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Recent progress on Hilbert’s Fourteenth Problem
via triangular derivations

by Gene Freudenburg (Evansville, IN)

Abstract. We give an overview of recent results concerning kernels of triangular
derivations of polynomial rings. In particular, we examine the question of finite generation
in dimensions 4, 5, 6, and 7.

1. Introduction. The subject of this paper is the following special case
of Hilbert’s Fourteenth Problem.

Let k be a field of characteristic 0, and let B = k[x1, . . . , xn], the poly-
nomial ring in n variables over k. If D : B → B is a k-derivation, is the
kernel of D always finitely generated over k?

In other words, do we get an analogue of the Hilbert Basis Theorem
when we consider derivations of B in place of ring homomorphisms? The
importance of this special case to Hilbert’s original formulation is seen in
the following result of Nowicki [7].

Theorem 1. If a connected algebraic group G acts algebraically on kn,
there exists a k-derivation δ of B such that ker δ = BG.

For example, Nagata’s famous first counterexample to Hilbert Four-
teen [6] was realized by Derksen [3] as the kernel of a derivation of k[x1, . . .
. . . , x32].

The answer to the question above is known in the following cases:

• Yes if n ≤ 3 (Zariski, 1954 [9]).
• No if n ≥ 7 (Roberts, 1990 [8]; van den Essen and Janssen, 1995 [4]).
• No if n = 6 (Freudenburg, 1998 [5]).
• No if n = 5 (Daigle and Freudenburg, 1999 [1]).
• Yes if n = 4 and D is triangular (Daigle and Freudenburg, 1999,

preprint).
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So only the case n = 4, D non-triangular remains open. Here, triangular
means DXi ∈ k[X1, . . . ,Xi−1] for i ≥ 2, and DX1 ∈ k. This paper will
provide an overview of the recent work done in dimensions 7, 6, 5, and 4.

2. Dimensions 5, 6, and 7. A family of counterexamples to Hilbert’s
Fourteenth Problem was published by Roberts [8] in 1990. The importance
of these examples lay not only in lowering the dimension of known coun-
terexamples (to n = 7), but also in providing counterexamples which were
relatively simple to describe.

Given m ≥ 2, define on the polynomial ring B = k[X,Y,Z, S, T, U, V ]
the triangular derivation

D = (Xm+1)
∂

∂S
+ (Y m+1)

∂

∂T
+ (Zm+1)

∂

∂U
+ (XY Z)m

∂

∂V
.

Roberts proved that the kernel kerD is not finitely generated. In his proof,
he shows that there exists a sequence λn ∈ kerD of the form λn = XV n +
(lower-degree V -terms). By using the fact that D and the λn are homoge-
neous with respect to a certain grading of B, he succeeds in showing that
no finitely generated subring of kerD can contain all λn.

In an effort to generalize Roberts’ method, we gave in [1] the following
criterion for non-finite generation of kernels.

Lemma 1. Let K =
⊕

i∈NKi be a graded k-domain such that K0 = k,
and let δ be a homogeneous locally nilpotent k-derivation of K (1). For
α ∈ ker δ which is not in the image of δ, let δ̃ be the extension of δ to K[T ]
(T a variable) defined by δ̃T = α. Suppose φn is a sequence of non-zero el-
ements of ker δ̃ having leading T -coefficients bn ∈ K. If deg bn is bounded ,
but degT φn is not bounded , then ker δ̃ is not finitely generated over k.

This criterion can be used to show the existence of counterexamples in
dimensions 5 and 6, as follows.

Let R = k[a, b, s, t, u], a polynomial ring in 5 variables over k, and define
a triangular derivation

∆ = a
∂

∂s
+ bs

∂

∂t
+ bt

∂

∂u
.

Define a sequence tn ∈ R by

t1 = a, t2 = b, t3 = ab, and tn = tn−3 for n ≥ 4.

The central result of [5] is:

Theorem 2. There exist wn ∈ R (n ≥ 0) such that w0 = 1, w1 = s,
and ∆wn = tn · wn−1 for all n ≥ 1.

(1) Recall that locally nilpotent means that, for each f ∈ K, δsf = 0 for s � 0. In
particular, triangular implies locally nilpotent in the case of polynomial rings.



