Positive solutions with given slope of a nonlocal second order boundary value problem with sign changing nonlinearities

by P. Ch. TSAMATOS (Ioannina)

Abstract. We study a nonlocal boundary value problem for the equation \(x''(t) + f(t, x(t), x'(t)) = 0, \quad t \in [0, 1] \). By applying fixed point theorems on appropriate cones, we prove that this boundary value problem admits positive solutions with slope in a given annulus. It is remarkable that we do not assume \(f \geq 0 \). Here the sign of the function \(f \) may change.

1. Introduction. This paper discusses the nonlinear equation

\[
(1.1) \quad x''(t) + f(t, x(t), x'(t)) = 0, \quad t \in I := [0, 1],
\]

with the initial condition

\[
(1.2) \quad x(0) = 0
\]

and the nonlocal boundary condition

\[
(1.3) \quad x'(1) = \int_0^1 x'(s) \, dg(s),
\]

where \(f : I \times \mathbb{R} \times \mathbb{R} \to \mathbb{R} \) is a continuous function, \(g : I \to \mathbb{R} \) is an increasing function and the integral in (1.3) is a Riemann–Stieltjes integral.

Condition (1.3) is obviously the continuous version of the multipoint boundary condition

\[
(1.4) \quad x'(1) = \sum_{i=1}^{m} \alpha_i x'({\xi}_i),
\]

where \({\xi}_i \in (0, 1), \ i = 1, \ldots, m \) and the real numbers \(\alpha_1, \ldots, \alpha_m \) have the same sign. The boundary value problem (1.1), (1.2), (1.4) appeared early
in the literature (see [16] and the references therein) and has recently been studied e.g. in [13, 14]. Also the problem of the existence of positive solutions for the nonlocal boundary value problem (1.1)–(1.3) has been dealt with by Karakostas and Tsamatos in several papers [17–20]. We note that the interest in the existence of positive solutions for ordinary differential equations comes from the corresponding problems in partial differential equations. Indeed, the problem of the existence of positive solutions for partial semi-linear elliptic equations is very old, has many applications and has been widely studied. (See the review article by Lions [23].) H. Wang [27] showed how such a problem can be reduced to a second order boundary value problem for ordinary differential equations with two-point boundary conditions. Since then, the problem of existence of positive solutions for second order ordinary differential equations, with various boundary conditions, has been dealt with by many authors. (See e.g. [1, 4–10, 12, 15, 17–20, 22, 24–26].) The book of Agarwal, O’Regan and Wong [2] gives a good overview on this issue.

A very common assumption in the study of positive solutions for boundary value problems for equation (1.1), especially when Krasnosel’skii’s fixed point theorem is applied, is that \(f \geq 0 \). (See e.g. [8–10, 15, 17–20, 22, 24–27].) This assumption is very helpful in proving that such a boundary value problem has at least one positive and concave solution. There are fewer papers in which \(f \) is allowed to change sign. (See [1, 4, 5, 12, 22].) Motivated mainly by [12, 17–20, 22], in the present paper we establish sufficient conditions under which the boundary value problem (1.1)–(1.3) has positive solutions in the case when \(f \) can change sign. To obtain our results, apart from the well known Krasnosel’skii fixed point theorem (see Theorem 1.2 below), we also use another fixed point theorem on a Banach space ordered by an appropriate cone (see Theorem 1.1 below). The concept of a cone in a Banach space is essential to formulate and apply both these theorems.

Definition. Let \(\mathcal{B} \) be a real Banach space. A *cone* in \(\mathcal{B} \) is a nonempty, closed set \(\mathbb{K} \subset \mathcal{B} \) such that

(i) \(\kappa u + \lambda v \in \mathbb{K} \) for all \(u, v \in \mathbb{K} \) and all \(\kappa, \lambda \geq 0 \),

(ii) \(u, -u \in \mathbb{K} \) implies \(u = 0 \).

In a Banach space \(\mathcal{B} \) we set

\[
B_\rho := \{ x \in \mathcal{B} : \| x \| < \rho \}, \quad \partial B_\rho := \{ x \in \mathcal{B} : \| x \| = \rho \}.
\]

Theorem 1.1 ([3, p. 661]). Let \(\mathcal{B} \) a Banach space, \(\mathbb{K} \) a cone in \(\mathcal{B} \) and \(h : \mathbb{K} \cap \bar{B}_\rho \to \mathbb{K} \) a compact map such that \(h(x) \neq \lambda x \) for all \(x \in \mathbb{K} \cap \partial B_\rho \) and \(\lambda \geq 1 \). Then \(h \) has a fixed point in \(\mathbb{K} \cap \bar{B}_\rho \).

