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Extending o-minimal Fréchet derivatives

by Andreas Fischer (Saskatoon)

Abstract. We investigate several extension properties of Fréchet differentiable func-
tions defined on closed sets for o-minimal expansions of real closed fields.

1. Introduction. In the present paper, which is inspired by the au-
thor’s doctoral thesis, and which is motivated by [1], we study extendibility
of Fréchet differentiable functions defined on closed sets for o-minimal struc-
tures.

In the following, let R denote a fixed real closed field, and let M be an
o-minimal expansion of R. Here, “definable” always means “definable with
parameters in M”. For comprehensive references on o-minimality we refer
the reader to [5] and [4]; these sources are also suitable for those who are
not specifically familiar with o-minimality. Classical examples of o-minimal
structures are the semialgebraic structure and the structure consisting of
all globally subanalytic sets; for recent examples, see [11], [12], [14], [6], [7]
and [15].

LetRn be endowed with the EuclideanR-norm ‖·‖ and the corresponding
topology. Note that R-norm has the same definition as the norm except that
it takes its values in R. The notion of Fréchet differentiability extends to
arbitrary sets as follows.

Definition 1.1. Let A ⊂ Rn. A function f : A → Rk together with a
function ϕ : A→ Rk×n is called Fréchet differentiable relative to A if

(1.1) lim
A∋x→a

f(x) − f(a) − ϕ(a)(x− a)

‖x− a‖ = 0, a ∈ A.

If f and ϕ are definable, we speak of definably Fréchet differentiability rel-

ative to A.
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Recall that a function f is of class Baire 1 if and only if f is the point-
wise limit of a sequence of continuous functions. The extendibility of Fréchet
differentiable functions was discussed in [1], whose main result is the subse-
quent theorem. The symbol ∇ denotes the gradient operator.

Theorem 1.2 (Aversa, Laczkovich and Preiss). Let A ⊂ R
n be closed

and let f : A → R together with ϕ : A → R
n be Fréchet differentiable

relative to A. Then there is a Fréchet differentiable function F : R
n → R

with F |A = f and ∇F |A = ϕ if and only if ϕ is of class Baire 1.

We study and prove an o-minimal version of the above theorem which
reads as follows.

Theorem 1.3. Let A ⊂ Rn be a closed definable set , and let f : A→ R
together with ϕ : A → Rn be definably Fréchet differentiable. Then there is

a definable Fréchet differentiable function F : Rn → R such that F |A = f
and ∇F |A = ϕ.

Note that in the o-minimal version, the Baire 1 property of the derivative
is not needed. Theorem 1.3 implies the next one. For a, b ∈ Rn the Euclidean
scalar product of a and b is denoted by a · b.

Theorem 1.4. Let f : A→ R be a definable function with closed domain

such that for each a ∈ A there is an element d ∈ Rn satisfying

(1.2) lim
A∋x→a

f(x) − f(a) − d · (x− a)

‖x− a‖ = 0.

Then f is the restriction of a definable Fréchet differentiable function F :
Rn → R.

Note that in the situation described in Theorem 1.4, definability of the
set A is needed. There exist closed (non-definable) subsets A of R

n and
(non-definable) functions f : A → R which satisfy (1.2) but which cannot
be extended as Fréchet differentiable functions to R

n (cf. [1]).

We strengthen the concept of Baire 1 functions as follows. A function
f : A → Rk is of class definably Baire 1 if there is a definable family of
continuous functions F : (0, 1) × A → Rk such that f(a) = limtր1 F (t, a),
a ∈ A.

As a further application of Theorem 1.3 we obtain the statement below.

Theorem 1.5. Every definable function g is of class definably Baire 1.

There are two sections subsequent to the Introduction. The first is de-
voted to the preparation of the proof of Theorem 1.3, while in the last section
we prove Theorems 1.3, 1.4 and 1.5.
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2. Preliminaries. We first study the extendibility on closures of special
sets which we call Cm

Lip cells.

