On scalar-valued nonlinear absolutely summing mappings

by DANIEL PELLEGRINO (Campina Grande)

Abstract. We investigate cases ("coincidence situations") in which every scalar-valued continuous n-homogeneous polynomial (or every continuous n-linear mapping) is absolutely $(p; q)$-summing. We extend some well known coincidence situations and obtain several non-coincidence results, inspired by a linear technique due to Lindenstrauss and Pełczyński.

1. Introduction. Throughout this note X, X_1, \ldots, X_n, Y will stand for Banach spaces and the scalar field \mathbb{K} can be either the real or the complex numbers.

An m-homogeneous polynomial P from X into Y is said to be absolutely $(p; q)$-summing ($p \geq q/m$) if there is a constant L so that

$$
\left(\sum_{j=1}^{k} \| P(x_j) \|^p \right)^{1/p} \leq L \| (x_j)_{j=1}^{k} \|_{w; q}^m
$$

for every natural k, where $\| (x_j)_{j=1}^{k} \|_{w; q} = \sup_{\varphi \in B_{X'}} (\sum_{j=1}^{k} |\varphi(x_j)|^q)^{1/q}$. This is a natural generalization of the concept of $(p; q)$-summing operators and in the last years it has been studied by several authors. The infimum of the $L > 0$ for which the inequality holds defines a norm $\| \cdot \|_{as(p; q)}$ for $p \geq 1$, or a p-norm for $p < 1$, on the space of $(p; q)$-summing homogeneous polynomials. The space of all m-homogeneous $(p; q)$-summing polynomials from X into Y is denoted by $P_{as(p; q)}(mX; Y)$ ($P_{as(p; q)}(mX)$ if $Y = \mathbb{K}$).

When $p = q/m$ we have an important particular case, since in this situation there is an analogue of the Grothendieck–Pietsch Domination Theorem. The $(q/m; q)$-summing m-homogeneous polynomials from X into Y are said to be q-dominated and this space is denoted by $P_{d,q}(mX; Y)$ ($P_{d,q}(mX)$ if $Y = \mathbb{K}$).

The Banach space of all continuous m-homogeneous polynomials P from X into Y with the sup norm is denoted by $P(mX; Y)$ ($P(mX)$ if Y is...
the scalar field). Analogously, the space of all continuous m-linear mappings from $X_1 \times \cdots \times X_m$ into Y (with the sup norm) is denoted by $\mathcal{L}(X_1, \ldots, X_m; Y)$ ($\mathcal{L}(X_1, \ldots, X_m)$ if $Y = \mathbb{K}$). The concept of absolutely summing multilinear mapping follows the same pattern (for details we refer to [5]). Henceforth every polynomial and multilinear mapping are supposed to be continuous and every \mathcal{L}_p-space is assumed to be infinite-dimensional.

A natural problem is to find situations in which the space of absolutely summing polynomials coincides with the space of continuous polynomials (coincidence situations). When Y is the scalar field, these situations are not rare as we can see in the next two well known results:

Theorem 1. Every scalar-valued n-linear mapping is absolutely $(1; 1)$-summing. In particular, every scalar-valued n-homogeneous polynomial is absolutely $(1; 1)$-summing (and, a fortiori, $(q; 1)$-summing for every $q \geq 1$).

Theorem 2 (D. Pérez-García [6]). If $n \geq 2$ and X is an \mathcal{L}_∞-space, then every scalar-valued n-linear mapping on X is $(1; 2)$-summing. In particular, every scalar-valued n-homogeneous polynomial on X is $(1; 2)$-summing (and, a fortiori, $(q; 2)$-summing for every $q \geq 1$).

The proof of Theorem 1 can be found in [1] and is credited to A. Defant and J. Voigt. The case $n = 2$ of Theorem 2 was previously proved by Botelho [2] and is the unique known coincidence result for dominated polynomials.

In Section 2 we obtain new coincidence situations, generalizing Theorem 1 and extending the results of Theorem 2. Section 3 has a different purpose: to obtain a technical estimate (inspired by a linear result due to Lindenstrauss and Pełczyński [3]) and to explore its consequences. In particular, it is shown that Theorems 1 and 2 cannot be generalized in some other directions, and converses for the aforementioned theorems are obtained.

