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Stability of the Cauchy functional equation
in quasi-Banach spaces

by Jacek Tabor (Kraków)

Abstract. Let X be a quasi-Banach space. We prove that there exists K > 0 such
that for every function w : R→ X satisfying

‖w(s+ t)− w(s)− w(t)‖ ≤ ε(|s|+ |t|) for s, t ∈ R,

there exists a unique additive function a : R→ X such that a(1) = 0 and

‖w(s)− a(s)− sθ(log2 |s|)‖ ≤ Kε|s| for s ∈ R,

where θ : R → X is defined by θ(k) := w(2k)/2k for k ∈ Z and extended in a piecewise
linear way over the rest of R.

1. Introduction. In this paper we investigate the behavior of functions
w : X → Y satisfying

‖w(x+ y)− w(x)− w(y)‖ ≤ ε(‖x‖+ ‖y‖) for x, y ∈ X.(1)

Such functions are called ε-quasi-additive. The function which is ε-quasi-
additive for a certain ε > 0 is called simply quasi-additive. The reader which
is not familiar with this notion is referred to [3] and also to [2] where the class
of quasi-linear functions is studied. Let us briefly mention that quasi-additive
and quasi-linear functions are useful in investigation of the geometric struc-
ture of Banach spaces.

One of the main results of F. Sánchez [5] is that for every ε-quasi-additive
function w : R → X, where X is a Banach space, there exists an additive
function a : R→ X and a θ : R→ X Lipschitz with constant ε such that

‖w(s)− a(s)− sθ(log2 |s|)‖ ≤ 19ε|s| for s ∈ R.(2)

Since the natural setting for quasi-additive functions are quasi-Banach
spaces, F. Sánchez also considers the case when X is a quasi-Banach space.
He proves that for every p-Banach space X and every ε-quasi-additive map
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w : R→ X there exists an additive function a : R→ X such that

‖w(x)− a(x)‖ ≤ ε|s| p
√
Kp + Lp|log2 |s| | for s ∈ R,(3)

where Kp, Lp are constants depending on p.
In this paper we answer the problem posed by F. Sánchez in the last

section of [5] concerning classification of quasi-additive maps from the real
line into quasi-Banach spaces, and simultaneously generalize both the above
described results.

We show that a result similar to (2) holds for quasi-Banach spaces. As
an easy consequence we obtain an improvement of (3). Moreover, in both
cases we obtain better approximation constants.

The main difference between the cases when the target space is a Banach
space and when it is a quasi-Banach space is that a locally Lipschitz function
with constant one with values in a quasi-Banach space may not be globally
Lipschitz.

2. Quasi-Banach spaces. In this section we recall some basic facts
concerning quasi-Banach spaces (for a detailed study we refer to [4, 2]) and
prove some preliminary results.

Let X be a linear space. A quasi-norm is a real-valued function on X
satisfying

• ‖x‖ ≥ 0 and ‖x‖ = 0 if and only if x = 0.
• ‖λx‖ = |λ| · ‖x‖ for all λ ∈ R, x ∈ X.
• There is a constant K > 0 such that ‖x + y‖ ≤ K(‖x‖ + ‖y‖) for all
x, y ∈ X.

A quasi-Banach space is a complete quasi-normed space.
A quasi-norm ‖ ‖ is called a p-norm (0 < p ≤ 1) if

‖x+ y‖p ≤ ‖x‖p + ‖y‖p for x, y ∈ X.
In this case a quasi-Banach space is called a p-Banach space. Given a p-
norm, the formula d(x, y) := ‖x−y‖p gives us a translation invariant metric
on X. By the Aoki–Rolewicz Theorem [4] (see also [2]) each quasi-norm is
equivalent to some p-norm. Since it is much easier to work with p-norms
then quasi-norms, henceforth we restrict our attention mainly to p-norms.

From now on we fix p ∈ (0, 1], a p-Banach space X and a constant ε ≥ 0.
If X is a Banach space then a function f : R → X locally Lipschitz

with constant ε is globally Lipschitz with the same constant ε. We need the
following generalization of this result for p-Banach spaces.