Theorem 1.2 ([11, 21]). Let \(\mathcal{B} \) be a Banach space and let \(\mathbb{K} \) be a cone in \(\mathcal{B} \). Assume that \(\Omega_1 \) and \(\Omega_2 \) are open bounded subsets of \(\mathcal{B} \), with \(0 \in \Omega_1 \subset \)
\(\Omega_1 \subset \Omega_2 \), and let
\[
T : \mathbb{K} \cap (\Omega_2 \setminus \Omega_1) \to \mathbb{K}
\]
be a completely continuous operator such that either
\[
\|Tu\| \leq \|u\|, \quad u \in \mathbb{K} \cap \partial \Omega_1, \quad \|Tu\| \geq \|u\|, \quad u \in \mathbb{K} \cap \partial \Omega_2,
\]
or
\[
\|Tu\| \geq \|u\|, \quad u \in \mathbb{K} \cap \partial \Omega_1, \quad \|Tu\| \leq \|u\|, \quad u \in \mathbb{K} \cap \partial \Omega_2.
\]
Then \(T \) has a fixed point in \(\mathbb{K} \cap (\Omega_2 \setminus \Omega_1) \).

2. The assumptions and main results. We denote by \(\mathbb{R} \) the real line and by \(\mathbb{R}^+, I \) the intervals \([0, \infty), [0, 1] \) respectively. Also, \(C^1_0(I) \) denotes the space of all functions \(x : I \to \mathbb{R} \) with \(x' \) continuous on \(I \) and \(x(0) = 0 \). The norm
\[
\|x\|_0^1 := \sup\{|x'(t)| : t \in I\}
\]
makes \(C^1_0(I) \) a Banach space.

For the function \(g \) we assume the following:
\begin{itemize}
 \item[(H1)] \(g : I \to \mathbb{R} \) is an increasing function such that
 \[
 g(0) = 0, \quad g(1) \neq 1.
 \]
\end{itemize}

Consider equation (1.1) with the boundary conditions (1.2), (1.3). By a solution of the boundary value problem (1.1)−(1.3) we mean a function \(x \in C^1_0(I) \) satisfying condition (1.3) and equation (1.1) for all \(t \in I \).

Searching for solutions we shall reformulate the problem (1.1)−(1.3) to obtain an operator equation of the form \(x = Ax \), for an appropriate operator \(A \). To find \(A \) consider an equation of the form
\[
x''(t) + z(t) = 0, \quad t \in I,
\]
subject to conditions (1.2), (1.3). By integration we get
\[
(2.1) \quad x'(t) = x'(1) + \int_0^1 z(s) \, ds.
\]
Then, from (1.3), it follows that
\[
x'(1) = \gamma \int_0^1 z(s) \, ds \, dg, \quad (1 - g(1)),
\]
where
\[
\gamma := \frac{1}{1 - g(1)}.
\]
Integrating (2.1) once again we obtain
\[x(t) = \gamma t \int_0^1 z(r) \ dr \ dg(s) + \int_0^1 z(r) \ dr \ ds, \quad t \in I. \]

This process shows that solving the boundary value problem (1.1)–(1.3) is equivalent to solving the operator equation \(x = Ax \) in \(C^1_0(I) \), where \(A \) is the operator defined by
\[(Ax)(t) = \gamma t \int_0^1 f(r, x(r), x'(r)) \ dr \ dg(s) + \int_0^1 f(r, x(r), x'(r)) \ dr \ ds \]
for \(x \in C^1_0(I) \) and \(t \in I \).

Before presenting our results we state our assumptions as well as introduce some useful notations:

\((H_2)\) There exist nonnegative real-valued functions \(p, q, r \) in \(L^1(I) \) and nonnegative, nondecreasing real-valued functions \(\Phi, \Psi \), locally integrable on \(\mathbb{R}^+ \) and such that
\[|f(t, u, v)| \leq p(t) + q(t)\Phi(|u|) + r(t)\Psi(|v|) \]
for all \((t, u, v) \in I \times \mathbb{R} \times \mathbb{R}\). Moreover, \(p, q \) and \(r \) are not equal to zero almost everywhere.

