The sixtieth anniversary of the Jacobian Conjecture: a new approach

by Arno van den Essen (Nijmegen)

Abstract. We investigate an approach of Bass to study the Jacobian Conjecture via the degree of the inverse of a polynomial automorphism over an arbitrary \mathbb{Q} -algebra.

Introduction and notations. This year we celebrate the 60th anniversary of the Jacobian Conjecture. On the occasion of this event I would like to present a new approach to attack this conjecture. In fact, the approach is not completely new but is a continuation of an idea of Bass [1] which goes back to 1983. This continuation was motivated by some more recent results of Derksen [3] and Furter [6], to which I will come back below.

The main aim of this paper is to give a new impulse to this approach, which hopefully will lead to the solution of the Jacobian Conjecture!

Throughout this paper we use the following notations: k denotes a field, $k[X] := k[X_1, \ldots, X_n]$ the polynomial ring over k and if $F = (F_1, \ldots, F_n) \in k[X]^n$ then deg $F := \max_i \deg F_i$, where deg F_i denotes the total degree of F_i . Finally, by $JC(\mathbb{C}, n)$ we denote the *n*-dimensional Jacobian Conjecture, i.e. the statement

if $F \in \mathbb{C}[X]^n$ with det $JF \in \mathbb{C}^*$, then $\mathbb{C}[F_1, \ldots, F_n] = \mathbb{C}[X]$.

1. The degree of the inverse of a polynomial automorphism. To start my story let us go back some twenty years. Then the first significant result on the Jacobian Conjecture was obtained by Stuart Wang in [9] who showed that the Jacobian Conjecture is true in case $F : k^n \to k^n$ is a polynomial map with deg $F \leq 2$ and char $k \neq 2$. In fact, he even showed that in case k is a UFD with $2 \neq 0$ the Jacobian Conjecture (i.e. its obvious generalisation, with \mathbb{C} replaced by k) holds. At the end of his paper

²⁰⁰⁰ Mathematics Subject Classification: Primary 14E07.

 $Key \ words \ and \ phrases:$ polynomial automorphisms, Jacobian Conjecture, locally nilpotent derivations, inverse degrees.

he makes the following Degree Conjecture: if k is a UFD with $2 \neq 0$ and $F \in \operatorname{Aut}_k k[X]$ with deg $F \leq 2$, then deg $F^{-1} \leq 2^{n-1}$. This conjecture was remarkable at that time since it contrasted with an earlier conjecture of Sathaye which, as Wang writes, states that the degree of the inverse of a polynomial automorphism is in general not bounded.

Wang's conjecture was proved in the field case around 1980 by Rusek and Winiarski [8] and simultaneously by Gabber (see [2]). In fact, they proved a more general result.

PROPOSITION 1.1 (Rusek, Winiarski, Gabber). Let k be a field and $F \in \operatorname{Aut}_k k[X]$. Then deg $F \leq (\deg F)^{n-1}$.

This most probably finished the Sathayer conjecture. I write "most probably" since I do not know what the exact meaning of "in general" was, namely one can ask: what happens if one replaces k by an arbitrary commutative ring R?

The first partial answer is

PROPOSITION 1.2. If R is a reduced ring, i.e. R has no non-zero nilpotent elements, then deg $F^{-1} \leq (\deg F)^{n-1}$ for all $F \in \operatorname{Aut}_R R[X]$.

Proof. Write $G = (G_1, \ldots, G_n)$ instead of F^{-1} .

(i) If R is a domain, embed R in its quotient field and apply Proposition 1.1.

(ii) To prove the general case let $1 \leq i \leq n$ and $\alpha = (\alpha_1, \ldots, \alpha_n)$ with all $\alpha_j \geq 0$ such that $|\alpha| > (\deg F)^{n-1}$. It suffices to show that $c_{\alpha}^{(i)} = 0$, where $c_{\alpha}^{(i)}$ is the coefficient of the monomial X^{α} in G_i . Therefore let p be a prime ideal in R and consider the maps \overline{F} and \overline{G} , obtained by reducing the coefficients of the F_i and G_j modulo p. Put $\overline{R} := R/p$. Then we deduce from (i) that

$$\deg \overline{G} \le (\deg \overline{F})^{n-1} \le (\deg F)^{n-1}.$$

So $\overline{c_{\alpha}^{(i)}} = 0$, i.e. $c_{\alpha}^{(i)} \in p$. Since this holds for all prime ideals p in R we deduce that $c_{\alpha}^{(i)} \in \bigcap p = (0)$, since R is reduced.

