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Analytic solutions for polynomial-like iterative
equations with variable coefficients

by Bing Xu (Chengdu)

Abstract. Analytic solutions of polynomial-like iterative functional equations with
variable coefficients are discussed in the complex field C by reducing to an auxiliary
equation and by applying known results for systems of nonlinear functional equations of
finite orders.

1. Introduction. An important class of functional equations with iter-
ates of unknown functions ([2, 3, 10]) is the polynomial-like iterative equa-
tions

λ1f(x) + λ2f
2(x) + · · ·+ λnf

n(x) = F (x),(1.1)

where the function F and the constants λk (k = 1, . . . , n) are given, f is
the unknown function and fk denotes the kth iterate of f (i.e., f 0(x) = x,
fk(x) = f(fk−1(x)), k = 1, 2, . . .). For real solutions, results on continuity,
differentiability and symmetries are given for example in [4, 11–14]. On the
other hand, for complex solutions, analyticity is also discussed in [6, 7].

It is also interesting to study equation (1.1) with variable coefficients,
i.e., when all λk’s are functions of x, denoted by λk(x) (k = 1, . . . , n). It
is well known that linear ordinary differential equations with variable co-
efficients are much more complicated than those with constant coefficients.
With such motivation, existence of continuous solutions for equation (1.1)
with variable coefficients was investigated in [15] and its differentiable solu-
tions were further discussed in [8]. However, no result on analytic solutions
has been given.

In this paper, under the basic assumption that

(H) λk (k = 1, . . . , n) and F are analytic complex-valued functions in a
neighborhood of the origin in the complex field C and F (0) = 0,
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we study local analytic solutions of the functional equation

λ1(z)f(z) + λ2(z)f2(z) + · · ·+ λn(z)fn(z) = F (z),(1.2)

where n ≥ 2 is a fixed positive integer and f is the unknown function. Our
main result is the following:

Theorem. Suppose that hypothesis (H) holds and that α1, α2 are zeros
of the polynomial P (z) :=

∑n
k=1 λk(0)zk −F ′(0) in C with the smallest and

largest absolute value respectively. If either (A) |α1| < 1 and F ′(0) 6= 0, or
(B) |α2| > 1 and λn(0) 6= 0, then equation (1.2) has a local analytic solution
f such that f(0) = 0 and f ′(0) = α, where α = α1 in case (A) and α = α2
in case (B).

Such an analytic solution will be found by discussing an auxiliary func-
tional equation

n∑

k=1

λk(ϕ(z))ϕ(αkz) = F (ϕ(z)).(1.3)

Having an analytic solution ϕ of (1.3) invertible in a neighborhood of the
origin with ϕ(0) = 0 we observe that f(z) = ϕ(αϕ−1(z)) is the desired
solution of (1.2). We took this idea from [7] where the case of constant λ’s
is considered; cf. also [3, Section 0.1A].

2. Auxiliary equation in case (A). For a real δ > 0 we put Uδ :=
{z ∈ C | |z| < δ}. By hypotheses in (H) and (A) the function F is invertible
in a neighborhood of 0 and F−1 is analytic at 0. Let G := F−1 for simplicity.
Then the auxiliary equation (1.3) can be rewritten as

ϕ(z) = G
( n∑

k=1

λk(ϕ(z))ϕ(αkz)
)

(2.4)

in a neighborhood of the origin. Obviously equation (2.4) is of the form

ϕ(z) = h(ϕ(g0(z)), ϕ(g1(z)), . . . , ϕ(gn(z))),(2.5)

where gk(z) := αkz and

h(w0, w1, . . . , wn) := G
( n∑

k=1

λk(w0)wk
)

(2.6)

for z ∈ Uδ, wk ∈ U%, k = 0, . . . , n. Here δ, % are two small positive constants.
Clearly, the function h : Un+1

% → C is analytic. Some results of [1], [5] and
[9] (see also [3]) on analytic solutions of equation (2.5) will be useful.



Analytic solutions for iterative equations 195

Choose α = α1. Since |α| < 1 as assumed in case (A), let r be the
smallest positive integer such that

|G′(0)|
n∑

k=1

|λk(0)| |α|kr < 1.(2.7)

Similar to the notations in [3] and [5], let

{wk} := (w0, w1, . . . , wn),

{wk,p} := (w0,p, w1,p, . . . , wn,p), ∀p ∈ {0, 1, . . . , r}.
(2.8)

For each p ∈ {0, 1, . . . , r}, define a function hp : Un+1
% × Cp(n+1) → C as

follows:

h0 := h, wk,0 := wk,(2.9)

hp+1({wk,0}, {wk,1}, . . . , {wk,p+1})(2.10)

:=
n∑

k=0

p∑

q=0

∂hp
∂wk,q

({wk,0}, {wk,1}, . . . , {wk,p})wk,q+1 g
′
k(z).

For the same reasons as for Lemmas 5.6.1 and 5.6.2 in [3], it is easy to prove
the following two lemmas by induction, so their proofs are omitted.