Proposition 2.1. Let f : R→ X be such that

‖f(s)− f(t)‖ ≤ ε|s− t| for k ∈ Z, s, t ∈ [k, k + 1].
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Then

‖f(s)− f(t)‖ ≤ ε21/p−1|s− t| for s, t ∈ R, |s− t| ≤ 1,(4)

‖f(s)− f(t)‖ ≤ ε(|s− t|+ 2(1− p))1/p for s, t ∈ R.(5)

Proof. We prove (4). If [s, t]⊂ [k, k+1] for some k∈Z, then ‖f(s)− f(t)‖
≤ ε|s− t|. If there exists k ∈ Z such that k ∈ (s, t), then

‖f(s)− f(t)‖p ≤ ‖f(s)− f(k)‖p + ‖f(k)− f(t)‖p
≤ εp((k − s)p + (t− k)p).

Since the function [0, 1] 3 t 7→ tp is concave we obtain (k − s)p + (t− k)p ≤
2((k − s)/2 + (t− k)/2)p = 21−p(t− s)p, which proves (4).

So let us now deal with (5). If [s, t] ⊂ [k, k + 1], then since p ∈ (0, 1] we
get

‖f(s)− f(t)‖ ≤ ε|s− t| ≤ ε(|s− t|+ 2(1− p))1/p.

In the other case there exist k, l ∈ Z such that [k, l] ⊂ [s, t] ⊂ [k − 1, l + 1].
Then

‖f(s)− f(t)‖p ≤ ‖f(s)− f(k)‖p + ‖f(k + 1)− f(k)‖p + . . .+

+ ‖f(l)− f(l − 1)‖p + ‖f(t)− f(l)‖p
≤ εp(k − s)p + εp(l − k) + εp(t− l)p
= εp(t− s) + εp((k− s)p − (k− s)) + εp((t− l)p − (t− l)).

As the maximal value of the function t 7→ tp− t on [0, 1] is pp/(1−p)(1− p) ≤
1− p, we obtain the assertion of the lemma.

3. Hyers theorem in quasi-Banach spaces. To deal with quasi-
additive functions we will need a version of the Hyers–Rassias–Gajda theo-
rem (see [3]) for quasi-Banach spaces. We modify the idea of K. Baron and
P. Volkmann [1].

By 0R, where R < 0, we understand ∞.

Theorem 3.1. Let G be a quasi-Banach space and let f : G → X and
R ∈ R \ {1} be such that

‖f(x+ y)− f(x)− f(y)‖ ≤ ε(‖x‖R + ‖y‖R) for x, y ∈ G.
Then there exists a unique additive function a : G→ X such that

‖f(x)− a(x)‖ ≤ ε

|1− 2p(R−1)|1/p ‖x‖
R for x ∈ G.

Proof. For n ∈ Z we define

fn(x) := f(2nx)/2n for x ∈ G.
One can easily check that

‖fn(x)− fn+1(x)‖p ≤ εp(2p(R−1))n‖x‖Rp for x ∈ G \ {0}.
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We first consider the case R ∈ (−∞, 1). We show that for every x ∈
G \ {0} the sequence {fn(x)}n∈N is a Cauchy sequence. Let k, n ∈ N, k > n.
We have

‖fn(x)− fk(x)‖p ≤
k−1∑

l=n

‖fl(x)− fl+1(x)‖p ≤ εp
k−1∑

l=n

(2p(R−1))l‖x‖Rp

≤ εp 2p(R−1)n

1− 2p(R−1)
‖x‖Rp.

This shows that the limit a(x) := limk→∞ fk(x) is well defined and that

‖f(x)− a(x)‖p = lim
k→∞

‖f0(x)− fk(x)‖p ≤ εp

1− 2p(R−1)
‖x‖Rp.

By the standard procedure one can show that a is a unique additive function
which satisfies the assertion of the theorem.

In the case when R ∈ (1,∞) we apply a similar reasoning to the sequence
{f−n(x)}n∈N and easily obtain the desired result.

In the case when R = 0 we obtain the following direct corollary.

Corollary 3.1. Let G be a quasi-Banach space and let f : G → X be
such that

‖f(x+ y)− f(x)− f(y)‖ ≤ ε for x, y ∈ G.
Then there exists a unique additive function a : G→ X such that

‖f(x)− a(x)‖ ≤ ε

(2p − 1)1/p
for x ∈ G.