So the next question to consider is: what happens if R does have non-zero nilpotent elements?

Here we get a first surprise: consider n = 1 and $R := \mathbb{C}_m := \mathbb{C}[T]/(T^m)$, where $m \geq 2$. So $\varepsilon := \overline{T}$ satisfies $\varepsilon^m = 0$ and $\varepsilon^{m-1} \neq 0$. Define $F = X + \varepsilon X^2$ (so F is quadratic!).

CLAIM. $F \in \operatorname{Aut}_{\mathbb{C}_m} \mathbb{C}_m[X]$ and deg $F^{-1} = m$.

To get F^{-1} we just have to solve for X the quadratic equation F(X) = Y, i.e. $\varepsilon X^2 + X = Y$. Every highschool student can do this and one finds

$$X = \frac{-1 + (1 + 4\varepsilon Y)^{1/2}}{2\varepsilon} = \sum_{i=1}^{m} 2\binom{1/2}{i} (4\varepsilon)^{i-1} Y^{i}$$

So indeed $F \in \operatorname{Aut}_{\mathbb{C}_m} \mathbb{C}_m[X]$ and deg $F^{-1} = m$ (this in spite of the fact that deg F = 2 !).

CONCLUSION. If we do admit non-zero nilpotent elements in the coefficient ring, Sathaye was not wrong after all, or to put it more precisely: for $d \geq 2$, there does not exist a positive integer C(n, d) such that deg $F^{-1} \leq C(n, d)$ for all $F \in \operatorname{Aut}_R R[X]$ with deg $F \leq d$ and all Q-algebras R.

Now you may wonder: what does all of this have to do with the Jacobian Conjecture? The answer is given by the following results:

THEOREM 1.3 ([2]). Let $n \ge 1$. If $JC(\mathbb{C}, n)$ is true then the following statement, denoted by UB(n), is true as well:

UB(n) For every $d \ge 1$ there exists a positive integer C(n, d) such that for any \mathbb{Q} -algebra R and any $F \in \operatorname{Aut}_R R[X]$ with deg $F \le d$ and det JF = 1 we have deg $F^{-1} \le C(n, d)$.

The point in UB(n) is that one only considers R-automorphisms F of R[X] having det JF = 1 (or equivalently, det $JF \in R^*$, the group of units of R). This is really a restriction, namely from the chain rule one easily deduces that if $F \in \operatorname{Aut}_R R[X]$ then det $JF \in R[X]^*$. However, if R has non-zero nilpotent elements then $R^* \subsetneq R[X]^*$. Our example $F = X + \varepsilon X^2$ also illustrates this point:

$$\det JF = 1 + 2\varepsilon X \in R[X]^* \setminus R^*.$$

Apparently, the existence of such a uniform bound C(n, d) is a necessary condition for the Jacobian Conjecture to be true.

However, there is more: it was observed by Hyman Bass in [1] around 1983 that the condition UB(n) is also sufficient:

THEOREM 1.4 (Bass). Let $n \ge 1$. Then UB(n) and $JC(\mathbb{C}, n)$ are equivalent.

So the Jacobian Conjecture, if true, is reduced to finding a positive integer C(n,d) such that deg $F^{-1} \leq C(n,d)$ for all $F \in \operatorname{Aut}_R R[X]$ with deg $F \leq d$ and det JF = 1, independent of the Q-algebra R!

The next question which arises immediately is: what, in case the Jacobian Conjecture is true, is a natural candidate for C(n, d)? (From now on we denote by C(n, d) the *smallest* upper bound as in UB(n).)

Before addressing this question one may wonder: does the statement UB(n) look much easier than $JC(\mathbb{C}, n)$?

