Some finitely generated modules and cohomologies and the Jacobian conjecture

by Shmuel Friedland (Chicago, IL)

Abstract

We show that the plane Jacobian conjecture is equivalent to finite generatedness of certain modules.

0. Introduction. Let $f \in \mathbb{C}\left[\mathbb{C}^{2}\right]$ be a primitive polynomial. That is, the fiber

$$
V_{t}:=\left\{(x, y) \in \mathbb{C}^{2}: f(x, y)=t\right\}
$$

is an irreducible affine curve for all but a finite number of values of t. It is well known that there exists a finite set $K(f) \subset \mathbb{C}$ so that for each $t \in \mathbb{C} \backslash K(f)$ the affine curve V_{t} is homeomorphic to a fixed closed Riemann surface Σ punctured at $k \geq 1$ distinct points $\zeta_{1}, \ldots, \zeta_{k}$ (see e.g. [Fri]). We assume that $K(f)$ is a minimal set, i.e. for any $t \in K(f)$ the affine curve V_{t} is not homeomorphic to $\Sigma \backslash\left\{\zeta_{1}, \ldots, \zeta_{k}\right\}$. It is well known that f is linearizable iff $K(f)$ is an empty set. (We give a short proof of this statement for completeness.)

Associate with f the following partial differential operator:

$$
\begin{equation*}
L(u)=-f_{y} u_{x}+f_{x} u_{y} \tag{0.1}
\end{equation*}
$$

Here u is a holomorphic function on a domain $X \subset \mathbb{C}^{2}$. It is known that topological type of $V_{t}, t \in \mathbb{C} \backslash K(f)$, is reflected in certain properties of L. We bring the following two examples which motivate this paper. Let

$$
\mathcal{F}:=\mathbb{C}(f) \subset \mathbb{C}\left(\mathbb{C}^{2}\right), \quad \mathcal{F}\left[\mathbb{C}^{2}\right] \subset \mathbb{C}\left(\mathbb{C}^{2}\right)
$$

be the field generated by f and the $\operatorname{ring} \mathcal{F} \otimes \mathbb{C}\left[\mathbb{C}^{2}\right]$ respectively. Then $L(\mathcal{F})=$ $\{0\}$ and

$$
\begin{equation*}
L: \mathcal{F}\left[\mathbb{C}^{2}\right] \rightarrow \mathcal{F}\left[\mathbb{C}^{2}\right] \tag{0.2}
\end{equation*}
$$

is a linear operator over \mathcal{F}. In [Fri] we showed that L is Fredholm with $\operatorname{ker} L=\mathcal{F}$ and the dimension of coker L is equal to the rank of $H_{1}\left(V_{t}, \mathbb{Z}\right)$ for

[^0]any regular fiber $t \notin K(f)$. Let X be a domain in \mathbb{C}^{2} and denote by \mathcal{O}_{X} the sheaf of germs of holomorphic functions on X. Then $H^{0}\left(X, \mathcal{O}_{X}\right)$ is the ring of holomorphic functions on X. We call X quasi-projective if X is \mathbb{C}^{2} minus a finite number of affine algebraic curves. For a quasi-projective domain X let
$$
\mathcal{O}_{X, r}:=\mathcal{O}_{X} \cap \mathbb{C}\left(\mathbb{C}^{2}\right), \quad H^{0}\left(X, \mathcal{O}_{X, r}\right)
$$
be the sheaf of rational functions holomorphic on X and the ring of rational functions holomorphic on X respectively. We assume that X is quasiprojective whenever we use the ring $\mathcal{O}_{X, r}$. Clearly,
\[

$$
\begin{align*}
L: H^{0}\left(X, \mathcal{O}_{X}\right) & \rightarrow H^{0}\left(X, \mathcal{O}_{X}\right), \tag{0.3}\\
L: H^{0}\left(X, \mathcal{O}_{X, r}\right) & \rightarrow H^{0}\left(X, \mathcal{O}_{X, r}\right)
\end{align*}
$$
\]