If U and V are definable sets and m ∈ N, we use Cm(U, V ) to denote
the definable m times continuously differentiable functions from U to V ;
Cm

Lip(U, V ) are the Lipschitz continuous elements of Cm(U, V ). We generalise
the notion of continuous differentiability to functions with non-open domain.
A definable function f : A → R is called a Cm function if there exists a
definable open neighbourhood U of A and a Cm function F : U → R such
that F |A = f . The concept of Cm

Lip functions is analogously generalised to
non-open domains.

Furthermore, ±∞ are regarded as constant functions defined on arbitrary
sets.

Definition 2.1. A Cm
Lip cell in R is either a single point or an open

interval. Granted that we know the Cm
Lip cells in Rn−1, then a Cm

Lip cell in Rn

is either a single point, or a set M of either the form

(2.1) M = {(x, y) : x ∈ X, y = h(x)}
where X ⊂ Rn−1 is a Cm

Lip cell and h ∈ Cm
Lip(X,R), or of the form

(2.2) M = {(x, y) : x ∈ X, f(x) < y < g(x)}
where X ⊂ Rn−1 is an open Cm

Lip cell and f, g ∈ Cm
Lip(X,R)∪{±∞} are such

that for all x ∈ X, f(x) < g(x).

If α ∈ N
n we denote by Dα the differential operator assigning to a

sufficiently smooth mapping f its αth derivative.

For the proof of the next lemma, approximation of definable Ck functions
by Ck+l functions is required. This is provided by Escribano’s approximation
theorem which is proved in [8].

Theorem 2.2 (Escribano). Let k ≥ 0 and l ≥ 1 be integers, and let

X ⊂ Rn be definable and open. Let f ∈ Ck(X,R). Then, for every definable

continuous function ε : X → (0,∞), there is a g ∈ Ck+l(X,R) such that for

all α ∈ N
n with α1 + · · · + αn ≤ k,

(2.3) |Dαf(x) −Dαg(x)| < ε(x), x ∈ X.

If A ⊂ Rd where d < n, we let A × {0} := {(a, 0, . . . , 0) ∈ Rn : a ∈ A},
and for a function f : A×{0} → Rk we write f(a, 0) instead of f(a, 0, . . . , 0),
a ∈ A.

If X is a definable set, we denote by cl(X) its topological closure and by
∂X := cl(X) \X its frontier.

Next we show the extendibility of definable Fréchet differentiable func-
tions defined on the closure of certain kinds of Cm

Lip cells.
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Lemma 2.3. Let d < n be a positive integer , X ⊂ Rd be an open Cm
Lip

cell and let f : cl(X) × {0} → R together with ϕ : cl(X) × {0} → Rn be

definably Fréchet differentiable relative to cl(X). If

(1) X ∋ x 7→ f(x, 0) and X ∋ x 7→ ϕ(x, 0) are continuously differen-

tiable,
(2) f(x, 0) = 0 and ϕ(x, 0) = 0, x ∈ ∂X,

then, for every definable open neighbourhood U of X, there is a definable

Fréchet differentiable function F : Rn → R with the following properties:

(a) supp(F ) ⊂ cl(U),
(b) F is C3 outside cl(X) × {0},
(c) F (x, 0) = f(x, 0) and ∇F (x, 0) = ϕ(x, 0), x ∈ X.

Proof. Step 1. Let (x, y) = (x1, . . . , xd, yd+1, . . . , yn) ∈ X × Rn−d, and
let G : X ×Rn−d → R be given by

(2.4) G(x, y) := f(x, 0) +

n∑

i=d+1

ϕi(x, 0)yi.

Property (1) implies that G is continuously differentiable and, by construc-
tion, G is definable. In addition,

(2.5) G(x, 0) = f(x, 0) and ∇G(x, 0) = ϕ(x, 0), x ∈ X.

Step 2. Let Z := X × (Rn−d \ {0}), and let ε̃ : Z → (0,∞) be the
definable continuous function defined by ε̃(x, y) = min(1, ‖y‖2). We apply
Theorem 2.2 to G restricted to Z with k = 1, l = 2 and ε = ε̃/

√
n, so that

we obtain a C3 function H : Z → R which satisfies the inequalities

(2.6) |(H −G)(z)| ≤ ε(z) and |∇(H −G)(z)| ≤ ε̃(z), z ∈ Z.