At first glance one is inclined to say NO, because of various reasons. For example:

• Instead of understanding automorphisms over \mathbb{C} , one has to study automorphisms over all \mathbb{Q} -algebras R.

• Amongst all automorphisms over R (whose Jacobian determinant is a unit in R[X]) one has to characterize those automorphisms whose Jacobian determinant equals 1.

• One has to be able to compare F with F^{-1} .

All of this seems to vote against studying the statement UB(n): this might be the reason why it remained untouched since 1983. However, in the remainder of this paper we will show how the above objections can be overruled.

2. Bass' theorem revisited. The first of the above objections is that one has to study automorphisms over all \mathbb{Q} -algebras R. The following beautiful argument due to Harm Derksen ([3]) overcomes this objection: it shows that one only has to study automorphisms over the simplest \mathbb{Q} -algebras having nilpotent elements, namely the \mathbb{C} -algebras \mathbb{C}_m , $m \geq 2$, as introduced in §1. More precisely, let us formulate the following statement.

 $\overline{\text{UB}}(n) \quad \text{For every } d \geq 1 \text{ there exists a positive integer } \overline{C}(n,d) \text{ such that} \\ \text{for any } \mathbb{C}\text{-algebra } \mathbb{C}_m, \ m \geq 2, \text{ and every } F \in \text{Aut}_{\mathbb{C}_m} \mathbb{C}_m[X] \text{ with} \\ \deg F \leq d \text{ and } \det JF = 1 \text{ we have } \deg F^{-1} \leq \overline{C}(n,d). \end{cases}$

THEOREM 2.1 (Derksen). $\overline{\text{UB}}(n)$ implies $\text{JC}(\mathbb{C}, n)$ (and hence these statements are equivalent by Theorem 1.2).

Proof. Let $F \in \mathbb{C}[X]^n$ with det JF = 1 and deg $F \leq d$. Let $G \in \mathbb{C}[[X]]^n$ be its formal inverse and denote by $G_{(i)}$ its homogeneous component of degree *i*. We will show that $G_{(l)} = 0$ for all $l > \overline{C}(n, d)$. Therefore introduce a new variable T and define

$$F^{T} := T^{-1}F(TX) = X + TF_{(2)} + T^{2}F_{(3)} + \ldots + T^{d-1}F_{(d)}$$

and

$$G^T := T^{-1}G(TX) \in \mathbb{C}[T][[X]]^n.$$

One easily verifies that $\det J_X F^T = \det JF(TX) = 1$. Furthermore,

(1)
$$F^T \circ G^T = X = G^T \circ F^T$$

(composition as formal power series in X). Now let $l > \overline{C}(n, d)$. Reducing mod T^l we deduce from (1) that

$$\overline{F^T} \in \operatorname{Aut}_{\mathbb{C}_l} \mathbb{C}_l[X]$$
 with inverse $\overline{G^T} = X + G_{(2)}\overline{T} + \ldots + G_{(l)}\overline{T}^{l-1}$.

Also, det $J_X \overline{F^T} = 1$ and deg $\overline{F^T} \leq d$. So by $\overline{\text{UB}}(n)$ we get

(2)
$$\deg \overline{G^T} \le \overline{C}(n,d).$$

However, $\overline{G^T} = X + G_{(2)}\overline{T} + \ldots + G_{(l)}\overline{T}^{l-1}$. So if $G_{(l)} \neq 0$ then, using $\overline{T}^{l-1} \neq 0$, we get deg $\overline{G^T} = l > \overline{C}(n,d)$, contradicting (2). So $G_{(l)} = 0$ for all $l > \overline{C}(n,d)$, i.e. G is a polynomial map as desired.

3. Some interesting automorphisms. Now let us return to the question: what is a natural candidate for C(n, d)? By Proposition 1.2 we know that in case R is a reduced ring, we have deg $F^{-1} \leq d^{n-1}$ for all $F \in \operatorname{Aut}_R R[X]$ with deg $F \leq d$. Furthermore, the bound d^{n-1} is sharp as follows easily from the example

$$(X_1 + X_2^d, X_2 + X_3^d, \dots, X_{n-1} + X_n^d, X_n).$$

Therefore it seems reasonable to hope that $C(n,d) = d^{n-1}$. However, in January 1996 Jean-Philippe Furter found the following counterexample ([6]).