are derivations. Let $\operatorname{ker}_{X} L$ and $\operatorname{ker}_{X, r} L$ be the kernels of (0.3) and (0.3r) respectively. Obviously, each of these kernels is a ring. We view $H^{0}\left(X, \mathcal{O}_{X}\right)$ (resp. $\left.H^{0}\left(X, \mathcal{O}_{X, r}\right)\right)$ as a $\operatorname{ker}_{X} L$-module (resp. $\operatorname{ker}_{X, r} L$-module). Then L in (0.3) (resp. (0.3 r)) is a $\operatorname{ker}_{X} L$-homomorphism (resp. $\operatorname{ker}_{X, r} L$-homomorphism). Define the following $\operatorname{ker}_{X} L$-modules and $\operatorname{ker}_{X, r} L$-modules respectively:

$$
\begin{align*}
\mathcal{M}_{X} & :=H^{0}\left(X, \mathcal{O}_{X}\right) / L\left(H^{0}\left(X, \mathcal{O}_{X}\right)\right), \\
\mathcal{M}_{X, r} & :=H^{0}\left(X, \mathcal{O}_{X, r}\right) / L\left(H^{0}\left(X, \mathcal{O}_{X, r}\right)\right), \tag{0.4}\\
\mathcal{M} & :=\mathcal{M}_{\mathbb{C}^{2}, r}=\mathbb{C}\left[\mathbb{C}^{2}\right] / L\left(\mathbb{C}\left[\mathbb{C}^{2}\right]\right) .
\end{align*}
$$

Let

$$
\begin{equation*}
B:=\mathbb{C} \backslash K(f), \quad Y:=f^{-1}(B)=\mathbb{C}^{2} \backslash \bigcup_{t \in K(f)} V_{t} . \tag{0.5}
\end{equation*}
$$

In [Dim] Dimca proved that $\mathcal{M}_{Y, r}\left(\right.$ resp. $\left.\mathcal{M}_{Y}\right)$ is a finitely generated free $\operatorname{ker}_{Y, r} L$-module (resp. $\operatorname{ker}_{X, r} L$-module) whose rank is equal to the rank of $H_{1}\left(V_{t}, \mathbb{Z}\right), t \in \mathbb{C} \backslash K(f)$. The following problem arises naturally:

Problem 1. Let $f \in \mathbb{C}\left[\mathbb{C}^{2}\right]$ be a primitive polynomial. When is \mathcal{M} a finitely generated module over $\mathbb{C}[f]\left(=\operatorname{ker}_{\mathbb{C}^{2}, r} L\right)$?

We now briefly summarize the results of our paper. In $\S 1$ we show that for $f=x^{m} y^{n},(m, n)=1$, the module \mathcal{M} is finitely generated. Theorem 1 claims that if \mathcal{M} is a finitely generated $\mathbb{C}[f]$-module and f has no critical points, then the monodromy action on $H_{1}\left(V_{t}, \mathbb{Z}\right), t \notin K(f)$, is trivial. Let $B(a, R) \subset \mathbb{C}^{2}$ be an open Euclidean ball of radius R centered at a. We show that the results of Theorem 1 hold if $\mathcal{M}_{B(0, R)}$ is a finitely generated $\operatorname{ker}_{B(0, R)} L$-module for R big enough.

Assume that $F=(f, g): \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ is a polynomial map with a nonzero constant Jacobian $L(g)=$ const $\neq 0$. (We call such a pair (f, g) a Jacobian
pair.) The celebrated Jacobian conjecture claims that F is an automorphism of \mathbb{C}^{2}. See for example [B-C-W], [Dru] and [Ess]. It is known that F is a diffeomorphism iff \mathcal{M} is a trivial module [Ste], [K-S]. We show that if each fiber V_{t} is irreducible and \mathcal{M} is finitely generated then F is an automorphism. Kaliman's result shows that the plane Jacobian conjecture is equivalent to the statement that for any Jacobian pair the module \mathcal{M} is a finitely generated $\mathbb{C}[f]$-module.

