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A class of counterexamples to the
Cancellation Problem for arbitrary rings

by Arno van den Essen and Peter van Rossum (Nijmegen)

Abstract. We present a class of counterexamples to the Cancellation Problem over
arbitrary commutative rings, using non-free stably free modules and locally nilpotent
derivations.

1. Introduction. The Cancellation Problem for algebraic varieties asks
the following question.

Problem 1 (Cancellation Problem, geometric formulation). Let V be
an algebraic variety over a field k and n ∈ N∗. Does V × k ∼= kn imply that
V ∼= kn−1?

This question can be reformulated as follows.

Problem 2 (Cancellation Problem, algebraic formulation). Let B be an
affine domain over a field k and n ∈ N. Assume that B[T ] ∼=k k[X1, . . . ,Xn].
Does it then follow that B ∼=k k[X1, . . . ,Xn−1]?

See also the paper by Kraft ([Kra89]) for background on these and other
cancellation problems in algebraic geometry. This paper considers this ques-
tion not for a field k, but for an arbitrary commutative ring A.

Problem 3 (General Cancellation Problem). Let A be a commutative
ring , B an A-domain, and n ∈ N. Assume that B[T ] ∼=A A[X1, . . . ,Xn].
Does it then follow that B ∼=A A[X1, . . . ,Xn−1]?

This paper shows how to construct a whole class of counterexamples to
this problem.

The construction in Section 3 has two ingredients. On the one hand,
it uses the existence of commutative rings A with a unimodular row
(a1, . . . , an) over A that cannot be completed to an invertible square ma-
trix. In other words, it uses the existence of commutative rings A for which
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there exists a stably free module of type 1 that is not free. This was in
fact also a basic ingredient in a paper by Hochster ([Hoc72]) to construct a
counterexample to the Biregular Cancellation Problem. He considered the
ring R[x, y, z]/(x2 + y2 + z2 − 1) and the unimodular row (x, y, z). On the
other hand, our construction uses the notion of locally nilpotent deriva-
tions. Section 2 contains a brief overview of the required facts about these
derivations.

2. Derivations. Let k be a field of characteristic zero and let A be a
commutative k-algebra. A k-derivation on A is a k-linear map D : A → A
satisfying the Leibniz rule, D(ab) = a(Db) + (Da)b for all a, b ∈ A. It is said
to be locally nilpotent if for all a ∈ A there is an n ∈ N such that Dn(a) = 0.
The kernel of such a derivation D is denoted by AD. A slice of D is an
element s ∈ A such that D(s) = 1.

If D is locally nilpotent and t ∈ A, then we can define a map φt : A→ A
by φt(a) :=

∑∞
i=0(1/i!)Di(a)ti. If D also has a slice s, this map can be used

to easily describe the kernel of D.

Proposition 4 ([Ess93], Proposition 2.1). Let D be a locally nilpotent
derivation on a finitely generated commutative k-algebra A = k[a1, . . . , an].
Assume that D has a slice s ∈ A. Then

AD = φ−s(A) = k[φ−s(a1), . . . , φ−s(an)].

Proposition 5 ([Wri81], Proposition 2.1). Let D be a locally nilpotent
derivation on a commutative k-algebra A and assume that D has a slice
s ∈ A. Then

(1) A = AD[s];
(2) s is algebraically independent over A [and therefore A = AD[s] is a

polynomial ring in one variable over AD];
(3) D = d/ds.

Remark 6. Note that if, in the above situation, A is a domain and
trdegkQ(A) is finite, it follows that trdegkQ(AD) = trdegkQ(A)−1. In par-
ticular, if A is of the form A = B[X1, . . . ,Xn] for some domain B whose quo-
tient field is of finite transcendence degree over k and AD = B[F1, . . . , Fn−1]
for certain polynomials F1, . . . , Fn−1 ∈ A, then the Fi are algebraically in-
dependent over k.

For more information on locally nilpotent derivations see, for instance,
[Ess00], Chapter 1, or [Now94].

3. Counterexamples. Let k be a field of characteristic zero and let
A be a finitely generated commutative k-algebra without zero divisors. Let
(a1, . . . , an) be a unimodular row over A, say b1, . . . , bn ∈ A with b1a1 +
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. . . + bnan = 1, and assume that it cannot be completed to an invertible
square matrix.

Let A[X] denote the polynomial ring A[X1, . . . ,Xn] over A in n variables.
Now define a k-derivation D : A[X]→ A[X] by

D := b1
∂

∂X1
+ . . .+ bn

∂

∂Xn
.

This derivation is locally nilpotent and has a slice, namely s := a1X1 + . . .+
anXn. Letting B := A[X]D be the kernel of the derivation, we deduce from
Proposition 5 that A[X] = B[s], a polynomial ring over B in s, and from
Proposition 4 that B = A[X1 − b1s, . . . ,Xn − bns].

Notation 7. For F ∈ A[X] and j ∈ N we denote by F(j) the homoge-
neous part of F of degree j. So F = F(0) +F(1) + . . .+F(d) where d := degF .

Lemma 8. Let F1, . . . , Fn−1 ∈ A[X] and assume B = A[F1, . . . , Fn−1].
Take fi := Fi(1) (i.e. the linear part of Fi). Then B = A[f1, . . . , fn−1].