Recent progress on Hilbert’s Fourteenth Problem 97

To obtain a counterexample in dimension 6, let x and y be integral
elements over R such that x3 = a and y3 = b, and let v be transcendental
over R. Then B := R[x, y, v] = k[x, y, s, t, u, v] is a polynomial ring in 6
variables over k. If D is the triangular derivation on B defined by

D = (x3)
∂

∂s
+ (y3s)

∂

∂t
+ (y3t)

∂

∂u
+ (x2y2)

∂

∂v
,

then D|R = ∆. Therefore, Dwn = tn ·wn−1. The function

π(f) =
∞∑

i=0

(−1)i

i!
(Dif)

vi

(Dv)i

defines a homomorphism from B to (kerD)Dv, the localization of kerD
at Dv. It can be shown using Theorem 2 that π(xw3n) is a polynomial
for all n. Direct calculation shows that π(xw3n) = cnxv

3n + (lower-degree
v-terms), where cn ∈ k∗.

Now the lemma above may be applied: If K = k[x, y, s, t, u], then D|K
is homogeneous with respect to the grading on K =

⊕
i≥0 Ki defined by

k = K0, x, y ∈ K1, s ∈ K3, t ∈ K6, and u ∈ K9. Moreover, Dv = x2y2 does
not lie in the image of D|K . Using the sequence φn := π(xw3n), we deduce
from the lemma that kerD is not finitely generated.

To obtain a counterexample in dimension 5, we now simply set y = 1
in the above example. More precisely, if B = B mod (y − 1) and D =
D mod (y−1), then B = k[x, s, t, u, v], a polynomial ring in 5 variables, and
D is the triangular derivation

D = x3 ∂

∂s
+ s

∂

∂t
+ t

∂

∂u
+ x2 ∂

∂v
.

We see that, if K = k[x, s, t, u], then D|K is homogeneous with respect to
the grading on K for which deg x = 1 and deg s = deg t = deg u = 3. The
elements φn of kerD are of the form cnxv

3n+(lower-degree v-terms). Since
D(v) = x2 is not in the image of D|K , we conclude by the lemma above
that kerD is not finitely generated.

Note that this last example can be simplified by changing coordinates in
k[x, s, t, u, v]. If σ fixes x, t, u, and v, and maps s to s+ xv, then

σDσ−1 = x2 ∂

∂v
+ (xv + s)

∂

∂t
+ t

∂

∂u
.

The dimension 6 and dimension 5 counterexamples may thus be summarized
as follows.

Theorem 3 (see [5]). Let B = k[x, y, s, t, u, v] be the polynomial ring in
6 variables over k, and let D be the triangular derivation on B defined by

D = (x3)
∂

∂s
+ (y3s)

∂

∂t
+ (y3t)

∂

∂u
+ (x2y2)

∂

∂v
.

Then the kernel of D is not finitely generated as a k-algebra.
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Theorem 4 (see [1]). Let A = k[a, b, x, y, z] be the polynomial ring in 5
variables over k, and let d be the triangular derivation on A defined by

d = a2 ∂

∂x
+ (ax+ b)

∂

∂y
+ y

∂

∂z
.

Then the kernel of d is not finitely generated as a k-algebra.

3. Dimension 4. A natural question to ask next is: If B = k[W,X, Y, Z]
is the polynomial ring in four variables over k, and if T is a triangular k-
derivation of B, is kerT finitely generated over k? To answer this question,
the following result was proved very recently by the author and Daigle, using
a recent result of Sathaye (both manuscripts are in preparation).

Theorem 5. Let k be an algebraically closed field of characteristic zero,
and let R be a k-affine Dedekind domain or a localization of such a ring.
The kernel of any triangular R-derivation of R[X,Y,Z] is finitely generated
as an R-algebra.

This result easily implies a positive answer to our question when k is
algebraically closed: Since T is triangular, we may assume, with no loss of
generality, that TW = 0. Thus, T is a triangular R-derivation of R[X,Y,Z],
where R = k[W ], and the theorem implies that kerT is finitely generated.

Finite generation notwithstanding, kerT may be very complicated. In [2]
we construct, for each integer n ≥ 3, a triangular derivation of k[W,X, Y, Z]
whose kernel cannot be generated by fewer than n elements. The actual
construction is a bit complicated, and the reader should see the article for
details.

Finally, the reader should note that Theorem 5 fails for more general
rings R. For example, if R = k[a, b], a polynomial ring in two variables
over k, then the derivation d of Theorem 4 is a triangular R-derivation of
R[x, y, z] with non-finitely generated kernel.
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