In $\S 2$ we show that \mathcal{M}_{X} is isomorphic to certain first cohomology associated with (0.3). This cohomology has a Stein cover [G-R], consisting of a countable set $\left\{W_{i}\right\}_{i \in \mathbb{N}}$ of open sets covering \mathbb{C}^{2}. On each W_{i} the cohomology is trivial. Clearly, closure $B(0, R)$ can be covered by a finite cover from $\left\{W_{i}\right\}_{i \in \mathbb{N}}$. Thus the Jacobian conjecture is reduced to the finiteness problem of the above cohomology. It is our hope that this finiteness can be proved by a careful study of the patching of a finite Stein cover for $\bar{B}(0, R)$.

1. Finitely generated modules

Lemma 1. Let $f=x^{m} y^{n}$, where m, n are coprime positive integers. Then \mathcal{M} is a finitely generated module over the ring $\mathcal{R}=\mathbb{C}[f]$. The number of minimal generators is mn. Moreover \mathcal{M} is a free module iff $m=n=1$.

Proof. Clearly,

$$
L\left(x^{p} y^{q}\right)=(m q-n p) x^{m+p-1} y^{n+q-1}
$$

Thus $L\left(\mathbb{C}\left[\mathbb{C}^{2}\right]\right)$ does not have monomials $x^{a} y^{b}$ of the following type:

$$
\begin{gather*}
a \leq m-1, \quad b \leq n-1, \\
a=\operatorname{lm}-1, \quad b=\ln -1, \quad l=2, \ldots \tag{1.1}
\end{gather*}
$$

That is, \mathcal{M} is a \mathbb{C}-vector space generated by the vectors $x^{a} y^{b}$, with (a, b) satisfying (1.1). Note that for $l \geq 2$ we have the equality

$$
x^{l m-1} y^{l n-1}=\left(x^{m} y^{n}\right)^{l-1} x^{m-1} y^{n-1} .
$$

Hence the \mathcal{R}-module \mathcal{M} is generated by $n m$ monomials given by the first condition of (1.1). Note that the monomial $x^{m-1} y^{n-1}$ generates a free \mathcal{R} submodule \mathcal{M}. For any other monomial $x^{a} y^{b}$ which satisfies the first condition of (1.1), we find that $f x^{a} y^{b}$ is a zero element in \mathcal{M}. Hence \mathcal{M} is free iff $m=n=1$. As the monomials given in the first part of (1.1) are linearly independent over \mathbb{C} it follows that $m n$ is the minimal number of generators of \mathcal{M}.

Let $f \in \mathbb{C}\left[\mathbb{C}^{2}\right]$ be a primitive polynomial. Then $Y \rightarrow B$ is a fiber bundle with a fiber V_{t} homeomorphic to $\Sigma \backslash\left\{\zeta_{1}, \ldots, \zeta_{k}\right\}$. Therefore

$$
\begin{gathered}
\chi(B)=1-|K(f)|, \quad \chi\left(\Sigma \backslash\left\{\zeta_{1}, \ldots, \zeta_{k}\right\}\right)=2-2 \text { gen }-k \\
\chi(Y)=\chi\left(\Sigma \backslash\left\{\zeta_{1}, \ldots, \zeta_{k}\right\}\right) \chi(B)=(2 \text { gen }+k-2)(|K(f)|-1) .
\end{gathered}
$$

Here $\chi(W)$ is the Euler characteristic of a CW complex W and gen is the genus of Σ. If $K(f)=0$ then $Y=\mathbb{C}^{2}$ and $\chi(Y)=1$. Hence each fiber V_{t} is a smooth irreducible affine curve which is homeomorphic to \mathbb{C}. The Abhyankar-Moh theorem $[\mathrm{A}-\mathrm{M}]$ implies that f is linearizable. That is, there exists a polynomial automorphism $F=(f, g)$. In this case the module \mathcal{M} is trivial.

