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A class of counterexamples to the
Cancellation Problem for arbitrary rings

by ARNO VAN DEN ESSEN and PETER VAN RossuM (Nijmegen)

Abstract. We present a class of counterexamples to the Cancellation Problem over
arbitrary commutative rings, using non-free stably free modules and locally nilpotent
derivations.

1. Introduction. The Cancellation Problem for algebraic varieties asks
the following question.

PROBLEM 1 (Cancellation Problem, geometric formulation). Let V' be
an algebraic variety over a field k and n € N*. Does V' x k = k™ imply that
V= gno1?

This question can be reformulated as follows.

PROBLEM 2 (Cancellation Problem, algebraic formulation). Let B be an
affine domain over a field k and n € N. Assume that B[T] =, k[X1,. .., X,].
Does it then follow that B =, k[X4, ..., X;,—1]?

See also the paper by Kraft ([Kra89]) for background on these and other
cancellation problems in algebraic geometry. This paper considers this ques-
tion not for a field k, but for an arbitrary commutative ring A.

PROBLEM 3 (General Cancellation Problem). Let A be a commutative
ring, B an A-domain, and n € N. Assume that B[T] =4 A[X1,...,X.].
Does it then follow that B =4 A[X1,...,Xn-1]?

This paper shows how to construct a whole class of counterexamples to
this problem.

The construction in Section 3 has two ingredients. On the one hand,
it uses the existence of commutative rings A with a unimodular row
(a1,...,a,) over A that cannot be completed to an invertible square ma-
trix. In other words, it uses the existence of commutative rings A for which
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there exists a stably free module of type 1 that is not free. This was in
fact also a basic ingredient in a paper by Hochster ([Hoc72]) to construct a
counterexample to the Biregular Cancellation Problem. He considered the
ring Rz, y, 2]/(2% + y? + 22 — 1) and the unimodular row (Z,%,%). On the
other hand, our construction uses the notion of locally nilpotent deriva-
tions. Section 2 contains a brief overview of the required facts about these
derivations.

2. Derivations. Let k£ be a field of characteristic zero and let A be a
commutative k-algebra. A k-derivation on A is a k-linear map D : A — A
satisfying the Leibniz rule, D(ab) = a(Db)+ (Da)b for all a,b € A. It is said
to be locally nilpotent if for all a € A there is an n € N such that D"(a) = 0.
The kernel of such a derivation D is denoted by AP. A slice of D is an
element s € A such that D(s) = 1.

If D is locally nilpotent and ¢ € A, then we can define amap ¢;: A — A
by ¢u(a) :== > 0 (1/d) D (a)t". If D also has a slice s, this map can be used
to easily describe the kernel of D.

PROPOSITION 4 ([Ess93], Proposition 2.1). Let D be a locally nilpotent

derivation on a finitely generated commutative k-algebra A = klaq, ..., ay).
Assume that D has a slice s € A. Then

AD = ¢*$<A) = k[(ﬁ,s(al), R (Zsfs(an)]‘
PROPOSITION 5 ([Wri81], Proposition 2.1). Let D be a locally nilpotent
derivation on a commutative k-algebra A and assume that D has a slice
s € A. Then

(1) A= AP[s];
(2) s is algebraically independent over A [and therefore A = AP[s] is a

polynomial Ting in one variable over AP];
(3) D =d/ds.

REMARK 6. Note that if, in the above situation, A is a domain and
trdeg, Q(A) is finite, it follows that trdeg, Q(AP) = trdeg), Q(A)—1. In par-

ticular, if A is of the form A = B[X1,..., X,,] for some domain B whose quo-
tient field is of finite transcendence degree over k and AP = B[Fy, ..., F,_1]
for certain polynomials Fy,..., F, 1 € A, then the F; are algebraically in-

dependent over k.

For more information on locally nilpotent derivations see, for instance,

[Ess00], Chapter 1, or [Now94].

3. Counterexamples. Let k be a field of characteristic zero and let
A be a finitely generated commutative k-algebra without zero divisors. Let
(ai,...,a,) be a unimodular row over A, say by,...,b, € A with bja; +
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...+ bya, = 1, and assume that it cannot be completed to an invertible
square matrix.

Let A[X] denote the polynomial ring A[ X7, ..., X,] over A in n variables.
Now define a k-derivation D : A[X] — A[X] by

0 0
D:=bj—+... n—
b18X1 + +b ax,

This derivation is locally nilpotent and has a slice, namely s := a1 X7 +...+
anXp. Letting B := A[X]P be the kernel of the derivation, we deduce from
Proposition 5 that A[X] = B[s], a polynomial ring over B in s, and from
Proposition 4 that B = A[X; — b1s,..., X, — bys].