Let dist(−,−) denote the Euclidean distance function where we allow sets
to be the second argument. We further select a function ̺ ∈ C3(Rd, [0,∞))
which vanishes outside X and which satisfies for every x ∈ X the inequal-
ity

(2.7) 0 < ̺(x) < min

(
1,

dist(x, ∂X)2

1+ |f(x, 0)| + ∑n
i=0 |ϕi(x)|

,
1

2
dist((x, 0), ∂U)

)
.

Further let ψ ∈ C3([0,∞), [0, 1]) be equal to 1 on [0, 1/2] and 0 on [1,∞).

Step 3. We define F : Rn → R by

(2.8) F (x, y) :=





H(x, y)ψ(‖y‖/̺(x)), (x, y) ∈ Z,

G(x, 0), (x, 0) ∈ X × {0},
0, otherwise.
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Then F is definable by construction. Let

(2.9) B := {(x, y) : x ∈ X, ‖y‖ < ̺(x)}.
Then F vanishes outside B so that property (a) is evident.

The choice of ψ and ̺ implies that F is C3 smooth in Z; obviously, it
is also C3 in the complement of cl(B). Thus, F is C3 outside cl(X) × {0},
which proves property (b).

Note that |F (x, y) − G(x, y)| ≤ ‖y‖2 whenever (x, y) ∈ B. Therefore,
F −G is Fréchet differentiable in B and both F −G and ∇(F −G) vanish
in X × {0}. This implies (c).

It remains to prove the Fréchet differentiability of F at every point of
∂X × {0}. For (x, y) ∈ B, ‖y‖ is bounded by ̺(x), and both ε and ψ are
bounded by 1. Hence,

|F (x, y)| ≤ |G(x, y)|(1 + ε(x, y))ψ

( ‖y‖
̺(x)

)
≤ 2|G(x, y)|(2.10)

≤ 2|f(x, 0)| + 2
n∑

i=d+1

|ϕi(x, 0)yi|

≤ 2|f(x, 0)| + 2

n∑

i=d+1

|ϕi(x, 0)̺(x)|

≤ 2|f(x, 0)| + 2dist(x, ∂X)2.

For every z ∈ ∂X, property (2) now implies that

(2.11) lim
(x,y)→(z,0)

f(x, y)

‖(x, y) − (z, 0)‖ = 0.

So,

(2.12) lim
(x,y)→(z,0)

|F (x, y)|
‖(x, y) − (z, 0)‖ ≤ lim

(x,y)→(z,0)

2 dist(x, ∂X)2

‖(x, y) − (z, 0)‖ = 0.

Therefore, F is Fréchet differentiable at all points of ∂X × {0}.
The derivatives of Fréchet differentiable functions defined on non-open

sets are in general not unique, which calls for a generalised version of the
chain rule. In this connection, definability is not required.

Lemma 2.4 (Chain rule). Let X ⊂ Rn and Y ⊂ Rm. Let f : X → Y
together with ϕ : X → Rn×m and g : Y → Rk together with γ : Y → Rm×k

be Fréchet differentiable functions relative to X respectively Y . Then h :=
g ◦ f : X → Rp together with θ : X → Rn×k is Fréchet differentiable relative

to X, where

(2.13) θ(x) := γ(f(x))ϕ(x), x ∈ X.
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Proof. We fix x ∈ X and set ξ := f(x). By assumption, there are func-
tions φf : X → Rm and φg : Y → Z such that for all y ∈ X, η ∈ Y ,

(2.14)
f(y) − f(x) = ϕ(x)(y − x) + φf (y − x),

g(η) − g(ξ) = γ(ξ)(η − ξ) + φg(η − ξ),

and

(2.15) lim
y→x

φf (y − x)

‖y − x‖ = 0, lim
η→ξ

φg(η − ξ)

‖η − ξ‖ = 0.