2. Coincidence situations.

The next theorem, inspired by a result of C. A. Soares, leads us to extensions of the two theorems stated in the first section:

Theorem 3. Let $A \in \mathcal{L}(X_1, \ldots, X_n; Y)$ and suppose that there exists $C > 0$ so that for any $x_1 \in X_1, \ldots, x_r \in X_r$, the s-linear ($s = n - r$) mapping $A_{x_1 \ldots x_r}(x_{r+1}, \ldots, x_n) = A(x_1, \ldots, x_n)$ is absolutely $(1; q_1, \ldots, q_s)$-summing and

$$\|A_{x_1 \ldots x_r}\|_{\text{as}(1; q_1, \ldots, q_s)} \leq C\|A\| \|x_1\| \cdots \|x_r\|.$$

Then A is absolutely $(1; 1, \ldots, 1, q_1, \ldots, q_s)$-summing.
Proof. For \(x_1^{(1)}, \ldots, x_1^{(m)} \in X_1, \ldots, x_n^{(1)}, \ldots, x_n^{(m)} \in X_n \), consider \(\varphi_j \in B_Y \) such that
\[
\|A(x_1^{(j)}, \ldots, x_n^{(j)})\| = \varphi_j(A(x_1^{(j)}, \ldots, x_n^{(j)}))
\]
for every \(j = 1, \ldots, m \). Then, denoting by \(r_j(t) \) the Rademacher functions on \([0,1]\) and by \(\lambda \) the Lebesgue measure on \(I = [0,1]^r \), we have
\[
\sum_{I} \left(\prod_{l=1}^{r} r_j(t_l) \right) \times \varphi_j A \left(\sum_{j_1=1}^{m} r_{j_1}(t_1) x_1^{(j_1)}, \ldots, \sum_{j_r=1}^{m} r_{j_r}(t_r) x_r^{(j_r)}, x_{r+1}^{(j)}, \ldots, x_n^{(j)} \right) d\lambda
\]
\[
= \sum_{j_1, \ldots, j_r=1}^{m} \varphi_j A(x_1^{(j_1)}, \ldots, x_r^{(j_r)}, x_{r+1}^{(j)}, \ldots, x_n^{(j)})
\]
\[
\times \int_{0}^{1} r_j(t_1) r_{j_1}(t_1) dt_1 \ldots \int_{0}^{1} r_j(t_r) r_{j_r}(t_r) dt_r
\]
\[
= \sum_{j=1}^{m} \sum_{j_1=1}^{m} \ldots \sum_{j_r=1}^{m} \varphi_j A(x_1^{(j_1)}, \ldots, x_r^{(j_r)}, x_{r+1}^{(j)}, \ldots, x_n^{(j)}) \delta_{jj_1} \ldots \delta_{jj_r}
\]
\[
= \sum_{j=1}^{m} \varphi_j A(x_1^{(j)}, \ldots, x_n^{(j)}) = \sum_{j=1}^{m} \|A(x_1^{(j)}, \ldots, x_n^{(j)})\| = (*).
\]
So, for each \(l = 1, \ldots, r \), assuming \(z_l = \sum_{j=1}^{m} r_j(t_l) x_l^{(j)} \) we obtain
\[
(*) = \sum_{l=1}^{m} \left(\prod_{l=1}^{r} r_j(t_l) \right) \times \varphi_j A \left(\sum_{j_1=1}^{m} r_{j_1}(t_1) x_1^{(j_1)}, \ldots, \sum_{j_r=1}^{m} r_{j_r}(t_r) x_r^{(j_r)}, x_{r+1}^{(j)}, \ldots, x_n^{(j)} \right) d\lambda
\]
\[
\leq \sum_{l=1}^{m} \left(\prod_{l=1}^{r} r_j(t_l) \right) \times \varphi_j A \left(\sum_{j_1=1}^{m} r_{j_1}(t_1) x_1^{(j_1)}, \ldots, \sum_{j_r=1}^{m} r_{j_r}(t_r) x_r^{(j_r)}, x_{r+1}^{(j)}, \ldots, x_n^{(j)} \right) d\lambda
\]
\[
\leq \sum_{l=1}^{m} \left\| A \left(\sum_{j_1=1}^{m} r_{j_1}(t_1) x_1^{(j_1)}, \ldots, \sum_{j_r=1}^{m} r_{j_r}(t_r) x_r^{(j_r)}, x_{r+1}^{(j)}, \ldots, x_n^{(j)} \right) \right\| d\lambda
\]
We have the following straightforward consequence, generalizing Theorem 1:

Corollary 1. If
\[\mathcal{L}(X_1, \ldots, X_m; Y) = \mathcal{L}_{as(1; q_1, \ldots, q_m)}(X_1, \ldots, X_m; Y) \]
then, for any Banach spaces \(X_{m+1}, \ldots, X_n \), we have
\[\mathcal{L}(X_1, \ldots, X_n; Y) = \mathcal{L}_{as(1; q_1, \ldots, q_m, 1, \ldots, 1)}(X_1, \ldots, X_n; Y). \]

The following corollary (whose proof is simple and we omit it) is a consequence of Theorems 2 and 3.

Corollary 2. If \(X_1, \ldots, X_s \) are \(\mathcal{L}_\infty \)-spaces then, for any Banach spaces \(X_{s+1}, \ldots, X_n \), we have
\[\mathcal{L}(X_1, \ldots, X_n) = \mathcal{L}_{as(1; q_1, \ldots, q_n)}(X_1, \ldots, X_n), \]
where \(q_1 = \cdots = q_s = 2 \) and \(q_{s+1} = \cdots = q_n = 1 \).

It is obvious that Corollary 2 is still true if we replace the scalar field by any finite-dimensional Banach space. A natural question is whether Corollary 2 can be stated for some infinite-dimensional Banach space in place of \(\mathbb{K} \). Precisely, the question is:

- If \(X_1, \ldots, X_k \) are \(\mathcal{L}_\infty \)-spaces, is there some infinite-dimensional Banach space \(Y \) such that
\[\mathcal{L}(X_1, \ldots, X_k, \ldots, X_n; Y) = \mathcal{L}_{as(1; q_1, \ldots, q_n)}(X_1, \ldots, X_k, \ldots, X_n; Y), \]
where \(q_1 = \cdots = q_k = 2 \) and \(q_{k+1} = \cdots = q_n = 1 \), regardless of the choice of the Banach spaces \(X_{k+1}, \ldots, X_n \)?

The answer to this question is no, as shown by the following proposition:

Proposition 1. Suppose that \(X_1, \ldots, X_k \) are \(\mathcal{L}_\infty \)-spaces. If \(q_1 = \cdots = q_k = 2 \), \(q_{k+1} = \cdots = q_n = 1 \) and
\[\mathcal{L}(X_1, \ldots, X_k, \ldots, X_n; Y) = \mathcal{L}_{as(1; q_1, \ldots, q_n)}(X_1, \ldots, X_k, \ldots, X_n; Y), \]
regardless of the choice of the Banach spaces \(X_{k+1}, \ldots, X_n \), then \(\dim Y < \infty \).
Proof. By a standard localization argument, it suffices to prove that if \(\dim Y = \infty \), then
\[
\mathcal{L}(^{n}c_{0};Y) \neq \mathcal{L}_{\text{as}(q_{1},\ldots,q_{n})}(^{n}c_{0};Y),
\]
where \(q_{1} = \ldots = q_{k} = 2 \) and \(q_{k+1} = \ldots = q_{n} = 1 \). But from [5, Theorem 8] we even have
\[
\mathcal{L}(^{n}c_{0};Y) \neq \mathcal{L}_{\text{as}(q_{1},\ldots,q_{n})}(^{n}c_{0};Y)
\]
for any \(q < 2 \) and \(q_{1},\ldots,q_{n} \geq 1 \).

3. Non-coincidence situations. Assume that \(X \) is an infinite-dimensional Banach space and suppose that \(X \) has a normalized unconditional Schauder basis \((x_{n}) \) with coefficient functionals \((x_{n}^{*}) \). If \(\mathcal{P}_{\text{as}(q;1)}(mX;Y) = \mathcal{P}(^{m}X;Y) \), it is natural to ask:

What is the infimum of the \(t \) such that in this situation \((x_{n}^{*}(x)) \in l_{t} \) for each \(x \in X \)? This infimum will be denoted by \(\mu = \mu(X,Y,q,m) \).

