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Stability of solutions for an abstract Dirichlet problem

by Marek Galewski (Łódź)

Abstract. We consider continuous dependence of solutions on the right hand side
for a semilinear operator equation Lx = ∇G(x), where L : D(L) ⊂ Y → Y (Y a Hilbert
space) is self-adjoint and positive definite and G : Y → Y is a convex functional with
superquadratic growth. As applications we derive some stability results and dependence
on a functional parameter for a fourth order Dirichlet problem. Applications to P.D.E.
are also given.

1. Introduction. We shall prove the stability of solutions to the fol-
lowing family of abstract semilinear problems:

Lx = ∇Gk(x),(1.1)

for k = 0, 1, 2, . . . , where L is a self-adjoint mapping defined on a separable
real Hilbert space and D(L) with values in a separable real Hilbert space Y ,
and Gk : Y → Y is a superquadratic convex mapping for k = 0, 1, . . .. We
provide conditions under which from a sequence {xk}∞k=1 solving (1.1) one
may choose a subsequence converging weakly to an x which is a solution to
the problem

Lx = ∇G0(x).

This property is called stability of system (1.1).
In [10] a stability result based on a dual variational method from [8],

[9] and some ideas from [11], [12] is given. In case G has quadratic growth
a problem similar to ours has been considered in [4], for L not necessarily
positive definite. However, for a superquadratic nonlinearity the method
from [4] does not work since in this case both the action and the dual action
functionals are unbounded. We believe that the variational method from [2]
may contribute to this research when combined with some stability results
from [4].
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Now we specify the assumptions under which we shall consider sys-
tem (1.1).

(A1) D(L) is dense in Y ; L : D(L) → Y is a selfadjoint and positive
definite linear operator, i.e. there exists a constant α > 0 such that
for all x ∈ D(L),

〈Lx, x〉 ≥ α‖x‖2.(1.2)

Let L1/2 : D(L1/2) → Y denote the square root operator (see [5]). Then
D(L1/2) is a Hilbert space, and L1/2x ∈ D(L1/2) for any x ∈ D(L).

(A2) For any k = 0, 1, . . . , ∇Gk : Y → Y is a gradient mapping, its
potential Gk : Y → R is lower semicontinuous and convex; for
all sequences {xn} ⊂ D(L) strongly convergent in Y the sequence
{∇Gk(xn)} is weakly convergent; there exists c ≥ 0 such that |Gk(0)|
≤ c for all k; ∇Gk(0) 6= 0 for all k; ∇Gk(x) ∈ D(L1/2) for any
x ∈ D(L); there exist constants q ≥ q1 ≥ 2, ak, a′k > 0, bk, b′k ≥ 0
such that for any x ∈ Y ,

‖∇Gk(x)‖ ≤ ak‖x‖q−1 + bk, Gk(x) ≥ a′k‖x‖q1 + b′k,(1.3)

where the sequences {ak}, {a′k}, {bk}, {b′k} are bounded by a, a′, b,
b′ respectively.

(A3) D(L1/2) is compactly imbedded in Y ; for any sequence {xn} ⊂ D(L),

lim
n→∞

‖xn − x‖D(L1/2) = 0 iff lim
n→∞

‖L1/2xn − L1/2x‖Y = 0.

Equation (1.1) is the Euler–Lagrange equation for the action functional
Jk : D(L1/2)→ R given by

Jk(x) = 1
2〈L1/2x,L1/2x〉 −Gk(x).

Now we cite conditions ensuring the solvability of system (1.1). Let
mk > 0 satisfy

‖L−1‖(akmq−1
k + bk) ≤ mk.(1.4)

(A4) The sequence mk does not converge to 0.

For each k we put

X̃k = {v ∈ D(L) : ‖v‖Y ≤ mk}.
We shall further restrict the sets X̃k in order to apply the duality results
from [2]. Let Xk be a subset of X̃k such that for each x ∈ Xk,

Lx̃ = ∇Gk(x) implies x̃ ∈ Xk.

Putting Xk = X̃k we observe that for each k there exists a nonempty
set Xk.