We recall some basic notions and results on the monodromy of the regular fiber $V_{\tau}, \tau \in B$. We closely follow our exposition in [Fri]. By choosing a canonical basis in $H_{1}\left(V_{\tau}, \mathbb{Z}\right)$ one obtains the representation

$$
\phi: \pi_{1}(B, \tau) \rightarrow \text { Aut } H_{1}\left(V_{\tau}, \mathbb{Z}\right)
$$

of the fundamental group $\pi_{1}(B, \tau)$ in Aut $H_{1}\left(V_{\tau}, \mathbb{Z}\right)$. This representation is called the monodromy of $H_{1}\left(V_{\tau}, \mathbb{Z}\right)$. More precisely, let an element $\alpha \in$ $\pi_{1}(B, \tau)$ be represented by a closed continuous path $\alpha:[0,1] \rightarrow B$ starting at τ. Then for any given element $[\gamma]$ in the homology class of V_{τ} we can define a unique continuation

$$
\begin{aligned}
& {[\gamma](t) \in H_{1}\left(V_{\alpha(t)}, \mathbb{Z}\right), \quad t \in[0,1],} \\
& {[\gamma](0)=[\gamma], \quad[\gamma](1)=\phi(\alpha)(\gamma) .}
\end{aligned}
$$

The above continuation is called the Hurewicz connection. The monodromy ϕ of f is called trivial if ϕ is a trivial homomorphism. Let $\mathcal{H}^{1}\left(V_{t}\right), t \in B$, be the first regular holomorphic cohomology of V_{t}. Any class $[\omega] \in \mathcal{H}^{1}\left(V_{t}\right)$ is represented by a holomorphic 1-form ω on V_{t}, which has rational singularities in the closure of V_{t}. We have $[\omega]=[\theta]$ iff $\omega-\theta=d f$, where f is a holomorphic function on V_{t} which is rational on the closure of V_{t}. Note that

$$
\mathcal{H}^{1}\left(V_{t}\right) \sim \mathbb{C} \otimes H^{1}\left(V_{t}, \mathbb{Z}\right), \quad t \in B .
$$

Hence monodromy acts dually on $\mathcal{H}^{1}\left(V_{\tau}\right)$. Let $\mathcal{H}_{\text {fix }}^{1}\left(V_{\tau}\right) \subset \mathcal{H}^{1}\left(V_{\tau}\right)$ be the subspace of all cohomology elements which are fixed by the monodromy action. Denote by fix ${ }^{1}(f)$ the dimension of $\mathcal{H}_{\text {fix }}^{1}\left(V_{\tau}\right)$. Let $\delta(f, t), t \in \mathbb{C}$, be the number of irreducible components of V_{t} minus 1. Clearly, $\delta(f, t)=0$, $t \in B$. Let

$$
\delta(f):=\sum_{t \in \mathbb{C}} \delta(f, t)=\sum_{t \in K(f)} \delta(f, t)
$$

It is shown in [A-C-D] and in [Fri] that

$$
\mathrm{fix}^{1}(f)=\delta(f)
$$

Hence if each V_{t} is irreducible then fix $^{1}(f)=0$.
The arguments in [Fri, Lemma 3.2] yield that there exists a rational 1-form ω on \mathbb{C}^{2}, which is holomorphic on Y, such that, in Y,

$$
\begin{equation*}
\omega=s d x+t d y, \quad d f \wedge \omega=d x \wedge d y . \tag{1.2}
\end{equation*}
$$

Moreover, if f does not have critical points then s, t can be chosen to be polynomials. It follows that for $t \in B$, any cohomology class in $\mathcal{H}^{1}\left(V_{t}\right)$ can be given by the restriction $\left.h \omega\right|_{V_{t}}$ for some $h \in \mathbb{C}\left[\mathbb{C}^{2}\right]$. Moreover, for any $h \in \mathbb{C}\left[\mathbb{C}^{2}\right],\left.L(h) \omega\right|_{V_{t}}$ is an exact 1-form on V_{t}. See [Fri] or [Dim]. Hence $\mathcal{H}^{1}\left(V_{t}\right)$ is isomorphic to $\left.\mathcal{M}_{Y}\right|_{V_{t}}$. The derivation $d / d t$ of a cohomology element in $\mathcal{H}^{1}\left(V_{t}\right)$ is given by the Gauss-Manin connection, which is dual to the Hurewicz connection. It is given by the following differential map:

$$
\begin{align*}
M: \mathcal{M}_{Y} \rightarrow \mathcal{M}_{Y}, \quad M(h) & =t h_{x}-s h_{y}+o(\omega) h \tag{1.3}\\
o(\omega) & =\frac{d \omega}{d x \wedge d y}=t_{x}-s_{y}
\end{align*}
$$