Let ε > 0. We select δ > 0 so small that for any y ∈ X with ‖y − x‖ < δ,

(2.16)
‖φg(ϕ(x)(y − x) + φf (y − x))‖ < ε‖y − x‖/2,
‖γ(ξ)‖ ‖φf (y − x)‖ ≤ ε‖y − x‖/2.

Then

(2.17) ‖h(y) − h(x) − θ(x)(y − x)‖ = ‖g(η) − g(ξ) − γ(ξ)ϕ(x)(y − x)‖
= ‖g(η) − g(ξ) − γ(ξ)(f(y) − f(x) + φf (y − x))‖
≤ ‖φg(f(y) − f(x))‖ + ‖γ(ξ)‖ ‖φf (y − x)‖
≤ ‖φg(ϕ(x)(y − x) + φf (y − x))‖ + ε‖y − x‖/2 ≤ ε‖y − x‖.

Hence, h is Fréchet differentiable at x relative to X with formal derivative
θ(x).

If λ is a C1
Lip function, note that λ extends to a (uniquely determined)

definable Lipschitz continuous function λ with domain cl(X).

Lemma 2.5. Let Y be a C3
Lip cell and U be a definable open neighbour-

hood of Y . Let f : cl(Y ) → R together with ϕ : cl(Y ) → R be a definable

Fréchet differentiable function relative to cl(Y ) such that

(1) f and ϕ are C2 functions in Y ,
(2) f(η) = 0 and ϕ(η) = 0 for η ∈ ∂Y .

Then there is a definable Fréchet differentiable function F : Rn → R such

that

(a) supp(F ) ⊂ cl(U),
(b) F is C3 outside cl(Y ), and

(c) F (η) = f(η), ∇F (η) = ϕ(η), for η ∈ cl(Y ).

Proof. If Y is an open set, we set F |Y = f and F |Rn\Y = 0.

If Y consists of a single point y, then ∂Y = ∅. We select a C3 function
ψ : R → R which vanishes outside (−1, 1) and equals 1 in (−1/2, 1/2). We
further select an ε > 0 such that the ball with radius ε and centre y is
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contained in U . Then the definable function F : Rn → R given by

(2.18) F (x) := ψ

(
1 − 1

ε
‖x− y‖3

)(
f(y) +

n∑

i=1

ϕi(y)(xi − yi)
)

satisfies the conclusion of this lemma.

In all other cases, after some permutation of variables, we may assume
that Y = (h)X := {(x, y) : x ∈ X, y = h(x)} where X ⊂ Rd is an open

definable C3
Lip cell and h : X → Rn−d a definable C3

Lip mapping.

We define λ : X × Rn−d → X × Rn−d by λ(x, y) := (x, y + h(x)). So
λ is a C3

Lip function with C3
Lip smooth inverse. Therefore, both λ and λ−1

extend continuously to definable Lipschitz continuous functions defined on
the closure of X ×Rn−d. The bijectivity of both functions is preserved.

Step 1: Reduction to the situation of Lemma 2.3. We define g :
cl(X) × {0} → R and γ : cl(X) × {0} → Rn by

(2.19)
g(x, 0) := f(λ(x, 0)), x ∈ cl(X),

γ(x, 0) := (ϕ(λ(x, 0)))∇λ(x, 0), x ∈ X,

and γ(x, 0) := 0 for x ∈ ∂X.

Firstly, since λ is Fréchet differentiable in Y , we obtain Fréchet differen-
tiability of g together with γ relative to X × {0} by Lemma 2.4.

Secondly, λ is bijective. Let L be a Lipschitz constant for both λ and

λ
−1

. Then, for ξ ∈ ∂X × {0},

lim
X×{0}∋x→ξ

|g(x)|
‖x− ξ‖ = lim

X×{0}∋x→ξ

|f(λ(x))|
‖x− ξ‖(2.20)

≤ lim
X×{0}∋x→ξ

L|f(λ(x))|
‖λ(x) − λ(ξ)‖

≤ lim
Y ∋λ(x)→λ(ξ)

L|f(λ(x))|
‖λ(x) − λ(ξ)‖

= 0.