EXAMPLE 3.1. Let n = 2, $R = \mathbb{C}_2$ and $\varepsilon = \overline{T}$. Define $F = (X + \varepsilon X^3, (1 - 3\varepsilon X^2)Y + X^2).$

Then $F \in \operatorname{Aut}_{\mathbb{C}_2} \mathbb{C}_2[X, Y]$, det JF = 1, deg F = 3. However, $F^{-1} = (X - \varepsilon X^3, (1 + 3\varepsilon X^2)Y - (X^2 + \varepsilon X^4))$, so deg $F^{-1} = 4 > 3^{2-1} = 3$.

After this example was found, Furter, together with Fournié and Pinchon and much help of a computer, were able to show in [5] that C(2,3) = 9. In order to guess some formula for C(2, d), $d \ge 3$, it would be rather interesting to know C(2, 4).

To get some feeling for what C(2, d) might be I looked at the Jacobian equations and the formulas for F^{-1} in the paper [5] and was able to give an explicit example of an automorphism of degree 3 whose inverse has the maximal degree 9.

EXAMPLE 3.2. Let
$$R = \mathbb{C}_7$$
, $\varepsilon = \overline{T}$ and define $F = (F_1, F_2)$ by
 $F_1 = X - \frac{4}{3}\varepsilon^3 X^2 - 2\varepsilon XY + \frac{64}{27}\varepsilon^6 X^3 + \frac{8}{3}\varepsilon^4 X^2 Y + 4\varepsilon^2 XY^2 + Y^3$,
 $F_2 = Y + \frac{8}{3}\varepsilon^3 XY + \varepsilon Y^2$.

Then $F \in \operatorname{Aut}_R R[X, Y]$, det JF = 1, deg F = 3 and deg $F^{-1} = 9$.

Then there was another surprise: looking at this example I observed that all monomials involved an ε , except the terms $X + Y^3$ in F_1 and Y in F_2 . Consequently, if we define $F_* := F \circ (X - Y^3, Y)$, we see that F_* is of the form $(X + \varepsilon(\ldots), Y + \varepsilon(\ldots))$. Then I computed deg F_* and deg F_*^{-1} and found to my own surprise that both degrees are equal (to 9)! Of course, the above idea of constructing F_* can be easily generalised: namely, let $F \in \operatorname{Aut}_{\mathbb{C}_m} \mathbb{C}_m[X]$ with det JF = 1. Let $\overline{F} \in \operatorname{Aut}_{\mathbb{C}} \mathbb{C}[X]$ be obtained by reducing $F \mod \varepsilon \ (=\overline{T})$. Define

$$F_* := F \circ \overline{F}^{-1}.$$

Then $F_* \in \operatorname{Aut}_{\mathbb{C}_m} \mathbb{C}_m[X]$, det $JF_* = 1$ and $\overline{F}_* = X$, i.e. $F = X + \varepsilon(\ldots)$. Now the point is that it suffices to find a uniform bound for the degrees of all F_*^{-1} . More precisely, define

 $\overline{\mathrm{UB}}_*(n) \quad \text{For every } d \geq 1 \text{ there exists a positive integer } C_*(n,d) \text{ such that for any } \mathbb{C}\text{-algebra } \mathbb{C}_m, m \geq 1, \text{ and any } F \in \mathrm{Aut}_{\mathbb{C}_m} \mathbb{C}_m[X] \text{ satisfying deg } F \leq d, \text{ det } JF = 1 \text{ and } \overline{F} = X, \text{ the degree of } F^{-1} \text{ is bounded by } C_*(n,d), \text{ i.e. independent of } m.$

PROPOSITION 3.3. $\overline{UB}_*(n)$ implies $\overline{UB}(n)$.