Let $\gamma \subset V_{t}, t \in B$, be a smooth closed path. Let $B(t, r) \subset B$ be an open disk centered at t with a small radius r. Extend γ to a continuous family of smooth closed curves $\gamma(z) \subset V_{z}, z \in B(t, r)$. Then (1.3) yields

$$
\begin{equation*}
\frac{d}{d z} \int_{\gamma(z)} h \omega=\int_{\gamma(z)} M(h) \omega \tag{1.4}
\end{equation*}
$$

(In [Fri] we prove (1.4) in the special case where $\omega=d g$ and the Jacobian of the map $F=(f, g)$ is equal to 1.)

Theorem 1. Let $f \in \mathbb{C}\left[\mathbb{C}^{2}\right]$ be a polynomial without critical points. Assume that \mathcal{M} is a finitely generated $\mathbb{C}[f]$-module. Then the monodromy of f is trivial.

Proof. Let h_{1}, \ldots, h_{n} be generators of \mathcal{M}. View $M\left(h_{i}\right)$ and $o(\omega) h_{i}$ as elements of \mathcal{M}. As \mathcal{M} is finitely generated we get

$$
M\left(h_{i}\right)+o(\omega) h_{i}=\sum_{j=1}^{n} a_{j i}(f) h_{j}, \quad i=1, \ldots, n
$$

Thus, $A(t)=\left(a_{i j}(t)\right)_{1}^{n}$ is an $n \times n$ matrix with polynomial entries. Consider the following linear ODE system for $x(t)=\left(x_{1}(t), \ldots, x_{n}(t)\right)^{\mathrm{T}}$ in a complex variable t :

$$
\begin{equation*}
\frac{d x}{d t}=-A(t) x, \quad x(\tau)=\xi \in \mathbb{C}^{n} \tag{1.5}
\end{equation*}
$$

Since $A(t)$ is entire on \mathbb{C} there exists a unique entire solution $x(t)$ of (1.5). Let $h:=\left(h_{1}, \ldots, h_{n}\right)^{\mathrm{T}}$. Consider the holomorphic 1-form on \mathbb{C}^{2},

$$
\begin{equation*}
\theta:=\sum_{i=1}^{n} x_{i}(f) h_{i} \omega \tag{1.6}
\end{equation*}
$$

Let $\theta_{t}:=\left.\theta\right|_{V_{t}}$ be viewed as an element of $\mathcal{H}^{1}\left(V_{t}\right)$. Then for $t \in B$ let $d \theta_{t} / d t \in \mathcal{H}^{1}\left(V_{t}\right)$ be the derivative of θ_{t} with respect to the Gauss-Manin connection. The definition of M and (1.5) yield

$$
\begin{align*}
\frac{d \theta_{t}}{d t} & =\left(x^{\prime}(t)\right)^{\mathrm{T}}\left(\left.h\right|_{V_{t}}\right)+(x(t))^{\mathrm{T}}\left(\left.M(h)\right|_{V_{t}}\right) \tag{1.7}\\
& =-x(t)^{\mathrm{T}} A^{\mathrm{T}}\left(\left.u\right|_{V_{t}}\right)+x(t)^{\mathrm{T}} A(t)^{\mathrm{T}}\left(\left.u\right|_{V_{t}}\right)=0
\end{align*}
$$

Hence the monodromy action fixes the cohomology element θ_{τ}. From the proof of Lemma 3.2 in [Fri] it follows that any element in the cohomology $\mathcal{H}^{1}\left(V_{\tau}\right)$ is represented by $\left.h \omega\right|_{V_{\tau}}, h \in \mathbb{C}\left[\mathbb{C}^{2}\right]$. As \mathcal{M} is generated by h_{1}, \ldots, h_{n} over the ring $\mathbb{C}[f]$, it follows that the monodromy action fixes any element in cohomology. Hence the monodromy action fixes any element in homology.

