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Extending o-minimal Fréchet derivatives

by ANDREAS FISCHER (Saskatoon)

Abstract. We investigate several extension properties of Fréchet differentiable func-
tions defined on closed sets for o-minimal expansions of real closed fields.

1. Introduction. In the present paper, which is inspired by the au-
thor’s doctoral thesis, and which is motivated by [1], we study extendibility
of Fréchet differentiable functions defined on closed sets for o-minimal struc-
tures.

In the following, let R denote a fixed real closed field, and let M be an
o-minimal expansion of R. Here, “definable” always means “definable with
parameters in M”. For comprehensive references on o-minimality we refer
the reader to [5] and [4]; these sources are also suitable for those who are
not specifically familiar with o-minimality. Classical examples of o-minimal
structures are the semialgebraic structure and the structure consisting of
all globally subanalytic sets; for recent examples, see [11], [12], [14], [6], [7]
and [15].

Let R™ be endowed with the Euclidean R-norm ||-|| and the corresponding
topology. Note that R-norm has the same definition as the norm except that
it takes its values in R. The notion of Fréchet differentiability extends to
arbitrary sets as follows.

DEFINITION 1.1. Let A C R™. A function f : A — RF together with a
function ¢ : A — RF*" is called Fréchet differentiable relative to A if
W L)~ fe) - el —a)
A>z—a H.%' — aH
If f and ¢ are definable, we speak of definably Fréchet differentiability rel-
ative to A.
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Recall that a function f is of class Baire 1 if and only if f is the point-
wise limit of a sequence of continuous functions. The extendibility of Fréchet
differentiable functions was discussed in [1], whose main result is the subse-
quent theorem. The symbol V denotes the gradient operator.

THEOREM 1.2 (Aversa, Laczkovich and Preiss). Let A C R™ be closed
and let f : A — R together with ¢ : A — R™ be Fréchet differentiable
relative to A. Then there is a Fréchet differentiable function F' : R™ — R
with F|a = f and VF|4 = ¢ if and only if ¢ is of class Baire 1.

We study and prove an o-minimal version of the above theorem which
reads as follows.

THEOREM 1.3. Let A C R™ be a closed definable set, and let f: A — R
together with ¢ : A — R™ be definably Fréchet differentiable. Then there is
a definable Fréchet differentiable function F' : R™ — R such that F|q = f
and VF|a = .

Note that in the o-minimal version, the Baire 1 property of the derivative
is not needed. Theorem 1.3 implies the next one. For a,b € R"™ the Euclidean
scalar product of a and b is denoted by a - b.

THEOREM 1.4. Let f: A — R be a definable function with closed domain
such that for each a € A there is an element d € R™ satisfying

) iy J@ = f@=d (@ a)

Adz—a |z — all

=0.

Then f is the restriction of a definable Fréchet differentiable function F :
R" — R.

Note that in the situation described in Theorem 1.4, definability of the
set A is needed. There exist closed (non-definable) subsets A of R™ and
(non-definable) functions f : A — R which satisfy (1.2) but which cannot
be extended as Fréchet differentiable functions to R™ (cf. [1]).

We strengthen the concept of Baire 1 functions as follows. A function
f: A — RFis of class definably Baire 1 if there is a definable family of
continuous functions F : (0,1) x A — R* such that f(a) = lim; ~ F(t,a),
a€ A

As a further application of Theorem 1.3 we obtain the statement below.

THEOREM 1.5. FEwery definable function g is of class definably Baire 1.

There are two sections subsequent to the Introduction. The first is de-
voted to the preparation of the proof of Theorem 1.3, while in the last section
we prove Theorems 1.3, 1.4 and 1.5.
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2. Preliminaries. We first study the extendibility on closures of special
sets which we call C[;, cells.

If U and V are definable sets and m € N, we use C"™(U, V) to denote
the definable m times continuously differentiable functions from U to V;
C1;,(U, V) are the Lipschitz continuous elements of C™ (U, V'). We generalise
the notion of continuous differentiability to functions with non-open domain.
A definable function f : A — R is called a C™ function if there exists a
definable open neighbourhood U of A and a C™ function F' : U — R such
that F|4 = f. The concept of Cri, functions is analogously generalised to
non-open domains.