The following corollary easily follows from the main theorem in [2].
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Corollary 1.1. Assume (A1)–(A3). Then for each k there exists an
xk ∈ Xk such that

Lxk = ∇Gk(xk).

2. Stability result. This section contains the main result of the paper
which provides conditions under which the family of problems (1.1) is stable.

Theorem 2.1. Assume (A1)–(A3) and that for any x ∈ Y there is a
subsequence ki such that

lim
i→∞
∇Gki(x) = ∇G0(x)

weakly in Y . Then there exists a sequence {xk}∞k=1 of solutions to (1.1) and
x ∈ D(L) such that

lim
k→∞

xk = x weakly in D(L1/2), strongly in Y.

Moreover
Lx = ∇G0(x).

Proof. From Corollary 1.1 it follows that for each k there exists xk ∈
D(L) such that Lxk = ∇Gk(xk). For b > 0 we define

Sb = {x ∈ X̃k : Jk(x) ≤ b, k = 1, 2, . . .}.
Due to (A2) this set is nonempty for sufficiently large b. Indeed, for any
x̃ ∈ X̃k and corresponding x ∈ X̃k, and for some constant γ,

γ‖L1/2x̃‖ ≤ γ‖∇Gk(x)‖ ‖x̃‖ ≤ γ(ak‖x‖q−1 + bk)‖x̃‖ ≤ γ(amq−1
k + bk)mk.

This estimate combined with the growth conditions on Gk leads to the
conclusion. By construction it follows that Sb is weakly compact in D(L1/2).

We show that Gk and ∇Gk are uniformly bounded on Sb. Indeed, from
(1.3) and (A2) it follows that

Gk(x) ≤ 〈∇Gk(x), x〉+Gk(0) ≤ ‖∇Gk(x)‖ ‖x‖+Gk(0)

≤ ak‖x‖q + bk‖x‖+Gk(0) ≤ a‖x‖q + b‖x‖+ C.

By the above and by (A3) there exists a constant γ such that Gk(x) ≤ γ for
any x ∈ Sb. A similar reasoning applies to ∇Gk.

We choose from {xk}∞k=1 a subsequence weakly converging in D(L1/2)
which we denote again by {xk}∞k=1. This sequence now converges strongly
in Y to x by (A3). Let {ki} be a subsequence such that limi→∞∇Gki(x) =
∇G0(x) weakly. We denote all the resulting subsequences by the subscript
k for simplicity.

We will now prove that

Lx = ∇G0(x).
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By convexity of Gk we get for any x ∈ Y ,

〈∇Gk(xk)−∇Gk(x), xk − x〉 ≥ 0.

Hence
〈Lxk + (∇G0(x)−∇Gk(x))−∇G0(x), xk − x〉 ≥ 0.

Since xk → x strongly in Y and ∇Gk(x) ⇀ ∇G0(x) weakly we easily get

〈(∇G0(x)−∇Gk(x))−∇G0(x), xk − x〉 → 0.

Moreover 〈Lxk,−x〉 → 〈Lx,−x〉 since L is selfadjoint. It remains to prove
that

〈Lxk, xk〉 → 〈Lx, x〉.
Let F be the spectral measure defined by L. We put

P+ =
∞�

α/2

1 dF (λ).

Then P+ commutes with L. Using the inclusion P+D(L) ⊂ D(L) and since
the operator P+L−1/2 is compact we get

〈Lxk, xk〉 = 〈LP+xk, P
+xk〉 = 〈P+Lxk, P

+xk〉
= 〈P+L−1/2pk, P

+L−1/2pk〉 → 〈P+L−1/2p, P+L−1/2p〉 = 〈Lx, x〉.
Hence

〈Lx−∇G0(x), x− x〉 ≥ 0(2.1)

for any x ∈ D(L).
Now we apply Minty’s trick, i.e. we consider the points x + tx, where

x ∈ D(L) and t > 0. By the above inequality we obtain

〈Lx−∇G0(x+ tx), x〉 ≤ 0.