In [5], inspired by an important linear result due to Lindenstrauss and Pelczyński, we have proved:

Theorem 4 (Pellegrino [5, Theorem 5]). Let \(X \) and \(Y \) be infinite-dimensional Banach spaces. Suppose that \(X \) has an unconditional Schauder basis \((x_{n}) \). If \(Y \) finitely factors the formal inclusion \(l_{p} \to l_{\infty} \) and \(\mathcal{P}_{\text{as}(q;1)}(mX;Y) = \mathcal{P}(^{m}X;Y) \) with \(1/m \leq q \), then

(a) \(\mu \leq mpq/(p-q) \) if \(q < p \),
(b) \(\mu \leq mq \) if \(q \geq p/2 \).

However, by inspecting the proof of this theorem in [5], one can see that it is by no means necessary to assume that \(\dim Y = \infty \). Only in Corollary of [5] (when the Dvoretzky–Rogers Theorem is invoked) is it indeed necessary to assume \(\dim Y = \infty \). A slight change in the proof of [5, Theorem 5] yields the following result:

Theorem 5. Let \(X \) be an infinite-dimensional Banach space with a normalized unconditional Schauder basis \((x_{n}) \). If \(\mathcal{P}_{\text{as}(q;1)}(^{m}X) = \mathcal{P}(^{m}X) \), then

(a) \(\mu \leq mq/(1-q) \) if \(q < 1 \),
(b) \(\mu \leq mq \) if \(q \leq 1/2 \).

Proof. If \(x = \sum_{j=1}^{\infty} a_{j}x_{j} \) and \(\{\mu_{i}\}_{i=1}^{n} \) is such that \(\sum_{j=1}^{n} |\mu_{j}|^{1/q} = 1 \), define \(P : X \to \mathbb{K} \) by \(Px = \sum_{j=1}^{n} |\mu_{j}|^{1/q}a_{j}^{m} \).

Since \((x_{n}) \) is an unconditional basis, there exists a \(\theta > 0 \) satisfying
\[
\left\| \sum_{j=1}^{n} \varepsilon_{j}a_{j}x_{j} \right\| \leq \theta \|x\| \quad \text{for every } n \text{ and any } \varepsilon_{j} = \pm 1.
\]
Hence
\[|Px| \leq \sum_{j=1}^{n} |\mu_j|^{1/q}a_j^m \leq g^m|x|^m \sum_{j=1}^{n} |\mu_j|^{1/q}, \]
and thus \(\|P\| \leq g^m \) and \(\|P\|_{as(q;1)} \leq Cg^m \). Therefore
\[
\left(\sum_{j=1}^{n} |a_j|^m |\mu_j|^{1/q} \right)^{1/q} \leq \left(\sum_{j=1}^{n} |Pa_jx_j|^q \right)^{1/q} \\
\leq \|P\|_{as(q;1)} \max_{\varepsilon_j \in \{1,-1\}} \left\| \sum_{j=1}^{n} \varepsilon_j a_jx_j \right\|^m \\
\leq \|P\|_{as(q;1)} (g \|x\|)^m \leq Cg^{2m} \|x\|^m.
\]
Defining \(s = 1/q \), we have \(\frac{1}{s} + \frac{1}{s-1} = 1 \) and
\[
\left(\sum_{j=1}^{n} |a_j|^{s-1}mq \right)^{1/s} \leq \sup \left\{ \sum_{j=1}^{n} |\mu_j| |a_j|^{mq} : \sum_{j=1}^{n} |\mu_j|^s = 1 \right\}.
\]
Since (3.1) is true whenever \(\sum_{j=1}^{n} |\mu_j|^s = 1 \), by (3.1) and (3.2) we obtain
\[
\left(\sum_{j=1}^{n} |a_j|^{s-1}mq \right)^{1/s} \leq [Cg^{2m} \|x\|^m]^{1/m}.
\]
But \(\frac{s-1}{s-1}mq = \frac{mq}{1-q} \) and \(n \) is arbitrary, and hence part (a) is proved. Now, if \(1/m \leq q \leq 1/2 \), define \(S : X \to \mathbb{K} \) by \(Sx = \sum_{j=1}^{n} a_j^m \). Since \(m \geq \frac{s}{s-1}mq \), we obtain
\[
|Sx| \leq \sum_{j=1}^{n} |a_j|^m \leq \left[\left(\sum_{j=1}^{n} |a_j|^{s-1}mq \right)^{1/s} \right]^m \leq Cg^{2m} \|x\|^m.
\]
Thus \(\|S\| \leq Cg^{2m} \) and \(\|S\|_{as(q;1)} \leq C^2g^{2m} \). Therefore
\[
\sum_{j=1}^{n} |a_j|^q = \sum_{j=1}^{n} |Sa_jx_j|^q \leq \|S\|_{as(q;1)}^q \max_{\varepsilon_j \in \{1,-1\}} \left\| \sum_{j=1}^{n} \varepsilon_j a_jx_j \right\|^{mq} \\
\leq (C^2g^{2m})^q (g \|x\|)^{mq}.
\]
Consequently, since \(n \) is arbitrary, we have \(\sum_{j=1}^{\infty} |a_j|^mq < \infty \) whenever \(x = \sum_{j=1}^{\infty} a_jx_j \in X \).