Thus the Cauchy functional equation is stable for R 6= 1. Surprisingly, in
the case R = 1 one can construct examples which show that there is no sta-
bility (see [3]). This means that it is important to describe the approximate
solutions.

We will need a local version of Theorem 3.1 for R = 0 and functions
defined on a subinterval of R. The following theorem is a modification of the
result of F. Skof [6] who proved it for Banach spaces.

Proposition 3.1. Let a > 0 and f : (0, a]→ X be such that

‖f(s+ t)− f(s)− f(t)‖ ≤ ε for s, t, s+ t ∈ (0, a].

Then there exists an additive function A : R→ X such that A(a/2) = f(a/2)
and

‖f(s)−A(s)‖ ≤
(

1 +
2

2p − 1

)1/p

ε for s ∈ (0, a].(6)

Proof. We define the function f̃ : R → X by f̃(s) := f(s − ka/2) +
kf(a/2) for s ∈ (ka/2, (k + 1)a/2], k ∈ Z.
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We now verify that f̃ satisfies

‖f̃(s+ t)− f̃(s)− f̃(t)‖ ≤ 21/pε for s, t ∈ (0,∞).(7)

So let k, l ∈ Z and s ∈ (ka/2, (k + 1)a/2], t ∈ (la/2, (l + 1)a/2]. If s + t ∈
((k + l)a/2, (k + l + 1)a/2] then

‖f̃(s+t)−f̃(s)−f̃(t)‖ = ‖f(s+t−(k+l)a/2)−f(s−ka/2)−f(t−la/2)‖ ≤ ε.
If s+ t ∈ ((k + l + 1)a/2, (k + l + 2)a/2] then

‖f̃(s+ t)− f̃(s)− f̃(t)‖p

= ‖f(s+ t− (k + l + 1)a/2) + f(a/2)− f̃(s− ka/2)− f̃(t− la/2)‖p

≤ ‖f(s+ t− (k + l + 1)a/2) + f(a/2)− f(s+ t− (k + l)a/2)‖p

+ ‖f(s+ t− (k + l)a/2)− f̃(s− ka/2)− f̃(t− la/2)‖p

≤ εp + εp = 2εp.

Thus (7) is proved.
By Corollary 3.1 we obtain a unique additive function A : R → X such

that

‖f̃(s)− A(s)‖ ≤ 21/p

(2p − 1)1/p
ε for s ∈ (0,∞).(8)

By the definition of f̃ we obtain

A(a/2) = lim
k→∞

A(ka/2)/k = lim
k→∞

f̃(ka/2)/k = f(a/2).

We check (6). Let s ∈ (0, a] be arbitrary. If s ∈ (0, a/2] then f̃(s) = f(s),
and (8) yields ‖f(s) − A(s)‖ ≤ 21/pε/(2p − 1)1/p. If s ∈ (a/2, a] then s =
(s− a/2) + a/2, and we get

‖f(s)−A(s)‖p≤‖f(s)−f(s−a/2)−f(a/2)‖p+‖f(a/2)+f(s−a/2)−A(s)‖p

≤
(

1 +
2

2p − 1

)
εp.

As an easy consequence we deduce that quasi-additive functions can be
locally approximated by additive ones:

Corollary 3.2. Let f : (0,∞) → X be ε-quasi-additive. Then there
exists a unique additive function a : R→ X such that a(1) = 0 and
∣∣∣∣f(s)− a(s)− s

q
f(q)

∣∣∣∣ ≤
(

1 +
2

2p − 1

)1/p

2qε for s ∈ (0, 2q], q ∈ Q+.

Proof. Fix q ∈ Q+. Since f is ε-quasi-additive we obtain

‖f(s+ t)− f(s)− f(t)‖ ≤ ε2q for s, t, s+ t ∈ (0, 2q].
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By Proposition 3.1 we obtain an additive function Aq : R→ X such that

Aq(q) = f(q), ‖f(s)− Aq(s)‖ ≤ Sε2q for s ∈ (0, 2q],(9)

where S =
(
1 + 2

2p−1

)1/p. Let aq(s) := Aq(s)− f(q)s/q. Then aq is additive
and since q is rational, aq(1) = aq(q)/q = 0. We show that aq does not
depend on the choice of q ∈ Q+. So let q̃ ∈ Q+. Applying (9) for q and q̃ we
easily get C > 0 such that

‖aq(s)− aq̃(s)‖ ≤ C for s ∈ (0,min{2q, 2q̃}].
Since aq(1) = aq̃(1) we obtain aq = aq̃ =: a.