Lemma 1. For p = 1, . . . , r, the function hp is analytic on Un+1
% ×

Cp(n+1), and

hp({wk,0}, {wk,1}, . . . , {wk,p}) = up({wk,0}, {wk,1}, . . . , {wk,p−1})

+
n∑

k=0

∂h

∂wk,0
({wk,0})wk,p(g′k(z))p,

where up : Un+1
% × C(p−1)(n+1) → C is analytic and u1({wk,0}) = 0.

Lemma 2. Let ϕ : Uδ → U% be an analytic function. If

ξ(z) := h(ϕ(g0(z)), ϕ(g1(z)), . . . , ϕ(gn(z)))

on Uδ, then the derivatives of ϕ and ξ satisfy

ξ(p)(z) = hp({ϕ(gk(z))}, {ϕ′(gk(z))}, . . . , {ϕ(p)(gk(z))}), p = 1, . . . , r.

By the definitions of gk and h in (2.6) we have
n∑

k=0

∂h

∂wk,0
({wk,0})wk,p(g′k(z))p

=
n∑

k=1

G′
( n∑

k=1

λk(w0,0)wk,0
)

(λ′k(w0,0)w0,pwk,0 + λk(w0,0)wk,pαkp)
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for every p = 1, . . . , r. Lemmas 1 and 2 imply that if ϕ : Uδ → U% is an
analytic solution of equation (2.4) such that ϕ(0) = 0 then the values

dp := ϕ(p)(0), p = 1, . . . , r,

satisfy the algebraic system




−P (α)
F ′(0)

d1 = 0,

−P (αp)
F ′(0)

dp = up({0}, {d1}, . . . , {dp−1}), p = 2, . . . , r,

(2.11)

where P is defined in our Theorem and up is given in Lemma 1. Solvability of
(2.11) is a necessary condition for the existence of analytic solutions of (2.4).

Lemma 3. Suppose that hypotheses (H) and (A) hold. Then P (αp) 6= 0
for p = 2, . . . , r.

Proof. |α| > 0 since F ′(0) 6= 0. Thus 0 < |αr| < |αr−1| < · · · < |α2| <
|α| < 1. By the assumption on α in our Theorem, none of the powers αp

(p = 2, . . . , r) is a zero of P .

Lemma 3 not only gives solvability of system (2.11) but also implies
that the solutions are uniquely determined by d1, which can be chosen ar-
bitrarily since P (α) = 0. Thus we obtain existence of analytic solutions for
equation (2.4).

Lemma 4. Suppose that hypotheses (H) and (A) hold. Let α = α1 and r
be the smallest positive integer satisfying inequality (2.7). For any η1 ∈ C,
system (2.11) has a unique solution (d1, . . . , dr) satisfying d1 = η1 and equa-
tion (2.4) has a unique analytic solution ϕ : Uδ → U% such that ϕ(0) = 0,
ϕ′(0) = η1, ϕ(p)(0) = dp, p = 2, . . . , r, provided that the radius δ of the disc
Uδ is small enough.

Proof. By Lemma 3, for any d1 = η1, we can uniquely determine the se-
quence {dp}rp=2 by system (2.11) recursively. We further observe that equa-
tion (2.4) is a special case of the functional equation (2.5), which is discussed
in [3], and that

n∑

k=0

∣∣∣∣
∂h

∂wk,0
({0})(g′k(z))r

∣∣∣∣ = |G′(0)|
n∑

k=1

|λk(0)| |α|kr < 1,

which satisfies the condition (7.6.6) in [3] (p. 306). Thus Theorem 7.6.7 in
[3] implies that equation (2.4) has a unique analytic solution ϕ : Uδ → U%
satisfying ϕ(0) = 0, ϕ′(0) = η1, ϕ(p)(0) = dp, p = 2, . . . , r, provided that δ
is small enough.
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3. Auxiliary equation in case (B). If hypotheses (H) and (B) hold,
choose α = α2 in the auxiliary equation (1.3). Clearly |α| > 1. Let z =
ζ/αn in the auxiliary equation (1.3). This change of variables yields another
equivalent equation

n∑

k=1

λk(ϕ(βnζ))ϕ(βn−kζ) = F (ϕ(βnζ)),(3.12)

where β := 1/α. Since λn(z) 6= 0 in a sufficiently small neighborhood U% of
the origin by continuity and by the assumption that λn(0) 6= 0 in case (B),
we can convert (3.12) into

ϕ(ζ) =
1

λn(ϕ(βnζ))

(
F (ϕ(βnζ))−

n−1∑

k=1

λk(ϕ(βnζ))ϕ(βn−kζ)
)

(3.13)

in a neighborhood of the origin, which is a functional equation of the form
(2.5) with gk(ζ) := βkζ and

h(w0, w1, . . . , wn) :=
1

λn(wn)

(
F (wn)−

n−1∑

k=1

λk(wn)wn−k

)
(3.14)

for ζ ∈ Uδ, wk ∈ U%, k = 0, . . . , n.
Furthermore, one can consider the smallest positive integer s such that

