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Characteristic values of the Jacobian matrix
and global invertibility

by L. Andrew Campbell (Los Angeles, CA)

Abstract. Characteristic matrix values (singular values, eigenvalues, and pivots aris-
ing from Gaussian elimination) for the Jacobian matrix and its inverse are considered for
maps of real n-space to itself with a nowhere vanishing Jacobian determinant. Bounds
on these are related to global invertibility of the map. Polynomial maps with a constant
nonzero Jacobian determinant are a special case that allows for sharper characteriza-
tions.

1. Introduction. Consider a map F : Rn → Rn that is C1 (that is,
one that has continuous first order partial derivatives). Let x1, . . . , xn be a
(linear) coordinate system for Rn, and write F = (F1, . . . , Fn), where each Fi
is a function of x1, . . . , xn. Denote by J(F )(x) the Jacobian matrix ∂Fi/∂xj
at a point x ∈ Rn. Assume that the Jacobian determinant, det(J(F )(x)),
vanishes nowhere. Then for every x ∈ Rn, the matrix J(F )(x) is a square
nonsingular matrix. From the standard inverse function theorem, the map
F is a local diffeomorphism (locally invertible with a C1 inverse). The global
invertibility of F is linked to bounds on the singular values of J(F )(x) (a
result that dates back to a paper of Hadamard early in the 20th century).

This has led to a conjecture that global invertibility might be a conse-
quence of similar bounds on the eigenvalues of J(F )(x). That (strong, but as
yet unrefuted) conjecture, even restricted to polynomial maps, would imply
the real case of the Jacobian conjecture, which is the conjecture that if F is
polynomial and its Jacobian determinant is a nonzero constant, then F has
a polynomial inverse.

A Samuelson map is one whose Jacobian matrix has nowhere vanishing
leading principal minors. For such a map, Gaussian elimination (without
pivoting—that is, in strict order of the coordinates) naturally introduces
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quantities called pivots, which are the only quantities whose reciprocals are
required. The pivots can also be characterized as quotients of successive lead-
ing principal minors. For a C1 Samuelson map, bounds on the pivots similar
to those in the singular value and eigenvalue cases yield invertibility also.
All three cases bear a striking resemblance, in that the characteristic values
in each case have a product whose absolute value is the absolute value of the
Jacobian determinant. For polynomial maps with a constant nonzero Jaco-
bian determinant, the characteristic values are constant if they are bounded
either above or below, and it is known that an injective polynomial local
homeomorphism has a global (but perhaps not polynomial) inverse; these
facts imply that only the case of bounded eigenvalues is of real interest for
polynomial maps (and is an important open question).

Remark. C1 differentiability is assumed as a convenience, but the ap-
propriate inverse function theorems etc. hold under somewhat less stringent
differentiability assumptions. It is also clear that there are extensions to the
case of maps of Cn to itself, but they do not seem to be worth the effort of
formulating them separately.

2. Singular values. For the special case of a real n × n matrix A,
the singular value decomposition yields the following: A = UΣV , where
U and V are orthogonal matrices, and Σ is a real diagonal matrix with
diagonal entries σi = Σii that satisfy σ1 ≥ . . . ≥ σn ≥ 0. The σi depend
only on the matrix A and are called the singular values of A (and written
σi(A) if A needs to be identified). They are the positive square roots of
the eigenvalues of AAT and of ATA, arranged in nonascending order. They
are continuous functions of the entries of A. The product of the singular
values is σ1 . . . σn = |det(A)|, the absolute value of the determinant of A.
The first (hence largest, though possibly tied for size) singular value, σ1,
is also known as the spectral norm of A. Let ‖x‖ denote the Euclidean
norm of a vector x ∈ Rn. Let |||A||| denote the associated operator norm
of a matrix A; that is, the supremum of ‖Ax‖ taken over all x satisfying
‖x‖ = 1. Then σ1(A) = |||A|||. Denote by %(A) the spectral radius of A; that
is, the supremum of the absolute values of the eigenvalues of A (which are in
general complex numbers). Then %(A) ≤ σ1(A). Finally, if A is non-singular,
then σn(A) > 0, and σn−i+1(A−1) = 1/σi(A). A general reference for matrix
algebra issues, here and in later sections, is [15].