The assertion of the corollary follows directly from (9).

4. Quasi-additive functions on (0,∞). In this section we describe
quasi-additive functions defined on (0,∞) and with values in a quasi-Banach
space. In Theorems 4.1 and 4.2 we show that every quasi-additive function
is approximately the sum of an additive function and a function of the type
s 7→ sθ(log2 s), where θ is a certain piecewise linear function.

To prove Theorem 4.1 we will need the following simple technical lemma
(we use a different reasoning from that on page 507 of [5] as the latter
contains a small mistake: the maximum of the function |t log2 t| on the in-
terval [0, 1] is attained at t = 1/e and not at t = 1/2 and is equal to
(log2 e)/e ≈ 0.53 and not to 0.5).

Lemma 4.1. Let K ∈ R+ and let

vp(a) :=
K + log2(1 + a)

(1 + a)p
for a ∈ (0,∞).

Let gp(a) := vp(a) + vp(1/a) for a ∈ R+. Denote by max(gp) the maximal
value of the function gp. Then

max(gp) ≤
2

e ln 2
2Kp

p
for p ∈ (0, 1], Kp ≤ log2 e,(10)

max(gp) ≤ 2K for p ∈ (0, 1], Kp > log2 e.(11)

If p = 1 and K = 0 we additionally get

max(g1) = 1.(12)

Proof. We first show (10) and (11). Since gp(a) = vp(a) + vp(1/a) we
obtain max(gp) ≤ 2 max(vp). So let us now compute the maximal value of
the function vp. We have

v′p(a) =
−p

(1 + a)p+1

(
K + log2(1 + a)− log2 e

p

)
.(13)

Let ap be such that K + log2(1 + ap) = (log2 e)/p. Then (1 + ap)p = 2−Kpe.
By (13), vp is increasing for a ≤ ap and decreasing for a ≥ ap. We need to
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discuss two cases. If 2−Kpe > 1, then ap > 0, and therefore by the above
reasoning the function (0,∞) 3 s 7→ vp(s) attains its maximal value at ap
and therefore max(vp) = 2Kp/(e ln(2)p). If 2−Kpe ≤ 1, then ap ≤ 0 and
therefore vp is decreasing on R+, which yields max(vp) = K.

Now let us deal with (12). One can easily check that lima→0+ g1(a) = 0.
Since g1(a) = g1(1/a) we get lima→∞ g1(a) = 0. Notice that

g1(a) =
log2(1 + a) + a(log2(1 + a)− log2 a)

1 + a
= log2(1 + a)− a

1 + a
log2 a.

Hence

g′1(a) =
log2 e

1 + a
− (1 + a)− a

(1 + a)2 log2 a−
a

1 + a

log2 e

a
= − log2 a

(1 + a)2 .

This means that g1 is increasing on (0, 1) and decreasing on (1,∞). Since
g1(0) = g1(∞) = 0, it follows that g1 is a nonnegative function which attains
its maximum at a = 1. Since g1(1) = 1, the proof is complete.

Now we can proceed to prove our main results. We need the following
definition.

Definition 4.1. Let x := {xk}k∈Z be a doubly infinite sequence of ele-
ments of X. We define θx : R→ X by

θx(s) := (xk+1 − xk)(s− k) + xk for s ∈ [k, k + 1], k ∈ Z.
Then θx(k) = xk for k ∈ Z, and θx is affine on each interval [k, k + 1].

We will be interested in sequences x = {xk}k∈Z which satisfy

sup
k∈Z
‖xk − xk+1‖ ≤ ε.(14)

One can easily see that if x is a sequence of elements of a Banach space
which satisfies (14) then θx is Lipschitz with constant ε. However, this is no
longer true for p-Banach spaces.

We now prove that the function s 7→ sθx(log2 s) is quasi-additive.

Theorem 4.1. Let x be a sequence of elements of X satisfying (14). Let
wx : (0,∞)→ X be defined by

wx(s) := sθx(log2 s) for s ∈ (0,∞).