1
|λn(0)|

(
|F ′(0)| |β|ns +

n−1∑

k=1

|λk(0)| |β|(n−k)s
)
< 1(3.15)

because |β| = 1/|α| < 1. By the definitions of gk and h in (3.14) we have
n∑

k=0

∂h

∂wk,0
({wk,0})wk,p(g′k(ζ))p

=
F ′(wn,0)λn(wn,0)− F (wn,0)λ′n(wn,0)

λ2
n(wn,0)

wn,pβ
np

−
n−1∑

k=1

λk(wn,0)
λn(wn,0)

wn−k,pβ
(n−k)p

−
n−1∑

k=1

λ′k(wn,0)λn(wn,0)− λk(wn,0)λ′n(wn,0)
λ2
n(wn,0)

wn,pβ
npwn−k,0

for every p = 1, . . . , s. By Lemmas 1 and 2, if ϕ : Uδ → U% is an analytic
solution of equation (3.13) such that ϕ(0) = 0 then the values

dp := ϕ(p)(0), p = 1, . . . , s,
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satisfy the algebraic system
{
Q(β)d1 = 0,

Q(βp)dp = up({0}, {d1}, . . . , {dp−1}), p = 2, . . . , s,
(3.16)

where Q(z) := 1− (F ′(0)zn−∑n−1
k=1 λk(0)zn−k)/λn(0) in C and up is defined

as in Lemma 1. Similarly, solvability of the system is a consequence of the
following lemma.

Lemma 5. Suppose that hypotheses (H) and (B) hold. Then Q(βp) 6= 0
for p = 2, . . . , s.

Proof. Note that

Q(z) =
∑n

k=1 λk(0)zn−k − F ′(0)zn

λn(0)
=

P (1/z)
(1/z)nλn(0)

.

If γ 6= 0 is a zero of P (z), then 1/γ is a zero of Q(z). Since α = α2 and
|α| > 1 in case (B), β is a zero of Q(z) with the smallest absolute value and
0 < |β| < 1. Hence 0 < |βs| < |βs−1| < · · · < |β2| < |β| < 1. So none of the
powers βp (p = 2, . . . , s) is a zero of Q.

Lemma 5 also implies that solutions of (3.16) are uniquely determined
by d1, which can be chosen arbitrarily since Q(β) = 0. Thus we obtain
existence of analytic solutions for equation (3.13).

Lemma 6. Suppose that hypotheses (H) and (B) hold. Let s be the small-
est positive integer which satisfies inequality (3.15). For any η2 ∈ C, sys-
tem (3.16) has a unique solution (d1, . . . , ds) satisfying d1 = η2 and equa-
tion (3.13) has a unique analytic solution ϕ : Uδ → U% such that ϕ(0) =
0, ϕ′(0) = η2, ϕ

(p)(0) = dp, p = 2, 3, . . . , s, provided that δ is small enough.

The proof is similar to that of Lemma 4 so we omit it.

4. Proof of the Theorem and remarks

Proof of the Theorem. According to Sections 2 and 3, for any η ∈ C
equation (1.3) has a unique analytic solution ϕ in a neighborhood of the
origin satisfying ϕ(0) = 0 and ϕ′(0) = η. For η 6= 0 the inverse ϕ−1(z) is
well defined and analytic in a neighborhood of the origin. Let

f(z) = ϕ(αϕ−1(z)).(4.17)

Obviously, f is also analytic in a neighborhood of the origin and f k(z) =
ϕ(αkϕ−1(z)) for any integer k > 0. Hence,
n∑

k=1

λk(z)fk(z) =
n∑

k=1

λk(ϕ(ϕ−1(z)))ϕ(αkϕ−1(z)) = F (ϕ(ϕ−1(z))) = F (z).
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That is, f satisfies equation (1.2) in a neighborhood of the origin. Further-
more, f(0) = 0 and f ′(0) = α. The proof of the Theorem is complete.

Consider a concrete iterative equation
(

1
2

+ sin z
)2

f(z)− 4 cos5 z f2(z) + (cos(2z) + sin z)3f3(z) = zez.(4.18)

It has the form (1.2) with λ1(z) = (1/2 + sin z)2, λ2(z) = −4 cos5 z, λ3(z) =
(cos(2z) + sin z)3 and F (z) = zez. Obviously, the functions λ1, λ2, λ3 and F
are analytic, F (0) = 0, F ′(0) = 1 and λ3(0) = 1. Moreover, the polynomial

λ1(0)z + λ2(0)z2 + λ3(0)z3 − F ′(0)

has exactly three complex zeros ±i/2 and 4. Since two of them are less than
1 and the other is greater than 1 in absolute value, our Theorem guarantees
that equation (4.18) has at least three analytic solutions in a neighborhood
of the origin.

Existence of analytic solutions remains unsettled in the remaining cases:

(i) all zeros of P (z) are 1 in absolute value,
(ii) all zeros are not greater than 1 in absolute value and at least one

zero is less than 1 in absolute value, but F ′(0) = 0,
(iii) all zeros are not less than 1 in absolute value and at least one is

greater than 1 but the leading coefficient λn(z) is a nonzero function
with λn(0) = 0.
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