The term “Hadamard’s Theorem” is very ambiguous. First, there are
quite a few significant theorems in different areas of mathematics that are
often thus identified. In the context of global inverses, the original Hadamard
Theorem is the one proved in [14]. Today, a reference to this theorem often
refers to a purely topological variant, such as
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Theorem 2.1 (Variant of Hadamard’s Theorem on Inverses). If F :
Rn → Rn is a local homeomorphism, then it is a global homeomorphism
if , and only if , it is a proper map.

Here a proper map is one for which F−1(K) is compact for each compact
K ⊂ Rn. Generalizations of this theorem are standard fare in point set
topology.

What Hadamard actually proved is that if a suitable norm of the inverse
of the Jacobian matrix is bounded above, then the map is invertible.

A modern variant is Plastock’s Theorem.

Theorem 2.2 (Plastock). If F is C1 with a nowhere vanishing Jaco-
bian determinant and with

� ∞
0 u(r) dr = ∞, where u(r) is the infimum of

1/|||J(F )−1(x)||| over all x with ‖x‖ = r, then F is globally invertible.

Note that J(F )−1 is the inverse of the Jacobian matrix J(F ), and not
the Jacobian matrix of the inverse map. The original proof is in [20]; an-
other proof can be found in [18, Chap. IV]. This clearly yields the orig-
inal Hadamard Theorem. In fact, as remarked by Patrick Rabier in [21],
Hadamard’s assumed condition amounts to the largest singular value of the
inverse of J(F )(x) remaining bounded away from 0 as x→ ∞. Under that
condition

� ∞
0 u(r) dr must be∞. Another condition equivalent to the original

Hadamard assumption is that the singular values of J(F )(x) are bounded
away from 0. An independent proof of the fact that this implies invertibility
can be found in [6].

Plastock’s condition is sufficient, but not necessary. Rabier provides a
version of Hadamard’s Theorem with a necessary and sufficient condition in
[22, Thm. 5.3]:

Theorem 2.3 (Rabier). If F is C1 with nowhere vanishing Jacobian
determinant and for each compact K ⊂ Rn there exists a constant CK such
that |||J(F )−1(x)||| < CK for x ∈ F−1(K), then F is a diffeomorphism onto
Rn. The converse holds as well.

Reformulating this in terms of σn(J(F )(x)) = 1/σ1(J(F )−1(x)) yields

Theorem 2.4. If F is C1, then σn(J(F )(x)) is bounded away from 0 on
each inverse image of a compact set if , and only if , F has a global inverse.

Remark. This short statement takes into account the fact that σn 6= 0
implies that the matrix is nonsingular. In particular, if the stated condition
is satisfied, the Jacobian determinant of F must be nowhere vanishing. A
special case, obviously, is the one in which σn(J(F )(x)) is globally bounded
away from 0. Because of the difficulty of identifying the inverse images of
compact sets in a general setting, that special case is the one which will see
the most use. Furthermore, it allows one to deal only with the behavior of
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F in a neighborhood of infinity; for if σn(J(F )(x)) is bounded away from
0 on the complement of a compact set K, then it is automatically globally
bounded away from 0, because the continuity of σn(J(F )(x)) implies that
it is bounded away from 0 on K. For instance, a map that is nonsingular
and linear in a neighborhood of infinity has a global inverse.

To conclude, observe that δ = |det(J(F ))| is the product of the singular
values. If σn is bounded away from 0 on some set, then so is δ. Conversely,
if δ is bounded away from 0 on a set, and σ1 (the spectral norm) is also
bounded on that set, then σn is necessarily bounded away from 0 there. So

Corollary 2.5. If F is C1 and the spectral norm and determinant of
J(F ) are, respectively , bounded and bounded away from 0 on each inverse
image of a compact set , then F has a global inverse.

Remark. Corollary 1(a) to Plastock’s Theorem in Chap. IV of [18] is
this result in the case where the bounds are global (a single bound for each
of σ1 and δ on all of Rn). Part (b) deals with the similar case in which
the determinant is bounded away from 0 and the condition number κ is
bounded. (Recall that κ(A) = ‖A‖ · ‖A−1‖ for a given matrix norm; here
the choice is the spectral norm.)