Then

‖wx(s+ t)− wx(s)− wx(t)‖ ≤ 4
4p

(
C

p

)1/p

ε(s+ t) for s, t ∈ (0,∞),

where C = 2/(e ln 2) ≈ 1.0615. Moreover , if p = 1 we have

‖wx(s+ t)− wx(s)− wx(t)‖ ≤ ε(s+ t) for s, t ∈ (0,∞).
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Proof. Applying Proposition 2.1 we get

‖wx(s+ t)− wx(s)− wx(t)‖p
= ‖(s+ t)θx(log2(s+ t))− sθx(log2 s)− tθx(log2 t)‖p

= ‖s(θx(log2(s+ t))− θx(log2 s)) + t(θx(log2(s+ t))− θx(log2 t))‖p

≤ sp‖θx(log2(s+ t))− θx(log2 s)‖p + tp‖θx(log2(s+ t))− θx(log2 t)‖p

≤ εpsp
(

log2
s+ t

s
+ 2(1− p)

)
+ εptp

(
log2

s+ t

t
+ 2(1− p)

)

= εp(s+ t)p
(

1
(1 + t/s)p

(
log2

(
1 +

t

s

)
+ 2(1− p)

)

+
1

(1 + s/t)p

(
log2

(
1 +

s

t

)
+ 2(1− p)

))
.

Since 2(1 − p)p ≤ log2 e, by Lemma 4.1 we obtain the assertion of the
theorem.

We show that every solution to the inequality (1) can be approximated
by a function of the type introduced in the previous theorem.

Theorem 4.2. Let w : (0,∞)→ X be such that

‖w(s+ t)− w(s)− w(t)‖ ≤ ε(s+ t) for s, t ∈ (0,∞).

Define the sequence x of elements of X by xk := w(2k)/2k for k ∈ Z. Let
a : (0,∞)→ X be the unique additive function such that a(1) = 0 and w−a
is locally bounded. Then x satisfies (14) and

‖w(s)− a(s)− sθx(log2 s)‖ ≤ K1/p
p εs for s ∈ (0,∞),

where Kp = 2p
(
1 + 2

2p−1

)
+ 1 for p ∈ (0, 1), K1 = 4.

Proof. We first consider the case p ∈ (0, 1). By Corollary 3.2 there exists
a unique additive function a : R→ X such that for every k ∈ Z we have

∥∥∥∥w(s)− a(s)− w(2k)
2k

s

∥∥∥∥ ≤ Sε2k+1 for s ∈ (0, 2k+1],(15)

where S =
(
1 + 2

2p−1

)1/p
.

Fix k ∈ Z and s ∈ [2k, 2k+1]. Then log2 s ∈ [k, k+1], and by the definition
of θx we obtain

θx(log2 s) =
(
w(2k+1)

2k+1 − w(2k)
2k

)
(log2 s− k) +

w(2k)
2k

.

Then for s ∈ [2k, 2k+1], by (15) we get
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‖w(s)− a(s)− sθx(log2 s)‖p

≤
∥∥∥∥w(s)− a(s)− w(2k)

2k
s

∥∥∥∥
p

+

∥∥∥∥
w(2k)

2k
s− sθx(log2 s)

∥∥∥∥
p

≤ Spεp2p(k+1)+
∥∥∥∥
w(2k)

2k
s−
[(

w(2k+1)
2k+1 −w(2k)

2k

)
log2(s/2k)+w(2k)/2k

]
s

∥∥∥∥
p

≤ Spεp2p(k+1) +
∥∥∥∥
w(2k+1)

2k+1 − w(2k)
2k

∥∥∥∥
p

logp2(s/2k) · sp

≤ Spεp2psp + εpsp = (2pSp + 1)εpsp.

Now we consider the case p = 1. Let M ≥ 0 be a minimal constant such
that

‖w(s)− a(s)− sθx(log2 s)‖ ≤Mεs for s ∈ (0,∞).

We have proved that M < ∞. We are going to show that M ≤ 4. Let
wx(s) := log2(s) · θx(s). Fix k ∈ Z and s ∈ [2k, 2k+1). Let t = s− 2k. Then
t ≤ s/2. Making use of Theorem 4.1 and the equalities w(2k) = wx(2k),
a(2k) = 0 we get

‖w(s)− a(s)− wx(s)‖
≤ ‖w(s)− w(t)− w(2k)‖+ ‖w(t)− a(t)− wx(t)‖

+ ‖w(2k)− a(2k)− wx(2k)‖+ ‖wx(s)− wx(t)− wx(2k)‖
≤ εs+ εMt+ εs ≤ (2 +M/2)εs.

