x′(t)]′ + h(t, xt, p(t)x
′(t)) = 0,

where p is a positive continuous real-valued function on (0,∞). With (5.6),
we associate the initial condition (1.2) and the initial condition

(5.7) lim
t→0+

p(t)x′(t) = θ.

By setting y = px′, the delay differential equation (5.6) is transformed into
the equivalent nonlinear two-dimensional delay differential system

(5.8) x′(t) =
1

p(t)
y(t), y′(t) = −h(t, xt, y(t)).

That is, the substitution y = px′ transforms the IVP (5.6), (1.2), (5.7) into
the equivalent IVP (5.8), (1.2), (5.5).

Applying the Schauder theorem and the Banach contraction principle,
Agarwal, the author and Tsamatos [2] studied the existence of global solu-
tions as well as the existence and uniqueness of global solutions to the singu-
lar IVP (5.6), (1.2), (5.7). For some previous related results, see
[4, 5, 24]. By a combination of the methods applied in [2] with the ideas
and techniques of this paper, one can extend the results in [2] to the more
general case of the singular IVP (5.4), (1.2), (5.5).
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