NOTATION 7. For I' € A[X] and j € N we denote by F{;) the homoge-
neous part of F' of degree j. So F' = Fg)+ F(1)+. ..+ F(4) where d := deg F.

LEMMA 8. Let F,...,F,_1 € A[X] and assume B = A[Fy,..., F,_1].
Take f; := Fy1y (i.e. the linear part of F;). Then B = A[f1,..., fn-1].

Proof. “C” We may assume, without loss of generality, that the poly-
nomials Fy,...,F,_1 do not have a constant term. Now consider X; —
bis € B = A[Fy,...,F,_1]. Then there is a polynomial p(T4,...,T,,_1) €
AlTh,...,T,—1] such that X; — b;s = p(F1,...,F,—_1). Then

Xi—bis = (p(F1,..., Fu1)) ) (because X; — b;s is linear)
= (py(F1,- -, Fuo1)) () (because Fy,..., F,_1 have
no constant term)
=pa)(Fiay, - Faoi(1)) (because p(y) is linear)
=pa)(f1,-- s no1) € Alf1, .o, o).

“D” Because F; € B = A[X]P, every homogeneous part Fijy of F; is
also in B. In particular, f; € B. =

LEMMA 9. Let f1,..., fm € A[X] be linear polynomials. Then
Alfr,. ] NAX1® ... 0 AX, = Afi+...+ Afm

[i.e. every polynomial expression p(fi,..., fm) in the f; which is linear in
the X; is in fact an A-linear combination of the f;].

Proof. “C” Take p(Th,...,Ty)€A[Th,...,Tyy] and let g:=p(f1,..., fm)
be a polynomial expression in the f;. Assume that ¢ is in fact linear in the
X;. Then, using essentially the same argument as in the proof of the previous
lemma, we get
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g=((f1, -, fm)) ) = (0ay(frs -, fm)) (1)

“D” This is obvious. =

LEMMA 10. Let f1,..., fn—1 € A[X] be linear polynomials and assume
that B = A[f1,..., fn-1]. Then

[i.e. every linear polynomial in A[X] can be written in a unique way as an
A-linear combination of s, f1,..., fn-1]-

Proof. We first show that As+ Af1+...+Af,_1 =AX16...® AX,.

“C” This is obvious.
“D” Take g € AX1®...® AX,,. Then Dg € A and therefore we have
D(g — (Dg)s) = Dg — (D*g)s — (Dg)(Ds) = Dg — Dg = 0. So
g—(Dg)s€c BNAX1@...0AX,, = Alf1,..., fa1] NAX1 & ... ® AX,,
=Afi+...+Af,-1 (by Lemma 9)
and hence g € As+ Afi + ...+ Afn_1.

To see that As+Afi1+...+Af, isin fact a direct sum, take g, A1, ..., Ap_1
€ A and assume that pus + A1 f1 + ...+ Ap—1fn—1 = 0. Applying D to both
sides yields u =0, s0 A1 f1 + ...+ An—1fn_1 = 0. The f;, however, are even
algebraically independent (by Remark 6) and therefore \y = ... = A\,
=0. =

THEOREM 11. We have B %4 A[Xi,...,Xn_1], even though Bls| =
AlXy, . XX

Proof. Assume that B 24 A[X;,...,X,,_1]. Then B = A[Fy,..., F,,_1]
for certain polynomials Fi,...,F,—1 € A[X] and by Lemma 8 even B =
Alfi,..., fn—1] for certain linear polynomials fi,..., f,—1 € A[X]. Now
Lemma 10 implies that

AsB AfL®.. ®Afp 1 =AX1 ... 9 AX,,

say fi = A Xqi+.. . +Xin X, (and s = a1 X1 +. . .+a, X,,). This is an equality
between free A-modules of rank n and the base transformation matrix is

aq e (079
)\11 Ce Aln
)\nfl T .- )\nfl n
) )
This is an invertible matrix and hence the unimodular row (a1, ..., a,) has

been completed to an invertible matrix, which contradicts the assumption. =
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So, every coordinate ring A of an affine variety that has a unimodu-
lar row that cannot be completed to an invertible matrix, gives rise to a
counterexample to the General Cancellation Problem.

Over the real numbers, we recover Hochster’s example mentioned in the
Introduction. Over the complex numbers, one can consider the “generic”
example A = Cla, b, ¢, z,y, z]/(ax+by+cz—1). The unimodular row (Z, 7, Z)
cannot be completed to an invertible square matrix. This was shown by
Raynaud [Ray68] using homological methods and, in a more general setting,
by Suslin [Sus82] (Theorem 2.8) using K-theory.

Acknowledgments. We would like to thank Wilberd van der Kallen
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