Now we list several important consequences of Theorem 5. For example, Corollaries 3 and 4 below give converses for Theorems 1 and 2, respectively. The proofs of Corollaries 3–6 are simple (using Theorem 5 and standard localization techniques in order to extend the results from \(c_0 \) to \(\mathcal{L}_\infty \)-spaces):

Corollary 3. Let \(m \) be a fixed natural number. Then \(P_{as(q;1)}^m(X) = P^m(X) \) for every \(X \) if and only if \(q \geq 1 \).
COROLLARY 4. If $m \geq 2$ and X is an \mathcal{L}_∞-space, then $P_{\text{as}(q;2)}(mX) = \mathcal{P}(mX)$ if and only if $q \geq 1$.

COROLLARY 5. If $m \geq 2$ and X is an \mathcal{L}_∞-space, then $P_{d,q}(mX) \neq \mathcal{P}(mX)$ for every $q < m$.

In particular, if X is an \mathcal{L}_∞-space and $m = 2$, then $P_{d,2}(2X) = \mathcal{P}(2X)$ and thus we have:

COROLLARY 6. If X is an \mathcal{L}_∞-space, then $P_{d,q}(2X) = \mathcal{P}(2X)$ if and only if $q \geq 2$.

We also have:

COROLLARY 7. If $q \leq 1/2$ and X is an \mathcal{L}_p-space ($p \geq 2$), then $P_{\text{as}(q;1)}(mX) = \mathcal{P}(mX)$ if and only if $p \leq mq$.

Proof. A localization argument allows us to assume that $X = l_p$. If $P_{\text{as}(q;1)}(mX) = \mathcal{P}(mX)$, Theorem 5 ensures that $p \leq mq$. On the other hand, if $p \leq mq$ and $P \in \mathcal{P}(mX)$, then

$$\left(\sum_{j=1}^k \|P(x_j)\|^q\right)^{1/q} \leq \|P\|\left(\sum_{j=1}^k \|x_j\|^{mq}\right)^{1/q} \leq \|P\|\left(\sum_{j=1}^k \|x_j\|^p\right)^{m/p} \leq C_p(X)\|P\|\|(x_j)_{j=1}^k\|_{w,1},$$

where $C_p(X)$ is the cotype constant of l_p and the last inequality holds since l_p has cotype p (for $p \geq 2$) and thus $\text{id} : l_p \to l_p$ is absolutely $(p;1)$-summing.

All these results can be adapted (including Theorem 5), mutatis mutandis, to the multilinear case. Furthermore, one can extend Corollary 2:

COROLLARY 8. Let X_1, \ldots, X_s be \mathcal{L}_∞-spaces, $q_1 = \cdots = q_s = 2$ and $q_{s+1} = \cdots = q_n = 1$. Then

$$\mathcal{L}(X_1, \ldots, X_n) = \mathcal{L}_{\text{as}(q_1, \ldots, q_n)}(X_1, \ldots, X_n),$$

for any choice of Banach spaces X_{s+1}, \ldots, X_n, if and only if $q \geq 1$.

REMARK 1. For the bilinear case it is not hard to prove that when X is an \mathcal{L}_∞-space, $\mathcal{L}_{d,q}(2X) \neq \mathcal{L}(2X)$ if $q < 2$. However, this result cannot be straightforwardly adapted for polynomials and thus Corollary 6 is in fact non-trivial. Non-coincidence results for absolutely summing multilinear mappings, in general, do not imply non-coincidence results for absolutely summing polynomials.
References

Departamento de Matemática e Estatística
Universidade Federal de Campina Grande
Caixa Postal 10044
Campina Grande, PB, 58109-970, Brazil
E-mail: dmp@dme.ufcg.edu.br

Reçu par la Rédaction le 18.11.2003