Since s was arbitrary, by the definition of M we obtain M ≤ (2 + M/2),
and consequently M ≤ 4.

As a direct consequence of Theorem 5.1 and Proposition 4 we get an
improvement of Proposition 1 of [5].

Remark 4.1. Proposition 1 of [5] is formulated for the dyadic group and
our corollary is formulated for the real line and therefore is not a general-
ization of the result of Sánchez. However, by inspecting the proofs one can
easily notice that Corollary 4.1 is valid for all dense subgroups of R which
allow division by 2.

Corollary 4.1. Let w : (0,∞)→ X with w(1) = 0 be such that

‖w(s+ t)− w(s)− w(t)‖ ≤ ε(s+ t) for s, t ∈ (0,∞).

Then there exists an additive function a : R→ X with a(1) = 0 such that

‖w(s)− a(s)‖ ≤ ε(Kp + 2(1− p) + |log2 s|)1/ps for s ∈ (0,∞),

where Kp is given in Theorem 4.2.
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Proof. By Theorem 4.2 there exists an additive function a : R→ X with
a(1) = 0 such that

‖w(s)− a(s)− sθx(log2 s)‖p ≤ Kpε
psp for s ∈ (0,∞).

On the other hand, by Proposition 2.1 we get

‖θx(s)− θx(0)‖p ≤ εp(s+ 2(1− p)) for s ∈ (0,∞).

Since w(1) = 0 and θx(0) = 0, combining the above two inequalities we get

‖w(s)− a(s)‖p ≤ Kpε
psp + ‖sθx(log2 s)‖p ≤ εpsp(Kp + 2(1− p) + |log2 s|)

for s ∈ (0,∞).

5. Stability on R. In this section we discuss the case when the domain
space is R.

Theorem 5.1. Let w : R→ X be such that

‖w(s+ t)− w(s)− w(t)‖ ≤ ε(|s|+ |t|) for s, t ∈ R.
Then there exists an additive function a : R→ X and a sequence x satisfying
(14) such that

‖w(s)− a(s)− sθx(log2 |s|)‖ ≤ L1/p
p ε|s| for s ∈ R,

where Lp = 2p
(
2 + 2

2p−1

)
+ 1 for p ∈ (0, 1) and L1 = 5 (here 0 · θx(log2 0) is

understood to be 0).

Proof. We first discuss the case p ∈ (0, 1). Let x = {w(2k)/2k}k∈Z. Then
by Theorem 4.2 there exists an additive function a : R→ X such that

‖w(t)− a(t)− tθx(log2 t)‖p ≤ Kpε
ptp for t ∈ (0,∞),

where Kp is given in Theorem 4.2. Since ‖w(t) + w(−t)‖p ≤ 2pεp|t|p, the
above implies

‖w(t)− a(t)− tθx(log2 |t|)‖p ≤ (2p +Kp)εp|t| for t ∈ (−∞, 0),

which yields the assertion of the theorem.
Now we consider the case p = 1. Let x−, x+ be the sequences

{w(2k)/2k}k∈Z, {−w(2−k)/2k}k∈Z, respectively. By Theorem 4.2 there exist
additive functions a− : R→ X and a+ : R→ X such that

‖w(s)− a−(s)− sθx−(log2 |s|)‖ ≤ 4ε|s|
‖w(t)− a+(t)− tθx+(log2 |t|)‖ ≤ 4ε|t|

for s ∈ (−∞, 0), t ∈ (0,∞).

Since ‖w(s) + w(−s)‖ ≤ 2ε|s|, the above inequalities yield

‖w(s)− a−(s)− sθx−(log2 |s|)‖ ≤ 6ε|s|
‖w(t)− a+(t)− tθx+(log2 |t|)‖ ≤ 6ε|t| for s ∈ (0,∞), t ∈ (−∞, 0).
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Let x = (x−+x+)/2, a = (a−+a+)/2. Let s ∈ (0,∞) (the case s ∈ (−∞, 0)
is symmetric). Then

‖w(s)− a(s)− sθ−(log2 |s|)‖ ≤ 1
2‖w(s)− a+(s)− sθx+(log2 |s|)‖
+ 1

2‖w(s)− a−(s)− sθx−(log2 |s|)‖
≤
(1

2 · 4 + 1
2 · 6

)
ε|s| = 5ε|s|.