Next define the continuous functions
\[P(t) := \int_0^t p(s) \ ds, \quad Q(t) := \int_0^t q(s) \ ds, \quad R(t) := \int_0^t r(s) \ ds, \quad t \in I, \]
\[Q_m(t) := \int_t^1 q(\theta)\Phi(\theta m) \ d\theta, \quad t \in I, \ m \in \mathbb{R}^+, \]
and
\[F(m) := \gamma \int_0^1 f(r, mr, m) \ dr \ dg(s), \quad m \in \mathbb{R}^+. \]

Moreover, if \(w : I \to \mathbb{R} \) is a continuous function, we define
\[w_g = \int_0^1 w(s) \ dg(s). \]

\((H_3)\) There exists \(T > 0 \) such that
\[|\gamma|(P_g + (Q_T)g + \Psi(T)R_g) + P(0) + Q_T(0) + R(0)\Psi(T) < T. \]

\((H_4)\) The function \(\gamma f(t, u, v) \) is nonincreasing with respect to the variables \(u, v \).

Now we are in a position to prove our first main result:
THEOREM 2.1. Let assumptions (H1)–(H4) be satisfied, and suppose that
(H5) there exists Θ > T such that $F(\Theta) - P(0) - Q_\Theta(0) - \Psi(\Theta)R(0) \geq 0$.
Then there exists a solution $x \in C_0^1(I)$ of the boundary value problem (1.1)–
(1.3) such that $0 \leq x(t) \leq \Theta t$ for $t \in I$, where T is defined by (H3).

Proof. We intend to apply Theorem 1.1. For this purpose consider the
set
$$K := \{ x \in C_0^1(I) : x'(t) \geq 0, t \in I \} ,$$
which is a cone in $C_0^1(I)$, and the set
$$B_\Theta = \{ x \in C_0^1(I) : \| x \|_0^1 < \Theta \} ,$$
where Θ is the positive constant ensured by assumption (H5). We will prove that
$$A(K \cap \overline{B_\Theta}) \subset K .$$
Indeed, if $x \in K \cap \overline{B_\Theta}$, then $0 \leq x'(t) \leq \Theta$ and $0 \leq x(t) \leq \Theta t$ for $t \in I$. Moreover, by (H2), (H4) and (H5), for every $t \in I$ we have

$$\begin{align*}
(Ax)'(t) &= \gamma \int_0^1 f(\theta, x(\theta), x'(\theta)) \, d\theta \, d\varrho(s) + \int_0^1 f(\theta, x(\theta), x'(\theta)) \, d\theta \\
&\geq \gamma \int_0^1 f(\theta, x(\theta), x'(\theta)) \, d\theta \, d\varrho(s) - \int_0^1 |f(\theta, x(\theta), x'(\theta))| \, d\theta \\
&\geq \gamma \int_0^1 f(\theta, \Theta \theta, \Theta) \, d\theta \, d\varrho(s) \\
&\quad - \int_0^1 (p(\theta) + q(\theta)\Phi(|x(\theta)|) + r(\theta)\Psi(|x'(\theta)|)) \, d\theta \\
&\geq F(\Theta) - \int_0^1 (p(\theta) + q(\theta)\Phi(\Theta) + r(\theta)\Psi(\Theta)) \, d\theta \\
&\geq F(\Theta) - P(0) - Q_\Theta(0) - \Psi(\Theta)R(0) \geq 0 .
\end{align*}$$

Now we define the open set
$$B_T = \{ x \in C_0^1(I) : \| x \|_0^1 < T \} ,$$
where T is the positive constant ensured by assumption (H3). Since, by
(H5), $T < \Theta$, we have $K \cap B_T \subset K \cap B_\Theta$ and thus
$$A(K \cap B_T) \subset K .$$
Furthermore, we will show that $\lambda x \neq Ax$ for every $\lambda \geq 1$ and $x \in K$ with
$\| x \|_0^1 = T$. Suppose that, on the contrary, $x \in K$, $\| x \|_0^1 = T$ and $\lambda x = Ax$ for
some $\lambda \geq 1$. Then $0 \leq x'(t) \leq T$ and $0 \leq x(t) \leq Tt$ for $t \in I$. Thus, taking into account assumption (H_2), for every $t \in I$ we have