Proof. “⊆” We may assume, without loss of generality, that the poly-
nomials F1, . . . , Fn−1 do not have a constant term. Now consider Xi −
bis ∈ B = A[F1, . . . , Fn−1]. Then there is a polynomial p(T1, . . . , Tn−1) ∈
A[T1, . . . , Tn−1] such that Xi − bis = p(F1, . . . , Fn−1). Then

Xi − bis = (p(F1, . . . , Fn−1))(1) (because Xi − bis is linear)

= (p(1)(F1, . . . , Fn−1))(1) (because F1, . . . , Fn−1 have

no constant term)

= p(1)(F1(1), . . . , Fn−1(1)) (because p(1) is linear)

= p(1)(f1, . . . , fn−1) ∈ A[f1, . . . , fn−1].

“⊇” Because Fi ∈ B = A[X]D, every homogeneous part Fi(j) of Fi is
also in B. In particular, fi ∈ B.

Lemma 9. Let f1, . . . , fm ∈ A[X] be linear polynomials. Then

A[f1, . . . , fm] ∩AX1 ⊕ . . .⊕ AXn = Af1 + . . .+ Afm

[i.e. every polynomial expression p(f1, . . . , fm) in the fi which is linear in
the Xi is in fact an A-linear combination of the fi].

Proof. “⊆” Take p(T1, . . . , Tm)∈A[T1, . . . , Tm] and let g :=p(f1, . . . , fm)
be a polynomial expression in the fi. Assume that g is in fact linear in the
Xi. Then, using essentially the same argument as in the proof of the previous
lemma, we get
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g = (p(f1, . . . , fm))(1) = (p(1)(f1, . . . , fm))(1)

= p(1)(f1, . . . , fm) ∈ Af1 + . . .+ Afn.

“⊇” This is obvious.

Lemma 10. Let f1, . . . , fn−1 ∈ A[X] be linear polynomials and assume
that B = A[f1, . . . , fn−1]. Then

As⊕ Af1 ⊕ . . .⊕ Afn−1 = AX1 ⊕ . . .⊕ AXn

[i.e. every linear polynomial in A[X] can be written in a unique way as an
A-linear combination of s, f1, . . . , fn−1].

Proof. We first show that As+Af1 + . . .+Afn−1 = AX1 ⊕ . . .⊕AXn.

“⊆” This is obvious.
“⊇” Take g ∈ AX1 ⊕ . . . ⊕ AXn. Then Dg ∈ A and therefore we have

D(g − (Dg)s) = Dg − (D2g)s− (Dg)(Ds) = Dg −Dg = 0. So

g − (Dg)s ∈ B ∩ AX1 ⊕ . . .⊕ AXn = A[f1, . . . , fn−1] ∩ AX1 ⊕ . . .⊕ AXn

= Af1 + . . .+ Afn−1 (by Lemma 9)

and hence g ∈ As+ Af1 + . . .+Afn−1.

To see that As+Af1+. . .+Afn is in fact a direct sum, take µ, λ1, . . . , λn−1

∈ A and assume that µs+ λ1f1 + . . .+ λn−1fn−1 = 0. Applying D to both
sides yields µ = 0, so λ1f1 + . . .+ λn−1fn−1 = 0. The fi, however, are even
algebraically independent (by Remark 6) and therefore λ1 = . . . = λn−1

= 0.

Theorem 11. We have B 6∼=A A[X1, . . . ,Xn−1], even though B[s] =
A[X1, . . . ,Xn−1][Xn].

Proof. Assume that B ∼=A A[X1, . . . ,Xn−1]. Then B = A[F1, . . . , Fn−1]
for certain polynomials F1, . . . , Fn−1 ∈ A[X] and by Lemma 8 even B =
A[f1, . . . , fn−1] for certain linear polynomials f1, . . . , fn−1 ∈ A[X]. Now
Lemma 10 implies that

As⊕ Af1 ⊕ . . .⊕ Afn−1 = AX1 ⊕ . . .⊕ AXn,

say fi = λi1X1+. . .+λinXn (and s = a1X1+. . .+anXn). This is an equality
between free A-modules of rank n and the base transformation matrix is




a1 . . . an
λ11 . . . λ1n

...
...

λn−1,1 . . . λn−1,n


 .

This is an invertible matrix and hence the unimodular row (a1, . . . , an) has
been completed to an invertible matrix, which contradicts the assumption.
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So, every coordinate ring A of an affine variety that has a unimodu-
lar row that cannot be completed to an invertible matrix, gives rise to a
counterexample to the General Cancellation Problem.

Over the real numbers, we recover Hochster’s example mentioned in the
Introduction. Over the complex numbers, one can consider the “generic”
example A = C[a, b, c, x, y, z]/(ax+by+cz−1). The unimodular row (x, y, z)
cannot be completed to an invertible square matrix. This was shown by
Raynaud [Ray68] using homological methods and, in a more general setting,
by Suslin [Sus82] (Theorem 2.8) using K-theory.

Acknowledgments. We would like to thank Wilberd van der Kallen
for pointing out the references to the results of Raynaud and Suslin.
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