3. Eigenvalues. Denote by λi the n eigenvalues of an n × n matrix
(real or complex), arranged in (some) nonascending order of their absolute
values. (The relative order of repeated eigenvalues, or of eigenvalues of the
same absolute value, is not significant.) Write λi(A) to indicate the matrix,
if necessary. Then |λ1| ≥ . . . ≥ |λn| ≥ 0 and |λ1| . . . |λn| = |det(A)|. And if
A is nonsingular then |λn|(A) > 0 and |λn−i+1|(A−1) = 1/|λi|(A).

There are numerous results in the literature relating spectral conditions
(conditions on eigenvalues) for the Jacobian matrix of a map F : Rn → Rn
to invertibility of F . One class of results concerns the Markus–Yamabe con-
jecture [17]: a fixed point and stability (all eigenvalues have strictly negative
real parts at each point) imply global asymptotic stability for the solutions
of the ordinary differential equation dx/dt = F (x), and consequently the
injectivity of F . This conjecture is now known to be true for n = 2 (cf. [11,
12, 13]), and false for n ≥ 3 (cf. [2, 7]). For additional general results relating
relating spectral conditions to injectivity and invertibility see [21, 24].

Conditions relating to bounds on the eigenvalues, similar to the condi-
tions on singular values in the preceding section, appear to be rare in the
literature. However, the following significant conjecture is made in [6]:

Conjecture 3.1 (Chamberland). If F is C1 and the eigenvalues of
J(F )(x) are globally bounded away from 0 (that is, |λn(J(F )(x))| > C > 0,
for some C that does not depend on x), then F is injective.
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The Jacobian conjecture has a known reduction to the case of polyno-
mial maps that have constant eigenvalues. This suggests that verifying the
above conjecture for a given n might lead to a proof of the real Jacobian
conjecture for that n, since polynomial maps of Rn to itself are bijective if
they are injective [3, 9]. One delicate issue is that it is not known whether a
bijective polynomial map of Rn to itself with a constant nonzero Jacobian
determinant necessarily has a polynomial inverse. That is, the inverse cer-
tainly exists, but is it polynomial? This is stated as one of the conclusions
of a theorem in [1], but it is widely recognized that there is a gap in the
proof (specifically, an algebraically closed field may be needed in the proof
of (c)⇒(b) in Thm. 2.1). A less delicate issue involves the fact that the re-
duction to the case of constant eigenvalues requires increasing the value of
n. However, the validity of the conjecture for every n would definitely imply
the Jacobian conjecture in every dimension for every field of characteristic
zero. This is because the complex case is just a special case of the real case,
with Cn considered as R2n, and bijective polynomial maps of Cn to itself
are indeed known to have polynomial inverses (this is what is known as the
birational case of the Jacobian conjecture, first proved in [16], but see also
[1, 23]). Furthermore, it is known that the complex case implies the general
case (any field of characteristic zero) [1].

As a first class of special cases of the Chamberland conjecture, one can
take those C1 maps with a normal Jacobian matrix, that is, maps for which
J(F )(x) commutes with its transpose. The reason this is significant is that
for a normal matrix σi = |λi| [15, p. 417], and the results of the previous
section can be applied. Symmetric, skew symmetric, orthogonal, and various
other special types of matrices are normal, so the class in question contains
at least some interesting examples; among them, all gradient maps for C2

functions. The normality condition need only hold in a neighborhood of
infinity in order for the Chamberland condition on eigenvalues to imply
that σn is globally bounded away from 0. We record this observation as a
theorem:

Theorem 3.2. If F : Rn → Rn is C1 and its Jacobian matrix has eigen-
values globally bounded away from 0 and there is a compact subset of Rn
outside of which the Jacobian matrix is normal , then F has a global inverse.

Remark. Note that the conclusion in the above theorem is actually
stronger than the injectivity called for in the Chamberland conjecture.