\begin{equation}
(2.4) \quad x'(t) \leq \lambda x'(t) = (Ax)'(t)
\end{equation}

\begin{align*}
\leq |\gamma| \int_0^1 \int_0^1 |f(\theta, x(\theta), x'(\theta))| \, d\theta \, dg(s) + \int_0^1 |f(\theta, x(\theta), x'(\theta))| \, d\theta \\
\leq |\gamma| \int_0^1 \int_0^1 (p(\theta) + q(\theta)\Phi(x(\theta)) + r(\theta)\Psi(x'(\theta))) \, d\theta \, dg(s) \\
+ \int_0^1 (p(\theta) + q(\theta)\Phi(x(\theta)) + r(\theta)\Psi(x'(\theta))) \, d\theta \\
\leq |\gamma| P_g + |\gamma| \int_0^1 \int_0^1 q(\theta)\Phi(\theta \xi) \, d\theta \, dg(s) + |\gamma| \int_0^1 \int_0^1 r(\theta)\Psi(\theta \xi) \, d\theta \, dg(s) \\
+ P(0) + \int_0^1 q(\theta)\Phi(\theta \xi) \, d\theta + \int_0^1 r(\theta)\Psi(\theta \xi) \, d\theta \\
= |\gamma|(P_g + (Q_T)_g + \Psi(T)R_g) + P(0) + Q_T + R(0)\Psi(T).
\end{align*}

Therefore we have

\begin{align*}
T = \|x\|_0^1 = \sup_{t \in I} |x'(t)| \leq |\gamma|(P_g + (Q_T)_g + \Psi(T)R_g) + P(0) + Q_T + R(0)\Psi(T),
\end{align*}

which contradicts (H_3).

The above statements ensure that Theorem 1.1 is applicable and the assertion of our theorem follows. \(\blacksquare\)

In order to prove our second main result we need the following lemma.

Lemma 2.2. Let assumptions (H_1)–(H_3) be satisfied, and suppose that

$(H_6) \quad F(0) - P(0) - Q(0)\Phi(0) - R(0)\Psi(0) > 0.$

Then there exists $M \in (0, T)$ such that

\begin{equation}
(2.5) \quad F(M) = P(0) + Q_M(0) + R(0)\Psi(M) + M,
\end{equation}

where T is defined by (H_3).

Proof. Define the continuous real-valued function L by

\[L(m) := F(m) - P(0) - Q_m(0) - R(0)\Psi(m) - m, \quad m \geq 0. \]

By assumption (H_6) we have $L(0) > 0$. Therefore, since F and L are con-
Boundary value problems with sign changing nonlinearities

It is enough to show that $L(T) < 0$. To this end observe that

$$F(T) = \gamma \int_{0}^{1} f(\theta, \theta T) d\theta dg(s) \leq |\gamma| \int_{0}^{1} |f(\theta, \theta T)| d\theta dg(s)$$

$$\leq |\gamma| \int_{0}^{1} (p(\theta) + q(\theta)\Phi(\theta T) + r(\theta)\Psi(T)) d\theta dg(s)$$

$$\leq |\gamma|P_g + |\gamma| \int_{0}^{1} q(\theta)\Phi(\theta T) d\theta dg(s) + |\gamma| \int_{0}^{1} r(\theta)\Psi(T) d\theta dg(s)$$

$$= |\gamma|(P_g + (Q_T)g + R_g\Psi(T)).$$

Hence it suffices to prove that

$$|\gamma|(P_g + (Q_T)g + R_g\Psi(T)) - P(0) - Q_T(0) - R(0)\Psi(T) - T < 0,$$

which, in view of (H_3), is obvious.

Theorem 2.3. Let assumptions (H_1)–(H_6) be satisfied. Then there exists a solution $x \in C^1_0(I)$ of the boundary value problem (1.1)–(1.3) such that $M \leq \|x\|_0^1 \leq T$, where M and T are defined by (2.5) and (H_3), respectively.