Furthermore, +00 are regarded as constant functions defined on arbitrary
sets.

DEFINITION 2.1. A C}j}p cell in R is either a single point or an open
interval. Granted that we know the ij{p cells in R™!, then a ij{p cell in R"

is either a single point, or a set M of either the form

(2.1) M ={(z,y):z € X, y=h(z)}
where X C R" !isa Cfi, cell and h € Cf (X, R), or of the form
(2.2) M={(z,y):z € X, f(z) <y <g(x)}

where X C R""! is an open Cfi, celland f, g € C (X, R) U{=£oo} are such
that for all z € X, f(z) < g(x).

If @« € N we denote by D, the differential operator assigning to a
sufficiently smooth mapping f its ath derivative.

For the proof of the next lemma, approximation of definable C* functions
by Ck*! functions is required. This is provided by Escribano’s approximation
theorem which is proved in [8].

THEOREM 2.2 (Escribano). Let k > 0 and | > 1 be integers, and let
X C R™ be definable and open. Let f € C*(X, R). Then, for every definable
continuous function € : X — (0,00), there is a g € C*TY(X, R) such that for
all o € N™ with a1 + -+ - + ap, < K,

(2.3) |Dof(z) — Dog(z)| < e(z), z€X.

If A C R? where d < n, we let A x {0} := {(a,0,...,0) € R" : a € A},
and for a function f : Ax {0} — R¥ we write f(a,0) instead of f(a,0,...,0),
a € A.

If X is a definable set, we denote by cl(X) its topological closure and by
0X = cl(X) \ X its frontier.

Next we show the extendibility of definable Fréchet differentiable func-

tions defined on the closure of certain kinds of Cﬁ’ilp cells.
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LEMMA 2.3. Let d < n be a positive integer, X C R® be an open ij{p
cell and let f : cl(X) x {0} — R together with ¢ : cl(X) x {0} — R™ be
definably Fréchet differentiable relative to cl(X). If

(1) X 52— f(z,0) and X > = — ¢(z,0) are continuously differen-
tiable,
(2) f(x,0) =0 and ¢(z,0) =0, x € 0X,

then, for every definable open neighbourhood U of X, there is a definable
Fréchet differentiable function F: R™ — R with the following properties:

(a) supp(F) C cl(U),
(b) F is C? outside c1(X) x {0},
(¢) F(x,0) = f(z,0) and VF(z,0) = ¢(z,0), v € X.

Proof. STEP 1. Let (z,y) = (21,...,Td, Yds1s--->Yn) € X x R"~% and
let G: X x R"% — R be given by

n

(2'4) G(:L'ay) = f(ZL',O) + Z Soi(x>0)yi-

i=d+1

Property (1) implies that G is continuously differentiable and, by construc-
tion, G is definable. In addition,

(2.5) G(z,0) = f(z,0) and VG(z,0)=p(z,0), =zeX.

STEP 2. Let Z := X x (R"%\ {0}), and let £ : Z — (0,00) be the
definable continuous function defined by £(z,y) = min(1, ||y|?). We apply
Theorem 2.2 to G restricted to Z with k =1, ] = 2 and € = £/4/n, so that
we obtain a C? function H : Z — R which satisfies the inequalities

(2.6) (H—-G)(2)| <e(z) and |V(H-G)(2)|<e(z), z€Z.

Let dist(—, —) denote the Euclidean distance function where we allow sets
to be the second argument. We further select a function o € C3(R?,[0, 00))
which vanishes outside X and which satisfies for every z € X the inequal-

ity

(2.7) 0 < o(z) < min <1 dist(z, 0X)* L dist((2, 0), aU)>.

L f(,0)] 4+ i lpi(x)] 2
Further let ¢ € C3(]0, ), [0, 1]) be equal to 1 on [0,1/2] and 0 on [1,c0).
STEP 3. We define F': R™ — R by

H(z, y)v(lyll/e(x), (x.y)€ Z,
(2.8) F(z,y) =< G(z,0), (z,0) € X x {0},

0, otherwise.
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Then F' is definable by construction. Let

(2.9) Bi={(z,y) :x e X, |lyll <o)}
Then F' vanishes outside B so that property (a) is evident.