We do not know if the converse to Theorem 1 holds.
Corollary 1. Under the assumptions of Theorem 1,

$$
\begin{equation*}
\operatorname{rank} H_{1}\left(V_{\tau}, \mathbb{Z}\right)=\operatorname{dim} \mathcal{H}^{1}\left(V_{\tau}\right)=\operatorname{fix}^{1}(f)=\delta(f), \quad \tau \in B \tag{1.8}
\end{equation*}
$$

Corollary 2. Let $f \in \mathbb{C}\left[\mathbb{C}^{2}\right]$ be a polynomial without critical points. Assume that \mathcal{M} is a finitely generated $\mathbb{C}[f]$-module and each fiber $V_{t}, t \in \mathbb{C}$, is irreducible. Then f is linearizable.

Proof. If a regular fiber $V_{\tau}, \tau \in B$, is \mathbb{C} then f is linearizable [A-M]. Assume to the contrary that V_{τ} is not \mathbb{C}. Then $\mathcal{H}^{1}\left(V_{\tau}\right)$ is nontrivial contrary to Corollary $1(\delta(f)=0)$.

We now show that (1.8) holds under milder conditions. Let $D(a, r)$ be an open disk of radius r centered at a in \mathbb{C}. For any set $S \subset \mathbb{C}^{n}$ let \bar{S} be the closure of S. We first establish the following lemma:

Lemma 2. Let $f \in \mathbb{C}\left[\mathbb{C}^{2}\right]$ be a polynomial without critical points. Assume that $D(a, r) \supset K(f)$. Then there exists $B(0, R), R=R(r)$, with the following property. Let

$$
\begin{equation*}
L(u)=0, \quad u \in H^{0}\left(B(0, R), \mathcal{O}_{B(0, R)}\right) \tag{1.9}
\end{equation*}
$$

Then there exists $v \in H^{0}\left(D(a, r), \mathcal{O}_{D(a, r)}\right)$ such that

$$
\begin{equation*}
u(x, y)=v(f(x, y)), \quad \forall(x, y) \in B(0, R) \cap f^{-1}(D(a, r)) \tag{1.10}
\end{equation*}
$$

Proof. Fix a point $P=\left(x_{0}, y_{0}\right)$. Since P is not a critical point of f there exists a linear function $g=b x+c y$ so that $L(g)(P) \neq 0$. Hence the polynomial map $F=(f, g): \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ is a dominating polynomial map, which is a local diffeomorphism at P. That is, there exists $\varrho_{P}>0$ such that

$$
\begin{equation*}
F: B\left(P, \varrho_{P}\right) \rightarrow F\left(B\left(P, \varrho_{P}\right)\right) \tag{1.11}
\end{equation*}
$$

is a diffeomorphism. In particular, $F\left(B\left(P, \varrho_{P}\right)\right)$ is simply connected. Assume furthermore that ϱ_{P} is small enough so that there exists $\varepsilon_{P}>0$ such that

$$
\begin{equation*}
f\left(B\left(P, \varrho_{P}\right)\right) \supset D\left(f(P), \varepsilon_{P}\right) \tag{1.12}
\end{equation*}
$$

$W_{P}:=B\left(P, \varrho_{P}\right) \cap f^{-1}\left(D\left(f(P), \varepsilon_{P}\right)\right) \quad$ is connected, $B\left(P, \varrho_{P}\right) \cap V_{t}=W_{P} \cap V_{t} \quad$ is connected, $\quad t \in D\left(f(P), \varepsilon_{P}\right)$.