Proof. Our purpose is to apply Theorem 1.2. Indeed, consider the cone \mathbb{K} and the set B_{Θ} as in the proof of Theorem 2.1 and define the open sets

$$\Omega_1 := B_M = \{x \in C^1_0(I) : \|x\|_0^1 < M\}$$

$$\Omega_2 := B_T = \{x \in C^1_0(I) : \|x\|_0^1 < T\}.$$

Let also A be the operator defined by (2.2) on the cone \mathbb{K}. As in the proof of Theorem 2.1, we can show that

$$A(\mathbb{K} \cap \overline{B}_{\Theta}) \subset \mathbb{K}.$$

Since $M < T < \Theta$, we have $\mathbb{K} \cap (\overline{\Omega}_2 \setminus \Omega_1) \subset \mathbb{K} \cap \overline{B}_{\Theta}$ and thus

$$A(\mathbb{K} \cap (\overline{\Omega}_2 \setminus \Omega_1)) \subset \mathbb{K}.$$

Now consider an $x \in \mathbb{K} \cap \partial \Omega_1$. Then $\|x\|_0^1 = M$, and following the same argument as in (2.3), we derive

$$(Ax)'(t) \geq F(M) - P(0) - Q_M(0) - \Psi(M)R(0).$$

Therefore, taking into account (2.5) we have

$$(Ax)'(t) \geq M = \|x\|_0^1, \quad t \in I,$$

which means that

$$\|Ax\|_0^1 \geq \|x\|_0^1, \quad x \in \mathbb{K} \cap \partial \Omega_1.$$
Now consider a point \(x \in \mathbb{K} \cap \partial \Omega_2 \). Then \(\|x\|_0^1 = T \), and following the same argument as in (2.4) and taking into account \((H_3)\), we obtain
\[
\|Ax\|_0^1 = \sup_{t \in I} |(Ax(t))'| \\
\leq |\gamma|P_g + P(0)|\gamma|Q_g(T) + Q_T(0) + \Psi(T)(|\gamma|R_g + R(0)) \leq T,
\]
i.e.
\[
\|Ax\|_0^1 \leq \|x\|_0^1, \quad x \in \mathbb{K} \cap \partial \Omega_2.
\]
The above statements ensure that Theorem 1.2 is applicable and the assertion of our theorem follows.

3. Applications

The sublinear case. Here we suppose that \(f \) satisfies the following condition:
\[(\tilde{H}_2)\quad \text{There exist nonnegative real-valued functions } p, q, r \text{ in } L^1(I), \text{ not equal to zero almost everywhere and such that}
\]
\[
|f(t, u, v)| \leq p(t) + q(t)|u| + r(t)|v|
\]
for all \((u, v) \in \mathbb{R} \times \mathbb{R}\) and all \(t \in I \).

This is, obviously, the case of assumption \((H_2)\) when \(\Phi \) and \(\Psi \) are both the identity functions. Then we have
\[
Q_m(t) = m \int_0^1 \theta q(\theta) d\theta, \quad (Q_m)_g = m \int_0^1 \theta q(\theta) d\theta dg(s),
\]
and thus assumption \((H_3)\) takes the form:
\[(\tilde{H}_3)\quad \text{There exists } T > 0 \text{ such that}
\]
\[
(3.1) \quad |\gamma| \left(P_g + T \int_0^1 \theta q(\theta) d\theta dg(s) + TR_g \right) + P(0) + T \int_0^1 \theta q(\theta) d\theta + TR(0) < T.
\]

Now we set
\[
\tilde{q}(t) = tq(t), \quad \tilde{Q}(t) = \int_t^1 \tilde{q}(s) ds,
\]
and by (3.1) we obtain
\[
T(1 - |\gamma|\tilde{Q}_g - |\gamma|R_g - \tilde{Q}(0) - R(0)) > |\gamma|P_g + P(0).
\]
Then, if
\[
(3.2) \quad |\gamma|(\tilde{Q}_g + R_g) + \tilde{Q}(0) + R(0) < 1,
\]
we can take
\begin{equation}
T > \frac{|\gamma| P_g + P(0)}{1 - |\gamma|(Q_g + R_g) - Q(0) - R(0)} =: K.
\end{equation}
Moreover assumptions \((H_5)\) and \((H_6)\) become:
\begin{enumerate}
\item [(\hat{H}_5)] there exists \(\Theta > K\) such that \(F(\Theta) - P(0) - Q\Theta(0) - \Theta R(0) \geq 0\), and
\item [(\hat{H}_6)] \(F(0) > P(0)\),
\end{enumerate}
respectively.
Therefore we have the following corollaries of Theorems 2.1 and 2.3 respectively.