4. Pivots. Let A be an n× n matrix (real or complex). Let µ1, . . . , µn
denote the leading principal minors of A (writing µi(A) if A needs to be
identified). That is, µi is the determinant of the i× i submatrix of A formed
from entries in the first i rows and first i columns. Then A has a decompo-
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sition A = LDU , in which the n×n matrices L, D, and U are, respectively,
a unit lower triangular matrix, a diagonal matrix with nonzero diagonal
elements, and a unit upper triangular matrix, if, and only if, each µi is
nonzero, in which case the decomposition is unique [15, Thm. 3.5.2]. The
qualifier “unit” for the triangular matrices means that the diagonal elements
of those matrices are all 1.

If the leading principal minors are all nonzero, then the entries on the di-
agonal of the (diagonal) matrix D are µ1, µ2/µ1, µ3/µ2, . . . , µn/µn−1. These
ratios are called pivots, because they are the quantities whose reciprocals
are required in performing elementary row and column operations to re-
duce the matrix to the identity matrix. Suppose that A is such a ma-
trix; since µn = det(A) it follows that A is nonsingular. Denote the piv-
ots, arranged in nonascending order of absolute value, by π1, . . . , πn. By
construction |π1| ≥ . . . ≥ |πn| > 0 and |π1| . . . |πn| = |det(A)|. Since
A = LDU , it follows that A−1 = U−1D−1L−1. If we consider the coor-
dinate system in reverse order, xn, xn−1, . . . , x1, then U−1 is lower trian-
gular and L−1 is upper triangular. If P is the permutation matrix that re-
verses the order of coordinates, then the previous is really just the identity
PA−1P = PU−1P (PD−1P )PL−1P (note that P 2 is the identity matrix,
so that P−1 = P ). Since the diagonal elements of D−1 are the reciprocals
of those of D, and the ordering of the pivots is by nonascending absolute
value, it follows that |πn−i+1|(PA−1P ) = 1/|πi|(A).

A map F : Rn → Rb is called Samuelson if the leading principal minors of
J(F )(x) are all nonzero for each point x ∈ Rn. The same definition, with R
replaced by k, a field of characteristic zero, is used in the more general setting
of maps kn → kn, provided the Jacobian matrix has a sensible definition
(e.g. for polynomial maps). An important result about (real) Samuelson
maps is

Theorem 4.1 (Campbell). If F : Rn → Rn is C1 and Samuelson, and
the pivots are globally bounded away from 0, then F has a global inverse.

The proof [5] is a variant, using bounds rather than rationality, of the
analogous result for (real) rational maps [4]. Actually, more is established.
Namely, if one considers the pivots in their original order, rather than as
arranged in nonascending order of size, then if the first n − 1 of them are
bounded away from 0 the map is injective, and if the last one is as well, then
the map is a homeomorphism and hence has a global inverse. The conclusion
can also be strengthened; the map can be factored as the composition of n
C1 maps, each of which changes only a single coordinate; see [4] for details.

5. Polynomial maps. If F is a polynomial map, bounds on the charac-
teristic values can be used to deduce their constancy. This was noted for the
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case of eigenvalues in [8]. The key observation is that a polynomial that is
globally bounded (has a uniform bound on all of Rn) is necessarily constant.

Theorem 5.1. Suppose that the Jacobian determinant of a polynomial
map F : Rn → Rn is a nonzero constant. Let {α1, . . . , αn} be one of the sets
of characteristic values of the Jacobian matrix considered above (singular
values, absolute values of the eigenvalues, or absolute values of the pivots
for a Samuelson map). Then the following are equivalent :

(1) the αi are (jointly) globally bounded ,
(2) the αi are (jointly) globally bounded away from 0,
(3) the αi are all constant.