Proof. Let $F \in \operatorname{Aut}_{\mathbb{C}_m} \mathbb{C}_m[X]$ with det JF = 1 and deg $F \leq d$. Put $F_* := F \circ \overline{F}^{-1}$. So $F^{-1} = \overline{F}^{-1} \circ F_*^{-1}$, whence

(3)
$$\deg F^{-1} \leq \deg \overline{F}^{-1} \cdot \deg F_*^{-1} \leq (\deg F)^{n-1} C_*(n, \deg F_*).$$

Since $F_* = F \circ \overline{F}^{-1}$ we have

(4)
$$\deg F_* \le \deg F \cdot (\deg F)^{n-1} = (\deg F)^n.$$

From (3) and (4) we get

$$\deg F^{-1} \le (\deg F)^{n-1} C_*(n, (\deg F)^n) \le d^{n-1} C_*(n, d^n),$$

which implies $\overline{\text{UB}}(n)$.

After my surprising discovery of the equality of deg F_* and deg F_{*}^{-1} , I tried to see if this was an accident. I tested Furter's example: again equalities of the degrees! Still not convinced I computed a new example in dimension 2 and degree 4. I found the following:

EXAMPLE 3.4. Let
$$R = \mathbb{C}_{13}$$
, $\varepsilon = T$ and define $F = (F_1, F_2)$ by
 $F_1 = X - 2\varepsilon^4 X^2 - 2\varepsilon XY - 4\varepsilon^5 X^2 Y$
 $+ 24\varepsilon^{12} X^4 + 16\varepsilon^9 X^3 Y + 24\varepsilon^6 X^2 Y^2 + 8\varepsilon^3 XY^3 + Y^4$,
 $F_2 = Y + 4\varepsilon^4 XY + \varepsilon Y^2 - \frac{16}{3}\varepsilon^{11} X^3 + 16\varepsilon^8 X^2 Y + 8\varepsilon^5 XY^2 + \frac{4}{3}\varepsilon^2 Y^3$.

Then $F \in \operatorname{Aut}_R R[X, Y]$, det JF = 1, deg F = 4 and deg $F^{-1} = 16$.

Again I computed deg F_* and deg F_*^{-1} and found equalities of their degrees!! Of course, if this were always true, one would have $C_*(2,d) = d$, which by Proposition 3.3 and Theorem 2.1 would imply $JC(\mathbb{C}, 2)$. So I made the following conjecture:

CONJECTURE B. $C_*(2,d) = d$, i.e. if $F \in \operatorname{Aut}_{\mathbb{C}_m} \mathbb{C}_m[X,Y]$ with det JF = 1 and $\overline{F} = (X,Y)$, then deg $F^{-1} = \deg F$.

4. The nilpotency subgroup. To investigate Conjecture B we will study the \mathbb{C}_m -automorphisms F of $\mathbb{C}_m[X]$ satisfying $\overline{F} = X$. Therefore we recall some results of [4].

Let A be a Q-algebra. Then a Q-linear map $l : A \to A$ is called *locally nilpotent* if for every $a \in A$ there exists a positive integer q such that $l^{q}(a) = 0$. For such a map define $\exp l : A \to A$ by the formula

$$\exp l(a) := \sum_{i \ge 0} \frac{1}{i!} l^i(a).$$

If furthermore l is a derivation on A, in which case we write D instead of l, then $\exp D$ is a Q-automorphism of A with inverse $\exp(-D)$ (see, for example, Proposition 2.1.1 in [4]). Such an automorphism of A is called an *exponential automorphism*. To decide if a given ring homomorphism $f: A \to A$ is an exponential automorphism, define $E: A \to A$ by $E := f - 1_A$.

PROPOSITION 4.1 ([4], Proposition 2.1.3). Let $f : A \to A$ be a ring homomorphism. Then f is an exponential automorphism of A if and only if E is locally nilpotent. Furthermore, if E is locally nilpotent then the map $D: A \to A$ defined by

$$D(a) = \sum_{i \ge 1} (-1)^{i+1} \frac{E^i(a)}{i} \quad \text{for all } a \in A$$

is a locally nilpotent derivation on A and $f = \exp D$.

Proof. (i) If f is an exponential automorphism, then $f = \exp D$ for some locally nilpotent derivation D on A. Hence $E = f - 1_A = D + D/2! + \ldots$, which readily implies that E is locally nilpotent.