Thus, g together with γ is Fréchet differentiable relative to cl(X) × {0}.
Both λ and ϕ are C2 functions so that γ is C1 in X. Therefore, g together

with γ satisfies the conditions of Lemma 2.3.

Step 2. According to Lemma 2.3 there exists a definable Fréchet differ-
entiable function G : Rn → R such that

supp(G) ⊂ cl(W ),(2.21)

G is C3 in Rn \ (cl(X) × {0}),(2.22)

G(x, 0) = g(x, 0), ∇G(x, 0) = γ(x, 0), x ∈ X.(2.23)
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We now define F : Rn → R by

(2.24) F (z) =

{
G(λ−1(z)), z ∈ λ(W ),

0, otherwise.

Step 3: Verifying properties (a)–(c). The support of F is a subset of
cl(λ(W )) ⊂ cl(U), and therefore (a) follows.

The function F is C3 in Rn \ cl(λ(W )) and in (X×Rn−d)\ cl(Y ). Hence,
F is C3 outside cl(Y ), which proves property (b).

Of course, F is Fréchet differentiable at all y ∈ Y , and, by Lemma 2.4,

(2.25) ∇F (y) = ϕ(λ(λ−1(y)))(∇λ)(∇λ−1) = ϕ(y).

Moreover, for η ∈ ∂Y ,

lim
η 6=y→η

|F (y)|
‖y − η‖ = lim

η 6=y→η

|G(λ
−1

(y))|
‖y − η‖ ≤ lim

η 6=y→η

L|G(λ
−1

(y))|
‖λ−1

(y) − λ
−1

(η)‖

≤ lim
λ
−1

(η) 6=λ
−1

(y)→λ
−1

(η)

L|G(λ
−1

(y))|
‖λ−1

(y) − λ
−1

(η)‖
= 0.

Hence, F is Fréchet differentiable at all points of cl(Y ), that is, (c) is evi-
dent.

3. Proofs. The proof of Theorem 1.3 involves the concept of Cm
Lip strat-

ification which we introduce next.

Definition 3.1. Let m be a positive integer. A Cm
Lip stratification of

a closed definable subset A ⊂ Rn is a finite partition of A into subsets
S1, . . . , Sr, called strata, with the following properties.

(1) For each i there is a linear orthogonal isomorphism Φi : Rn → Rn

such that Φi(Si) is a Cm
Lip cell.

(2) For each stratum S, the frontier ∂S is the union of some strata.

A stratification S1, . . . , Sr of A is called compatible with the subsets
A1, . . . , Ak of A if each Aj is the union of some of the strata, j = 1, . . . , k.

For any definable sets A1, . . . , Ak ⊂ Rn there is a Cm
Lip stratification

compatible with A1, . . . , Ak. This is implied by the stronger concept of Λm-
regular stratification (cf. [10, Theorem 1.4]).

Since every Cm
Lip cell is a Cm cell (cf. [4, Chapter 7.3]), each Cm

Lip cell in

Rn is definably homeomorphic to Rd for a unique 0 ≤ d ≤ n (cf. [2, Lem-
ma 2.6]). The number d is called the dimension of the cell. For an arbitrary
definable set X, the dimension of X is given by

(3.1) dim(X) = max{d : X contains a set

definably homeomorphic to Rd}.
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A detailed discussion of dimension in o-minimal structures can be found in
[4, Chapter 4]. We need the fundamental relation between the dimension of
a definable set and its frontier. If X is definable, then, by [4, Chapter 4,
Theorem 1.8],

(3.2) dim(∂X) < dim(X).

This fact, in connection with property (2) in the definition of stratifica-
tion, implies that for each stratum S there is a definable open neighbour-
hood U of S, which is disjoint from every stratum S′ 6= S with dim(S′) ≤
dim(S).

A further interesting property of a definable function f is that the domain
can be partitioned into finitely many definable sets such that the restriction
of f to any of these sets is a Cm function (cf. [4, Chapter 7.3]).