Corollary 3.1. Let assumptions \((H_1), (\hat{H}_2), (H_4), (\hat{H}_5)\) be satisfied, and suppose that \((3.2)\) holds. Then there exists a solution \(x \in C^1_0(I)\) of the boundary value problem \((1.1)\)–\((1.3)\) such that \(0 \leq x(t) \leq Tt\) for \(t \in I\), where \(T > K\) and \(K\) is defined by \((3.3)\).

Corollary 3.2. Let assumptions \((H_1), (\hat{H}_2), (H_4), (\hat{H}_5), (\hat{H}_6)\) be satisfied, and suppose that \((3.2)\) holds. Then there exists a solution \(x \in C^1_0(I)\) of the boundary value problem \((1.1)\)–\((1.3)\) such that \(M \leq \|x\|^0 \leq T\), where \(T > K\) and \(K, M\) are defined by \((3.3), (2.5)\), respectively.

An example. Consider the following nonlocal boundary value problem:
\begin{align}
&x''(t) + bx'(t) + btx(t) - 1 = 0, \quad t \in I, \\
&x(0) = 0, \quad x'(1) = \int_0^1 x'(s) \, dg(s),
\end{align}
where \(b\) is a positive constant and \(g(s) = \frac{5}{4}s^2\).

We wish to check the applicability of Corollary 3.2 to this boundary value problem. In the present case we have \(f(t, u, v) = -1 + btu + bv\) and thus \(|f(t, u, v)| \leq 1 + b|u| + b|v|\). So it is clear that assumptions \((H_1), (H_2)\) are satisfied, and moreover, \(p(t) = 1\) and \(q(t) = r(t) = b\). Furthermore we have
\[\gamma = -4, \quad F(0) = -4 \int_0^1 (-1) \, d\theta \, dg(s) = \frac{5}{3}, \quad P(0) = \int_0^1 p(s) \, ds = 1.\]
Observe that \(F(0) = 5/3 > 1 = P(0)\), so assumption \((\hat{H}_6)\) is satisfied. Also, since \(\gamma f(t, u, v) = 4 - 4btu - 4bv\), \(\gamma f\) is nonincreasing with respect to the variables \(u, v\), i.e. assumption \((H_4)\) is satisfied. Moreover, we have
\[\tilde{Q}(t) = \int_t^1 bs \, ds = \frac{1 - t^2}{2} b, \quad \tilde{Q}_g = \int_0^1 \tilde{Q}(s) \, dg(s) = \frac{5b}{16},\]
Thus, inequality (3.2) takes the form $b < 12/53$. Moreover we have

$$P(t) = 1 - t, \quad P_g = \frac{5}{12}$$

and thus, since $b < 12/53$, by (3.3) we obtain

$$T > \frac{32}{12 - 53b}.$$

It remains to prove that assumptions $(\hat{H}_3), (\hat{H}_5)$ hold. To do this we observe that

$$F(\Theta) = \gamma \int_0^1 \int_0^1 (-1 + b \theta^2 \Theta + b \Theta) d\theta d\gamma(s) = \frac{5 - 8b\Theta}{3},$$

$$P(0) = 1, \quad Q(0) = \frac{b\Theta}{2}, \quad \Phi(\Theta) = \Theta.$$

Hence (\hat{H}_5) becomes:

there exists $\Theta > K = \frac{32}{12 - 53b}$ such that $\Theta \leq \frac{4}{25b}$.

Finally, using (2.5), we deduce that $M = 4/(25b + 6)$.

Since we must have $M < T < \Theta$, we must also have

$$\frac{4}{25b + 6} = M \leq \frac{32}{12 - 53b} < T < \Theta \leq \frac{4}{25b}.$$

It is clear that this inequality can hold if $0 < b < 48/1022$. In conclusion, if $0 < b < 48/1022$, then all assumptions of Corollary 3.2 are satisfied, and thus we have proved the following result:

If $0 < b < 48/1022$, then there exists a solution $x \in C_0^1(I)$ of the boundary value problem (3.4), (3.5) such that

$$\frac{4}{25b + 6} \leq \|x\|_1^0 < \frac{4}{25b}.$$

References

Boundary value problems with sign changing nonlinearities

Department of Mathematics
University of Ioannina
451 10 Ioannina, Greece
E-mail: ptsamato@cc.uoi.gr

*Reçu par la Rédaction le 20.10.2003
Révisé le 22.1.2004*