(ii) Conversely, suppose that E is locally nilpotent. From the definition of D it follows that D is locally nilpotent as well. Since $D = \log(1_A + E)$ we get $\exp D = 1_A + E = f$. So it remains to show that D is a derivation on A. Therefore observe that $\exp D = f$ implies that $\exp nD = f^n$ is a ring homomorphism for all $n \ge 1$. Then the desired result follows from

LEMMA 4.2. Let $D: A \to A$ be a locally nilpotent \mathbb{Q} -linear map. Then D is a derivation on A if and only if $\exp nD$ is a ring homomorphism for all $n \geq 1$.

Proof. (i) If D is a derivation on A then nD is a locally nilpotent derivation on A, which implies that $\exp nD$ is a ring automorphism of A for all $n \ge 1$.

(ii) Conversely, suppose that $\exp nD$ is a ring homomorphism for all $n \ge 1$. Let $a, b \in A$. We need to show that D(ab) = aD(b) + D(a)b. Therefore introduce a new variable T and consider the polynomial ring A[T]. Extend

D to a \mathbb{Q} -linear map on A[T] by defining

$$D\left(\sum a_i T^i\right) = \sum D(a_i)T^i.$$

Define $a(T) = \exp TD(a)$, $b(T) = \exp TD(b)$ and $c(T) = \exp TD(ab)$. Since $\exp nD$ is a ring homomorphism for all $n \ge 1$ we deduce that a(n)b(n) = c(n) for all $n \ge 1$, whence a(T)b(T) = c(T). Considering the coefficient of T on both sides of the last equality we get aD(b) + D(a)b = D(ab), as desired.

Now let R be a commutative Q-algebra. The *nilpotency subgroup* of $\operatorname{Aut}_R R[X]$, denoted by N(R, n), consists of all F of the form

$$(5) \qquad (X_1+g_1,\ldots,X_n+g_n)$$

where each g_i is a nilpotent element of R[X] or equivalently belongs to $\eta R[X]$, where η is the nilradical of R.

Indeed, we will show that each map of the form described in (5) is an R-automorphism of R[X]. In fact, it turns out to be an exponential automorphism. More precisely:

PROPOSITION 4.3 ([4], Proposition 2.1.13). $F \in N(R, n)$ if and only if $F = \exp D$ for some locally nilpotent R-derivation of R[X] satisfying $\overline{D} = 0$ (\overline{D} is obtained from D by reducing its coefficients mod η).

Proof. If $F = \exp D$ with D a locally nilpotent R-derivation satisfying $\overline{D} = 0$ then obviously $F \in N(R, n)$. Conversely, let $F \in N(R, n)$. Put A := R[X] and $E := F - 1_A$. By Proposition 4.1 we need to show that E is locally nilpotent. So let $a \in A$. We must prove that $E^p(a) = 0$ for some $p \ge 1$. Therefore replacing R by the subalgebra of R generated by all coefficients appearing in a and F we may assume that R is noetherian and hence that $\eta^m = 0$ for some $m \ge 1$.

Now let $h \in R[X]$. Since each $g_i \in \eta R[X]$ the same holds for $E(h) = h(X_1 + g_1, \dots, X_n + g_n) - h(X_1, \dots, X_n)$. So

(6)
$$E(R[X]) \subset \eta R[X].$$

Since E is R-linear, applying E to (6) gives $E^2(R[X]) \subset \eta^2 R[X]$.

Repeating this argument we finally arrive at $E^m(R[X]) \subset \eta^m R[X] = 0$, as desired. Finally, the formula for D given in Proposition 4.1 together with (6) gives $\overline{D} = 0$.

The next step is to characterize amongst the elements of N(R, n) those *F*'s which satisfy det JF = 1.

THEOREM 4.4. Let $F \in N(R, n)$ be of the form $\exp D$, where D is a locally nilpotent R-derivation of R[X] satisfying $\overline{D} = 0$. Then $\det JF = 1$ if and only if $\operatorname{div} D = 0$, where $\operatorname{div} D = \sum \partial_i (DX_i)$.