Assume that

$$
\begin{equation*}
L(u)=0, \quad u \in H^{0}\left(B\left(P, \varrho_{P}\right), \mathcal{O}_{B\left(P, \varrho_{P}\right)}\right) \tag{1.13}
\end{equation*}
$$

Introducing new variables $s=f, t=g$ we deduce that $u_{g}=0$ (see e.g. [Fri]). Since each $W_{P} \cap V_{t}$ is connected for $t \in D\left(f(P), \varepsilon_{P}\right)$, there exists $v_{P} \in H^{0}\left(D\left(f(P), \varepsilon_{P}\right), \mathcal{O}_{D\left(f(P), \varepsilon_{P}\right)}\right)$ so that

$$
\begin{equation*}
u(x, y)=v_{P}(f(x, y)), \quad(x, y) \in W_{P} \tag{1.14}
\end{equation*}
$$

Thus $\left\{W_{P}\right\}_{P \in \mathbb{C}^{2}}$ is an open cover of \mathbb{C}^{2}. Assume (1.9). Then for each $P \in B(0, r)$ we have the function v_{P}. We view the set $v_{P}, P \in B(0, R)$, as the set of germs of analytic functions on $E:=f(B(0, R))$. Choosing a path $\alpha:[0,1] \rightarrow B(0, R)$ and considering the family v_{P} along this path, we obtain an analytic continuation of v_{P} in E along the path $f \circ \alpha$. Since $B(0, R)$ is a semialgebraic set and V_{t} is an algebraic set, $B(0, R) \cap V_{t}$ has a finite number of connected components for any $t \in \mathbb{C}$. Suppose that $B(0, R) \cap V_{t}$ is a nonempty connected set. Continuing v_{P} along paths lying on $B(0, R) \cap V_{t}$ we deduce that all $v_{P}, P \in B(0, R) \cap V_{t}$, give rise to the same germ of analytic function v_{t} in the neighborhood of t. Let $\kappa>0$ be small enough so that

$$
K_{\kappa}(f):=\bigcup_{t \in K(f)} D(t, \kappa) \subset D(a, r)
$$

Let $S:=\bar{D}(a, r) \backslash K_{\kappa}(f)$. Morse theory, e.g. the arguments in [Fri, $\left.\S 1\right]$, yields that there exist $R \gg 1$ so that $B(0, R) \cap V_{t}$ is a nonempty connected set for any $t \in S$. Choose $g=b x+c y$ so that the map $F=(f, g): \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ is proper. ($f=0$ and $g=0$ do not have common points at the line at infinity.) Assume that

$$
F^{-1}(\bar{D}(a, r) \times\{0\}) \subset B(0, R)
$$

Let $\tau \in S$. Then $B(0, R) \cap V_{\tau}$ is connected, hence v defines a unique holomorphic germ v_{τ}. We claim that v_{τ} has an analytic continuation along any smooth closed path in $\alpha \subset D(a, r)$. Furthermore, this continuation terminates with the germ v_{τ}. Let L be the line $g=0$. Then $\left.F\right|_{L}=\left.f\right|_{L}$ is a proper map. View α as a closed path in $D(a, r) \times\{0\}$. Then one can lift α to L. Since $\left.F\right|_{L}$ may have a finite number of critical points, we may have a finite number of possible continuous liftings of α, which are piecewise smooth. Let $\gamma:[0,1] \rightarrow L$ be one of these liftings. Our assumptions yield that $\gamma([0,1]) \subset B(0, R)$. Continue $v_{\tau}=v_{\gamma(0)}$ along $\gamma([0,1])$. Since $\gamma(1) \in B(0, R) \cap V_{\tau}$ it follows that $v_{\gamma(1)}=v_{\tau}$. Hence the analytic continuation of v_{τ} in $D(a, r)$ gives rise to $v \in H^{0}\left(D(a, r), \mathcal{O}_{D(a, r)}\right)$ and (1.10) holds.

We remark that a more careful analysis shows the validity of Lemma 2 under the assumptions that $f \in \mathbb{C}\left[\mathbb{C}^{2}\right]$ has a finite number of critical points. (We are not using this remark.)