Since the function
[−1, 1] 3 t 7→ G0(x+ tx) ∈ R

is convex it follows that its derivative

[−1, 1] 3 t 7→ 〈∇G0(x+ tx), x〉 ∈ R
is continuous at any point t ∈ [−1, 1]. Hence

0 ≥ lim
t→0
〈Lx−∇G0(x+ tx), x〉 = 〈Lx−∇G0(x), x〉

for any x ∈ D(L). Since D(L) is dense in Y , this means that

〈Lx−∇G0(x), x〉 ≤ 0.

By the above and (2.1) we get Lx = ∇G0(x).
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Remark 1. Reasoning similarly to the last part of the proof of the main
theorem of [4] we may prove that

J(x) = inf
x∈X0

J(x) = inf
p∈Xd,0

JD(p) = JD(p),

where JD : D(L1/2)→ R is defined by JD(p) = G∗(L1/2)− 1
2〈p, p〉 (cf. [2]),

G∗ denotes the Fenchel–Young dual of the convex functional G (see [1]) and
Xd,0 = L1/2(X0).

3. Applications. The above results are of use when considering super-
linear Dirichlet problems. They also apply when Gk are sublinear although
in that case the assumptions on L are too restrictive. In this section we give
applications to some concrete problems. We assume throughout that (A4)
holds and we shall check each time that (A1)–(A3) are satisfied.

3.1. Stability for a fourth order Dirichlet problem. As an example we
consider the following Dirichlet problem, for k ∈ N:

d4

dt4
x− d2

dt2
x+ x = ∇Gk(t, x),

x(0) = x(π) = ẋ(0) = ẋ(π) = 0,
(3.1)

where

(A5) ∇Gk : [0, π]×R→ R, Gk : [0, π]×R→ R is a Carathéodory function,
Gk is convex with respect to the second variable; ∇Gk(t, 0) 6= 0 and
there exists a constant c such that |Gk(t, 0)| ≤ c for all k and for
a.e. t; there exist constants q ≥ q1 ≥ 2, ak, a′k > 0 and functions
bk ∈ L1([0, π],R+), b′k ∈ L1([0, π],R) for k = 0, 1, 2, . . . such that for
any x ∈ R and for a.e. t ∈ [0, π],

‖∇Gk(t, x)‖ ≤ ak|x|q−1 + bk(t), Gk(t, x) ≥ a′k|x|q1 + b′k(t),

where the sequences {ak}, {a′k} and the functions bk, b′k for k =
0, 1, 2, . . . are bounded by a, a′, b, b′ respectively.

Hence Lx = d4

dt4
x − d2

dt2
x + x for x ∈ H2

0 (0, π) ∩ H4(0, π). The operator L
satisfies assumption (A1) and due to the Poincaré inequality also (A3) holds.
Here Y = L2(0, π). We observe that since x ∈ H2

0 (0, π)∩H4(0, π) the growth
conditions are valid without assuming that x ∈ Lq(0, π). This follows since
each x is actually absolutely continuous. But in contrast to the quadratic
case it does not follow by the Krasnosel’skĭı theorem [3] that ∇Gk(·, x(·)) is
demicontinuous as required by (A2). Thus an additional assumption has to
be made.

The announced theorem reads
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Theorem 3.1. Assume (A5) and that for each x there exists a subse-
quence ki such that

∇Gki(·, x(·)) ⇀ ∇G0(·, x(·)) as i→∞
weakly in Y , and moreover , for all k and for all sequences xn strongly con-
vergent in Y ,

∇Gk(·, xn(·)) ⇀ ∇Gk(·, x(·)) as n→∞
weakly in Y . Then for each k ∈ N there exists a solution xk to problem (3.1)
and there exists x ∈ D(L) such that

lim
k→∞

xk = x strongly in Y.

Moerover
d4

dt4
x(t)− d2

dt2
x(t) + x(t) = ∇G0(t, x(t)).