Proof of Theorem 1.3. By using [10, Theorem 1.4] we select a C3
Lip

stratification of Rn which is compatible with A and the sets on which
both f and ϕ are C2 functions. Furthermore, we order the strata S1, . . . , Sr

which are contained in A in such a way that dim(Sj) ≤ dim(Sj+1), j =
1, . . . , r − 1.

We proceed by induction on the number of cells r contained in A.

If r = 1, we obtain the statement of the theorem by Lemma 2.5.

For the induction step, we set B :=
⋃r−1

i=1 Si. Because of inequality (3.2)
and as B contains all strata S ⊂ A of dimension less than dim(B), the
set B is closed. By the induction hypothesis, there exists a definable Fréchet
differentiable function H : Rn → R which is C2 outside B and which satisfies
H|B = f |B and ∇H|B = ϕ|B.

Let g : cl(Sr) → R and γ : cl(Sr) → Rn be defined by g(a) = f(a)−H(a)
and γ(a) = ϕ(a)−∇H(a), a ∈ cl(Sr). The function g together with γ satisfies
the conditions of Lemma 2.5. According to the properties of a stratification
there is a definable open neighbourhood U of Sr disjoint from B. Lemma 2.5
yields a function G which satisfies G|Sr

= g, ∇G|Sr
= γ, and G = 0 out-

side U . Then F = G +H is a definable function satisfying the conclusions
of Theorem 1.3.

In o-minimal structures, the following statement, known as definable

choice (cf. [4, Chapter 6, Proposition 1.2]), holds true:

If S ⊂ Rm+n is definable and π : Rm+n → Rm denotes the projection

onto the first m coordinates, then there is a definable function f : π(S) → Rn

such that Γ (f) ⊂ S.

Proof of Theorem 1.4. Consider the set

(3.3) V := {(a, d) : f is Fréchet differentiable at a with derivative d}.
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Let Γ (f) be the graph of f , and let Φ(a, d) be the formula

a ∈ A ∧ ∀ε ∈ R
[
ε > 0 → ∃δ

[
δ > 0 → ∀x ∈ A(3.4)

[ n∑

i=1

(xi − ai)
2 < δ2 → ∀x ∈ R ∀y ∈ R

[
[(y, a) ∈ Γ (f) ∧ (z, x) ∈ Γ (f)] →

(
z − y −

n∑

i=1

di(xi − ai)
)2

≤ ε2
n∑

i=1

(xi − ai)
2
]]]]

.

Then Φ(a, d) is a first-order formula in the language of the o-minimal struc-
ture M (see [3, Chapter 1.3]). In addition, an element (a, d) ∈ A × Rn

belongs to V if and only if Φ(a, d) holds true. By [3, Theorem 1.13], V is
definable.

If π : V → A denotes the projection onto the first n coordinates, then
by applying definable choice to V and A = π(V ) we obtain a definable
function ϕ : A → Rn such that Γ (ϕ) ⊂ V . Hence, f together with ϕ
is definably Fréchet differentiable relative to the closed definable set A. By
Theorem 1.3, there is a definable Fréchet differentiable function F : Rn → R
with F |A = f .

Proof of Theorem 1.5. Let A ⊂ Rn be definable and let g : A → R be
an arbitrary definable function.

We define ϕ : cl(A) × {0} → Rn+1 by

(3.5) ϕ(a, 0) :=

{
(0, . . . , 0, g(a)) if a ∈ A,

0 if a ∈ ∂A.

If f : cl(A)×{0} → R is the zero function, then f together with ϕ is definably
Fréchet differentiable relative to the definable closed set cl(A) × {0}. By
applying Theorem 1.3 to f and ϕ, there is a definable Fréchet differentiable
function F : Rn+1 → R such that ∇F |cl(A)×{0} = ϕ. As g(a) = ϕn+1(a, 0)
for a ∈ A, and as Fréchet derivatives are of class definably Baire 1, the
statement of the theorem is evident.
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