The choice of ¢ and p implies that F is C3 smooth in Z; obviously, it
is also C3 in the complement of cl(B). Thus, F is C? outside cl(X) x {0},
which proves property (b).

Note that |F(z,y) — G(z,y)| < ||y|> whenever (z,y) € B. Therefore,
F — G is Fréchet differentiable in B and both F' — G and V(F — G) vanish
in X x {0}. This implies (c).

It remains to prove the Fréchet differentiability of F' at every point of
0X x {0}. For (z,y) € B, ||y| is bounded by o(x), and both € and 1 are
bounded by 1. Hence,

2100 1FG)] < |66+ ele o 1) < 2060

n
<2f(@,0)+2 Y |pi(e. 0y
i=d+1

n
<2[f(2,0)[+2 Y |pi(x,0)0(x)|
i=d+1
< 2|f(x,0)] + 2dist(z, 0X)2.
For every z € 90X, property (2) now implies that

f(z,y)

2.11 lim = 0.
(211) wte0) 1@ ) — @0
So,
3 2
(2.12) lim |F(x,y)]| ) 2 dist(z, 0X) _o

<  lim
(@y)=(=0) [[(z,9) = (2,0)[| ~ @y)=0) [[(z,y) = (2,0)]]
Therefore, F' is Fréchet differentiable at all points of 0X x {0}. =

The derivatives of Fréchet differentiable functions defined on non-open
sets are in general not unique, which calls for a generalised version of the
chain rule. In this connection, definability is not required.

LEMMA 2.4 (Chain rule). Let X C R" and Y C R™. Let f : X — Y
together with ¢ : X — R™™ and g : Y — R* together with v :Y — R™**
be Fréchet differentiable functions relative to X respectively Y. Then h =
gof: X — RP together with 6 : X — R™¥ is Fréchet differentiable relative
to X, where

(2.13) 0(x) :=(f(2)p(x), xeX.
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Proof. We fix x € X and set £ := f(z). By assumption, there are func-
tions ¢y : X — R™ and ¢, : Y — Z such that forally € X, neY,

fy) = f(@) = p(@)(y — x) + ¢5(y — @),

(2.14) 9(n) = 9(&) = (&) (n = &) + ¢g(n =€),
and

i 21 =) i 207 = 8)
(2.15) P Ty =l O W e

Let € > 0. We select § > 0 so small that for any y € X with ||y — z| < 9,

16a(0(@)(y — 2) + dp(y — )] < elly — all /2,
(2.16) I 67y — )] < elly — /2

Then

(2.17)  [[A(y) — h(z) — 0(z)(y — 2)[| = [lg(n) — 9(§) — v(E)¢(z)(y — )|
= [lg(n) — g(&) =) (f(y) — f(@) + ds(y — x))]

< N¢g(F(y) = F@DI + 7@ (y — )
< lgg(p(2)(y — =) + dp(y — )| + elly — z[|/2 < elly — =].

Hence, h is Fréchet differentiable at x relative to X with formal derivative

(9(.7}) ]

If \is a CL

Lip function, note that A extends to a (uniquely determined)

definable Lipschitz continuous function A\ with domain cl(X).

LEMMA 2.5. Let Y be a CEip cell and U be a definable open neighbour-
hood of Y. Let f : cl(Y) — R together with ¢ : cl(Y) — R be a definable
Fréchet differentiable function relative to cl(Y') such that

(1) f and o are C? functions in Y,
(2) f(n) =0 and ¢(n) =0 forn € Y.

Then there is a definable Fréchet differentiable function F : R — R such
that

(a) supp(F) C cl(U),

(b) F is C3 outside cl(Y), and

(c) F(n) = f(n), VF(n) = ¢(n), forn € cl(Y).

Proof. If Y is an open set, we set F|y = f and F|gny = 0.

If Y consists of a single point y, then 0Y = (). We select a C? function
¥ : R — R which vanishes outside (—1,1) and equals 1 in (—1/2,1/2). We
further select an € > 0 such that the ball with radius € and centre y is
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contained in U. Then the definable function F' : R® — R given by

218 Fa)= (1= le-ulf) (f) + > i) le )
=1

satisfies the conclusion of this lemma.