3.2. Dependence on parameters. We now consider a similar problem
but we concentrate on continuous dependence on parameters. Consider the
Dirichlet problem

d4

dt2
x(t)− d2

dt2
x(t) + x(t) = ∇G(t, x(t), u(t)),

x(0) = x(π) = ẋ(0) = ẋ(π) = 0,
(3.2)

where u : [0, π]→ Rm is a functional parameter from the set

LM = {u : [0, π]→ Rm : u is measurable, u(t) ∈M a.e.}
and M ⊂ Rm is a given bounded set. Again Lx = d4

dt4
x − d2

dt2
x + x for

x ∈ H2
0 (0, π) ∩H4(0, π). As before we assume

(A6) ∇G : [0, π]×R×Rm → R, G : [0, π]×R×Rm → R is a Carathéodory
function, G is continuously differentiable and convex with respect to
the second variable and there exist constants q ≥ q1 ≥ 2, a1, a

′
1 > 0

and functions b1 ∈ L1([0, π],R+), b′1 ∈ L1([0, π],R) such that for any
x ∈ R, u ∈M and a.e. t ∈ [0, π],

‖∇G(t, x, u)‖ ≤ a1|x|q−1 + b1(t), G(t, x, u) ≥ a′1|x|q1 + b′1(t).(3.3)

We have the following direct consequence of Theorem 2.1.

Theorem 3.2. Assume that (A6) holds and that {uk}∞k=1, uk ∈ LM , is
a sequence such that uk → u in Y . Moreover , assume that for all sequences
xn strongly convergent in Y ,

∇G(·, xn(·), uk(·)) ⇀ ∇G(·, x(·), uk(·)) as n→∞
weakly in Y for any uk ∈ LM . Then for each k ∈ N there exists a solution
xk to problem (3.2) and x ∈ D(L) such that

lim
k→∞

xk = x strongly in Y.
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Moreover
d4

dt4
x(t)− d2

dt2
x(t) + x(t) = ∇G(t, x(t), u(t)).

Proof. By (3.3) and by the generalization of the Krasnosel’skĭı Theorem
[3], it follows that for all x ∈ Y we have

∇G(·, x(·), un(·))→ ∇G(·, x(·), u(·)) as n→∞
weakly in Y . Hence Theorem 2.1 applies with Gk(·, x(·)) = G(·, x(·), uk(·)).

3.3. Applications to P.D.E.. The method we have just developed also
has applications to partial differential equations of second order and of
higher orders. But the differential operator must be linear while the nonlin-
earity is superquadratic.

Namely we consider the following problem:

∆x(y) = ∇Gk(y, x(y)),

x|∂Ω = 0.
(3.4)

(A7) Ω is a region in Rn having a regular boundary; ∇Gk : Ω × R → R,
Gk : Ω × R → R is a Carathéodory function, Gk is convex with
respect to the second variable; ∇Gk(y, 0) 6= 0 and there exists a
constant c such that |Gk(y, 0)| ≤ c for all k and for a.e. y; there
exist constants q ≥ q1 ≥ 2, ak, a′k > 0 and functions bk ∈ L1(Ω,R),
b′k ∈ L1(Ω,R) for k = 0, 1, 2, . . . such that for any x ∈ R and a.e.
t ∈ Ω,

‖∇Gk(y, x)‖ ≤ ak|x|q−1 + bk, Gk(y, x) ≥ a′k|x|q1 + b′k,

where the sequences {ak}, {a′k} and the functions bk, b′k are bounded
by a, a′, b, b′ respectively.

Here Y = L2(Ω,R). Again we must assume that ∇Gk(·, x(·)) is demi-
continuous. By Theorem 2.1 we obtain

Theorem 3.3. Assume (A7) and that for any x ∈ Y there exists a sub-
sequence ki such that

∇Gki(·, x(·)) ⇀ ∇G0(·, x(·)) as i→∞
weakly in Y , and moreover , for all sequences xn strongly convergent in Y ,

∇Gk(·, xn(·)) ⇀ ∇Gk(·, x(·)) as n→∞
weakly in Y . Then for each k ∈ N there exists a solution xk to problem (3.4)
and x ∈ D(L) such that

lim
k→∞

xk = x strongly in Y.

Moreover
∆x(y) = ∇G0(y, x(y)).
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