Proof. Consider the case of eigenvalues: αi = |λi|. The λi are roots of
the characteristic polynomial of J(F ). The coefficients of the characteristic
polynomial are polynomials in x1, . . . , xn. If the |λi| are jointly globally
bounded, then so are the coefficients of the characteristic polynomial, since
they are elementary symmetric functions of the eigenvalues. But then the
coefficients of the characteristic polynomial are constant. Thus it has only
finitely many roots. By the continuity of the roots of a polynomial, the
eigenvalues are continuous functions assuming only finitely many values,
and hence constant. (The fact that the eigenvalues need not be distinct
does not affect the argument, despite the fact that the eigenvalues are not
really “functions” of the coefficients at a multiple root; their absolute values,
arranged in nonascending order, are actual, continuous, functions of the
position x ∈ Rn.) This is essentially the argument in [8]. This proves that
(1) implies (3) for eigenvalues. The converse is obvious. For the equivalence
of (2) and (3) consider the absolute values of the eigenvalues of J(F )−1;
they are the reciprocals of the |λi|, arranged backwards. But J(F )−1 is also
a matrix with polynomial entries, since the determinant of J(F ) is assumed
to be a nonzero constant.

For the case of singular values, observe that they are the square roots of
the eigenvalues of J(F )J(F )T , another matrix with polynomial entries and
a polynomial inverse. So the same argument applies.

For the case of pivots, consider the pivot values in their original order
(rather than rearranged in nonascending order of absolute value). Then π1 =
µ1, a polynomial. So if π1 is bounded, it is constant. Then π2 = µ2/µ1. If
π1 and π2 are bounded, then µ1 is a constant, so π2 is not just a rational
function, but actually a polynomial. Continuing, if all the πi are bounded,
then they are all constant. For the case in which the pivots are bounded
away from 0, observe that the absolute values of their reciprocals are the
absolute values of the pivots of PJ(F )−1P , where P is the permutation
matrix that reverses the order of the coordinates. But that is clearly also a
matrix with polynomial entries.
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Remark. From the proof, condition (1), even without the assumption
that the Jacobian determinant is a nonzero constant, implies (2), (3) and
thus that the Jacobian determinant is indeed constant (and hence a nonzero
constant or identically zero). For context, the recent example of Pinchuk
[19] should be mentioned. Pinchuk constructs a class of polynomial maps
of R2 to itself which have a nowhere vanishing (but nonconstant) Jacobian
determinant, and which are not injective. There are also plentiful examples
of polynomial Samuelson maps with nonconstant Jacobian determinant that
are (necessarily, by [4]) bijective, but whose inverses are not polynomial; for
instance, the map F (x) = x+ x3 from R to itself.

The case of constant singular values is relatively uninteresting.

Theorem 5.2. If F : Rn → Rn is a polynomial map whose Jacobian
matrix has constant singular values, then F is an affine (linear + constant)
map.

Proof. The result is true even for the case in which some of the singular
values are (identically) 0. Since any two vector space norms on a finite
dimension real vector space are equivalent, the fact that the spectral norm
of J(F )(x) is bounded implies that the ordinary Euclidean norm of J(F )(x),
considered as a vector in Rn2

, is also bounded. This implies the boundedness
of every element of the Jacobian matrix, so the Jacobian matrix has constant
entries, and thus F is affine.

This in turn shows that the case of normal Jacobian matrices and con-
stant eigenvalues is also uninteresting.

Corollary 5.3. If F : Rn → Rn is a polynomial map whose Jacobian
matrix has constant eigenvalues and is normal on some open set , then F is
an affine (linear + constant) map.

Proof. Normality is an algebraic condition that is true globally if it holds
on an open set. Thus the singular values will be constant. For that matter,
the constant eigenvalue condition need hold only locally as well, and for the
same reason.

For the case of a Samuelson map with constant pivots, one has the fol-
lowing result [10], where k is an arbitrary field of characteristic zero.

Theorem 5.4 (van den Essen and Parthasarathy). If F : kn → kn is a
polynomial Samuelson map whose pivots are constant , then F can be written
as a composition F = D◦E(n) ◦ · · ·◦E(1), where D is the linear map defined
by the diagonal matrix whose entries are the pivots πi (in their original
order) and E(i) is an elementary polynomial automorphism of the form
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E
(i)
j (x1, . . . , xn) =

{
xj for j 6= i,
xi + hi for j = i,

where hi is a polynomial independent of xi.

In sum, bounds on the characteristic values of the Jacobian matrix for
polynomial maps lead to well understood situations, except in the constant
eigenvalue case. This underlines the importance of the Chamberland con-
jecture.
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[14] J. Hadamard, Sur les correspondences ponctuelles, reprinted in: Oeuvres, Édi-
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