In all other cases, after some permutation of variables, we may assume
that Y = (h)x = {(z,y) : 2 € X, y = h(z)} where X C R? is an open
definable Cgip cell and h: X — R" % a definable Ci’ip mapping.

We define X : X x R % — X x R*? by \z,y) := (z,y + h(z)). So
Alds a CEip function with CEip smooth inverse. Therefore, both A and A~!
extend continuously to definable Lipschitz continuous functions defined on
the closure of X x R"%. The bijectivity of both functions is preserved.

STEP 1: Reduction to the situation of Lemma 2.3. We define g
cl(X) x {0} - R and v : cl(X) x {0} — R" by
g(ZE,O) = f()\(ZL‘,O)), T e CI(X)a
V(2,0) := (p(A(2,0)))VA(z,0), =z €X,

and v(z,0) := 0 for z € 0X.

Firstly, since A is Fréchet differentiable in Y, we obtain Fréchet differen-
tiability of g together with ~ relative to X x {0} by Lemma 2.4.

Secondly, A\ is bijective. Let L be a Lipschitz constant for both X and
X' Then, for £ € dX x {0},

(2.19)

k@l G
(2.20) Xx{l()}ax—f |z — & - X><{10}9m—>§ m
< im M
T xx{0}az—¢ || A(z) — A&
LIf(A=))]

S _ m _ —_— =
VX)) [|A() = Al
Thus, g together with v is Fréchet differentiable relative to cl(X) x {0}.

Both A and ¢ are C? functions so that 7 is C' in X. Therefore, g together
with ~ satisfies the conditions of Lemma 2.3.

STEP 2. According to Lemma 2.3 there exists a definable Fréchet differ-
entiable function G : R — R such that

(2.21) supp(G) C cl(W),
(2.22) G is C?in R™\ (cl(X) x {0}),
(2.23) G(z,0) = g(z,0), VG(z,0) = v(z,0), z € X.
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We now define ' : R® — R by

(2.24) F(z) = {

STEP 3: Verifying properties (a)-(c). The support of F' is a subset of
cl(A(W)) C cl(U), and therefore (a) follows.

The function F is C3 in R\ cl(A(W)) and in (X x R"~%)\ cl(Y). Hence,
F is C? outside cl(Y'), which proves property (b).

Of course, F is Fréchet differentiable at all y € Y, and, by Lemma 2.4,

G(ATH2)), z€AW),

0, otherwise.

(2.25) VE(y) = oA @))(YA (VAT = e(y).
Moreover, for n € Y,
N ) N e 0 N 7)) [ SN A< O €))]
ntv=n ly=nll - wrv=n ly—nll = nrv=n X7y = X )]
. . LIGR " (v))

= A . — —] -

XA -3 o A () = A ()

Hence, F' is Fréchet differentiable at all points of cl(Y'), that is, (c) is evi-
dent. =

3. Proofs. The proof of Theorem 1.3 involves the concept of Cf}p strat-
ification which we introduce next.

DEFINITION 3.1. Let m be a positive integer. A Cf} = stratification of
a closed definable subset A C R"™ is a finite partition of A into subsets
S1,...,9y, called strata, with the following properties.

(1) For each ¢ there is a linear orthogonal isomorphism &; : R" — R"
such that ®;(5;) is a Cf}, cell.
(2) For each stratum S, the frontier 95 is the union of some strata.

A stratification Si,...,S, of A is called compatible with the subsets
Ay, ..., Ay of Aif each A; is the union of some of the strata, j =1,...,k.

For any definable sets Aj,...,Ar C R" there is a Cff{p stratification
compatible with A1,..., Ag. This is implied by the stronger concept of A™-
regular stratification (cf. [10, Theorem 1.4]).

Since every Cpj cell is a C™ cell (cf. [4, Chapter 7.3]), each Cf}, cell in
R" is definably homeomorphic to R for a unique 0 < d < n (cf. [2, Lem-
ma 2.6]). The number d is called the dimension of the cell. For an arbitrary

definable set X, the dimension of X is given by

(3.1)  dim(X) = max{d : X contains a set
definably homeomorphic to R?}.
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A detailed discussion of dimension in o-minimal structures can be found in
[4, Chapter 4]. We need the fundamental relation between the dimension of
a definable set and its frontier. If X is definable, then, by [4, Chapter 4,
Theorem 1.8],

(3.2) dim(9X) < dim(X).