By proceeding analogously to the proof of Corollary 4.1 one can prove
the following generalization of Corollary 1 from [5].

Corollary 5.1. Let w : R→ X be such that

‖w(s+ t)− w(s)− w(t)‖ ≤ ε(|s|+ |t|) for s, t ∈ R.
Then there exists an additive function a : R→ X such that

‖w(s)− a(s)‖ ≤ ε(Lp + 2(1− p) + |log2 |s| |)1/p|s| for s ∈ R,
where Lp is given in Theorem 5.1.

6. Stability on Rn. To deal with quasi-additive functions on Rn we
will need the following lemma:

Lemma 6.1. Let G be a p-Banach space and let w : G→ X be such that

‖w(a+ b)− w(a)− w(b)‖ ≤ ε(‖a‖+ ‖b‖) for a, b ∈ G.
Let n ∈ N. Then

∥∥∥w
( 2n∑

i=1

ai

)
−

2n∑

i=1

w(ai)
∥∥∥
p
≤ n

2n∑

i=1

‖ai‖p for a1, . . . , a2n ∈ G.(16)

Proof. The proof is by induction on n. For n = 1 the equality is trivial.
So, suppose that (16) holds for a given n. Then

∥∥∥w
( 2n+1∑

i=1

ai

)
−

2n+1∑

i=1

w(ai)
∥∥∥
p

≤
∥∥∥w
( 2n∑

i=1

(a2i−1 + a2i)
)
−

2n∑

i=1

w(a2i−1 + a2i)
∥∥∥
p

+
2n∑

i=1

‖w(a2i−1 + a2i)− w(a2i−1)− w(a2i)‖p

≤ n
2n∑

i=1

‖a2i−1 + a2i‖p +
2n∑

i=1

(‖a2i−1‖p + ‖a2i‖p) ≤ (n+ 1)
2n+1∑

i=1

‖ai‖p.

By E(s) we denote the smallest integer not less than s. Now we are
ready to prove the main result of this section. In Rn we use the quasi-norm
‖(x1, . . . , xn)‖p = |x1|p + · · ·+ |xn|p.
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Theorem 6.1. Let w : Rn → X be such that

‖w(x+ y)− w(x)− w(y)‖ ≤ ε(‖x‖+ ‖y‖) for x, y ∈ Rn.
Then there exist an additive function A : Rn → X and sequences x1, . . . ,xn
of elements of X satisfying (14) such that
∥∥∥w(x)−A(x)−

n∑

i=1

xiθxi(log2 |xi|)
∥∥∥ ≤M1/p

p ε‖x‖ for x = (x1, . . . , xn)∈Rn,

where Mp = E(log2 n) + Lp, and Lp is given in Theorem 5.1.

Proof. Let wi : R → X be defined by wi(r) := w(0, . . . ,
i︷︸︸︷
r , . . . , 0).

Then
‖wi(s+ t)− wi(s)− wi(t)‖ ≤ ε(|s|+ |t|) for s, t ∈ R,

and therefore there exists an additive function ai : R → X and a sequence
xi ⊂ X such that

‖wi(s)− ai(s)− sθxi(log2 |s|)‖p ≤ Lpεp|s|p for s ∈ R,
where Lp is given in Theorem 5.1. Let

A(x1, . . . , xn) := a1(x1) + · · ·+ an(xn) for (x1, . . . , xn) ∈ Rn.
Now by Lemma 6.1 we obtain
∥∥∥w(x)− A(x)−

n∑

i=1

xiθxi(log2 |xi|)
∥∥∥
p

∥∥∥w(x1, . . . , xn)−
n∑

i=1

wi(xi)
∥∥∥
p

+
n∑

i=1

‖wi(xi)− ai(xi)− θxi(log2 |xi|)‖p

≤ E(log2 n)εp
n∑

i=1

|xi|p +
n∑

i=1

Lpε
p|xi|p = (E(log2 n) + Lp)εp‖x‖p.
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