The proof of this result is based on the following result of Nowicki. Let D be any R-derivation on R[X] and let $\exp TD : R[X] \to R[X][[T]]$ be defined by the usual formula

$$\exp TD(g) = \sum_{i \ge 0} \frac{T^i}{i!} D^i(g) \quad \text{ for all } g \in R[X].$$

Then $\exp TD$ is a ring homomorphism (see [4], Proposition 1.2.14). To simplify notations we write $J_X(\exp TD)$ for $(\partial \exp TD(X_i)/\partial X_j)_{1 \le i,j \le n}$.

THEOREM 4.5 (Nowicki, [7]). Define B_0, B_1, \ldots in R[X] by

$$\det J_X(\exp TD) = \sum_{p \ge 0} \frac{1}{p!} B_p T^p.$$

Then $B_0 = 1$ and $B_{p+1} = dB_p + D(B_p)$ for all $p \ge 0$, where $d := \operatorname{div} D$.

Proof of Theorem 4.4. (i) Suppose $d := \operatorname{div} D = 0$. Then by Nowicki's theorem $B_p = 0$ for all $p \ge 1$, whence $\operatorname{det} J_X(\exp TD) = 1$. So $\operatorname{det} J_X F = 1$.

(ii) Now assume that $F = \exp D$, where $\overline{D} = 0$ and det JF = 1. Put $d = \operatorname{div} D$ and suppose that $d \neq 0$. As in the proof of Proposition 4.3 we may assume that R is noetherian and $\eta^m = 0$ for some $m \geq 1$. Since $\overline{D} = 0$ and $d \neq 0$, there exists $r \geq 1$ such that $d \in \eta^r R[X] \setminus \eta^{r+1}R[X]$. By Nowicki's theorem

$$\det J_X(\exp TD) = \sum_{p \ge 0} \frac{1}{p!} B_p T^p$$

with $B_0 = 1$ and $B_{p+1} = dB_p + D(B_p)$ for all $p \ge 0$. By induction on p it follows that $B_p \in \eta^{r+p-1}R[X]$ for all $p \ge 1$. Consequently,

$$1 = \det J_X(\exp D) = \sum_{p \ge 0} \frac{1}{p!} B_p = 1 + d + B \quad \text{where } B \in \eta^{r+1} R[X].$$

Hence $d = -B \in \eta^{r+1}R[X]$, a contradiction.

As an immediate consequence of Theorem 2.1, Propositions 3.3 and 4.3 and Theorem 4.4 we get

THEOREM 4.6. $JC(\mathbb{C}, n)$ is equivalent to the following statement. For every $d \geq 1$ there exists a positive integer $C_*(n, d)$ such that for every $m \geq 1$ and every $D \in Der_{\mathbb{C}_m} \mathbb{C}_m[X]$ with $\operatorname{div} D = 0$ and $\overline{D} = 0$ we have: if $\operatorname{deg} \exp D \leq d$, then $\operatorname{deg} \exp(-D) \leq C_*(n, d)$.

5. Some remarks on the two-dimensional Jacobian Conjecture. According to Theorem 4.6, in order to understand the two-dimensional Jacobian Conjecture we need to study $\exp D$ where D is a derivation on $\mathbb{C}_m[X, Y]$ satisfying $\overline{D} = 0$ and div D = 0. It is well known that the last two conditions are equivalent to D being of the form

$$D_f := f_Y \partial_X - f_X \partial_Y$$

where $f \in \mathbb{C}_m[X, Y]$ satisfies $\overline{f} = 0$. This f is uniquely determined by D if we assume (as we may) that f(0, 0) = 0. Using Theorem 4.6 we get

PROPOSITION 5.1. $JC(\mathbb{C}, 2)$ is equivalent to the following statement: For every $d \geq 1$ there exists a positive integer $C_*(d)$ such that for all $m \geq 1$ and all $f \in \mathbb{C}_m[X,Y]$ with $\overline{f} = 0$ we have: if $\deg \exp D_f \leq d$, then $\deg \exp(-D_f) \leq C_*(d)$.