This fact, in connection with property (2) in the definition of stratifica-
tion, implies that for each stratum S there is a definable open neighbour-
hood U of S, which is disjoint from every stratum S’ # S with dim(S’) <
dim(.S).

A further interesting property of a definable function f is that the domain
can be partitioned into finitely many definable sets such that the restriction
of f to any of these sets is a C™ function (cf. [4, Chapter 7.3]).

Proof of Theorem 1.3. By using [10, Theorem 1.4] we select a CEip
stratification of R™ which is compatible with A and the sets on which
both f and ¢ are C? functions. Furthermore, we order the strata Si,..., S,
which are contained in A in such a way that dim(S;) < dim(Sj+1), j =
1,...,r—1.

We proceed by induction on the number of cells r contained in A.

If r = 1, we obtain the statement of the theorem by Lemma 2.5.

For the induction step, we set B := |J/—| S;. Because of inequality (3.2)
and as B contains all strata S C A of dimension less than dim(B), the
set B is closed. By the induction hypothesis, there exists a definable Fréchet
differentiable function H : R" — R which is C? outside B and which satisfies
H|B == f|B and VH|B = 80|B-

Let g : cl(S,) — Rand v : cl(S,) — R" be defined by g(a) = f(a)— H(a)
and y(a) = p(a)—VH (a), a € cl(S;). The function g together with ~ satisfies
the conditions of Lemma 2.5. According to the properties of a stratification
there is a definable open neighbourhood U of S, disjoint from B. Lemma 2.5
yields a function G which satisfies Gls, = g, VG|s, = v, and G = 0 out-
side U. Then F' = G + H is a definable function satisfying the conclusions
of Theorem 1.3.

In o-minimal structures, the following statement, known as definable
choice (cf. [4, Chapter 6, Proposition 1.2]), holds true:

If S Cc R™™ s definable and 7 : R™™ — R™ denotes the projection
onto the first m coordinates, then there is a definable function f : 7(S) — R"
such that I'(f) C S.

Proof of Theorem 1.4. Consider the set
(3.3)  V:={(a,d): f is Fréchet differentiable at a with derivative d}.
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Let I'(f) be the graph of f, and let @(a,d) be the formula
(3.4) aEA/\VeER[e>O—>36[5>O—>Vx€A

[Z(xi_ai)2<52—>V$€RVy€R

=1

[(y,) € T(f) A (2,2) € T(f)] =

(z —y— Zn:dz(ml — ai)>2 < EQZn:(xi — ai)QHH.
i=1 i=1

Then ®(a,d) is a first-order formula in the language of the o-minimal struc-
ture M (see [3, Chapter 1.3]). In addition, an element (a,d) € A x R"
belongs to V' if and only if @(a,d) holds true. By [3, Theorem 1.13], V is
definable.

If #: V — A denotes the projection onto the first n coordinates, then
by applying definable choice to V' and A = 7(V) we obtain a definable
function ¢ : A — R™ such that I'(p) C V. Hence, f together with ¢
is definably Fréchet differentiable relative to the closed definable set A. By
Theorem 1.3, there is a definable Fréchet differentiable function F' : R — R
with Flg = f. =

Proof of Theorem 1.5. Let A C R"™ be definable and let g : A — R be
an arbitrary definable function.
We define ¢ : cl(A4) x {0} — R"*! by

_J(0,...,0,9(a)) ifac A,

(35) #l(0): {0 if a € OA.

If f: cl(A)x{0} — Ris the zero function, then f together with ¢ is definably
Fréchet differentiable relative to the definable closed set cl(A) x {0}. By
applying Theorem 1.3 to f and ¢, there is a definable Fréchet differentiable
function F : R"*! — R such that VF|aayx{oy = ¢- As g(a) = pni1(a,0)
for a € A, and as Fréchet derivatives are of class definably Baire 1, the
statement of the theorem is evident. m
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