Also, we can reformulate Conjecture B as follows:

CONJECTURE B. Let $m \ge 1$ and $f \in \mathbb{C}_m[X,Y]$ with $\overline{f} = 0$. Then $\deg \exp D_f = \deg \exp(-D_f)$.

Obviously by Proposition 5.1 a positive solution to Conjecture B would imply $JC(\mathbb{C}, 2)$. However, in March 1998 Stefan Maubach found the first family of counterexamples to Conjecture B! A little later the following example was given by Charles Cheng:

EXAMPLE 5.2. Let
$$f = \varepsilon X^3 + \varepsilon^2 X^3 Y - \frac{3}{10} \varepsilon^3 X^5$$
, where $\varepsilon^4 = 0$. Then
 $\exp D_f = (X + \varepsilon^2 X^3, Y - 3\varepsilon X^2 - 3\varepsilon^2 X^2 Y + 3\varepsilon^3 X^4),$
 $\exp(-D_f) = (X - \varepsilon^2 X^3, Y + 3\varepsilon X^2 + 3\varepsilon^2 X^2 Y).$

So deg exp $D_f = 3$ and deg exp $(-D_f) = 4$.

On the other hand, this example satisfies $\deg_Y f \leq 1$. Consequently, $\exp D_f(X) \in \mathbb{C}[\varepsilon][X]$. So $\exp D_f$ belongs to the family of *R*-automorphisms $F = (F_1, F_2)$ satisfying det JF = 1 and $F_1 \in R[X]$. For such *F*'s Furter showed in [6], Proposition 3, that $\deg F^{-1} \leq 4(\deg F)^4$.

To conclude this paper I present a modified version of Conjecture B.

CONJECTURE B'. If deg exp $D_f \leq d$ then there exists $\varphi \in \operatorname{Aut}_{\mathbb{C}_m} \mathbb{C}_m[X,Y]$ with deg $\varphi \leq d$ and such that deg exp $D_{\varphi(f)} = \operatorname{deg} \exp -D_{\varphi(f)}$.

It is not difficult to verify that for all examples given in §3, Conjecture B' is verified. Furthermore, the importance of this conjecture comes from the fact that it implies $JC(\mathbb{C}, 2)$: namely, we just observe that $\exp D_{\varphi(f)} = \varphi \circ \exp D_f \circ \varphi^{-1}$ and then use an argument similar to the one given in the proof of Proposition 3.3.

References

 H. Bass, *The Jacobian Conjecture and inverse degrees*, in: Arithmetic and Geometry, Vol. II, Progr. Math. 36, Birkhäuser, 1983, 65–75.

- [2] H. Bass, E. Connell and D. Wright, The Jacobian Conjecture: reduction of degree and formal expansion of the inverse, Bull. Amer. Math. Soc. 7 (1982), 287–330.
- [3] H. Derksen, Inverse degrees and the Jacobian Conjecture, Comm. Algebra 22 (1994), 4793–4794.
- [4] A. van den Essen, Polynomial Automorphisms and the Jacobian Conjecture, Progr. Math. 190, Birkhäuser, 2000.
- [5] M. Fournié, J.-P. Furter and D. Pinchon, Computation of the maximal degree of the inverse of a cubic automorphism of the affine plane with Jacobian 1 via Gröbner bases, J. Symbolic Comput. 26 (1998), 381–386.
- [6] J.-P. Furter, On the degree of the inverse of an automorphism of the affine space, J. Pure Appl. Algebra 130 (1998), 277–292.
- [7] A. Nowicki, Polynomial Derivations and Their Rings of Constants, Univ. of Toruń, 1994.
- [8] K. Rusek and T. Winiarski, Polynomial automorphisms of Cⁿ, Univ. Iagel. Acta Math. 24 (1998), 143–149.
- [9] S. Wang, A Jacobian criterion for separability, J. Algebra 65 (1980), 453–494.

Department of Mathematics University of Nijmegen Toernooiveld 1 6525 ED Nijmegen, The Netherlands E-mail: essen@sci.kun.nl

 $Reçu \ par \ la \ Rédaction \ le \ 25.2.2000 \tag{1188}$