Theorem 2. Let $f \in \mathbb{C}\left[\mathbb{C}^{2}\right]$ be a polynomial without critical points. Assume that $\mathcal{M}_{B(0, R)}$ is a finitely generated $\operatorname{ker}_{B(0, R)} L$-module for each $R>0$. Then the monodromy of f is trivial.

Proof. Fix $D(a, r)$ which contains $K(f)$. Let S be as defined in the proof of Lemma 2. Assume that κ is small enough so that S is homotopic to B. Choose $R \gg 1$ so that $B(0, R)$ satisfies the assumptions in the proof of Lemma 2. Furthermore, for each $t \in S, V_{t} \cap B(0, R)$ is a connected set which is homeomorphic to V_{t}. Assume that the $\operatorname{ker}_{B(0, R)} L$-module $\mathcal{M}_{B(0, R)}$ is generated by $u_{1}, \ldots, u_{N} \in H^{0}\left(B(0, R), \mathcal{O}_{B(0, R)}\right)$. Let ω be the 1-form defined by (1.2). As in the proof of Theorem 1 it follows that $\left.u_{1} \omega\right|_{V_{\tau}}, \ldots,\left.u_{N} \omega\right|_{V_{\tau}}$, $\tau \in S$, span $\mathcal{H}_{\mathrm{hol}}^{1}\left(V_{\tau} \cap B(0, R)\right)$, the space of holomorphic 1-forms modulo the exact forms on $V_{\tau} \cap B(0, R)$. We see that $\pi_{1}(S, \tau)$ acts on $\mathcal{H}_{\text {hol }}^{1}\left(V_{\tau} \cap B(0, R)\right)$ (the monodromy action). Combine Lemma 2 with the proof of Theorem 1 to deduce that this action is trivial. As $\mathcal{H}_{\mathrm{hol}}^{1}\left(V_{\tau} \cap B(0, R)\right)$ is isomorphic to $\mathcal{H}^{1}\left(V_{\tau}\right)$ we deduce our theorem.
2. Cohomologies. Let $f \in \mathbb{C}\left[\mathbb{C}^{2}\right]$ be a polynomial. Let \mathcal{P} be the following sheaf over \mathbb{C}^{2} : Each stalk s of $\mathcal{P}_{\left(x_{0}, y_{0}\right)}$ is given by

$$
\begin{equation*}
s(x, y)=\psi\left(f(x, y)-f\left(x_{0}, y_{0}\right)\right) \tag{2.1}
\end{equation*}
$$

where ψ is the germ of a holomorphic function in one variable t at 0 . It is straightforward to check that \mathcal{P} is a sheaf.

Lemma 3. Let $f \in \mathbb{C}\left[\mathbb{C}^{2}\right]$ be a polynomial without critical points. Then the following sequence of sheaf maps on \mathbb{C}^{2} is exact:

$$
\begin{equation*}
0 \rightarrow \mathcal{P} \xrightarrow{\text { inclusion }} \mathcal{O}_{\mathbb{C}^{2}} \xrightarrow{L} \mathcal{O}_{\mathbb{C}^{2}} \rightarrow 0 . \tag{2.2}
\end{equation*}
$$

Proof. Clearly, $L\left(\psi\left(f(x, y)-f\left(x_{0}, y_{0}\right)\right)\right)=0$. Assume that u is a germ of a holomorphic function in (x, y) in the neighborhood of $\left(x_{0}, y_{0}\right)$ such that $L(u)=0$. Then the proof of Lemma 2 yields that u is in \mathcal{P}. That is, \mathcal{P} is the kernel of L on the sheaf $\mathcal{O}_{\mathbb{C}^{2}}$. It is left to show that $L\left(\mathcal{O}_{\mathbb{C}^{2}}\right)=\mathcal{O}_{\mathbb{C}^{2}}$. This is equivalent to the local solution of $L(v)=u$ at $\left(x_{0}, y_{0}\right)$ for any holomorphic germ u at $\left(x_{0}, y_{0}\right)$. As in the proof of Lemma 2 choose $g=b x+c y$ so that $L(g)\left(x_{0}, y_{0}\right) \neq 0$. Then $L(v)=u$ becomes the equation $v_{g}=u / L(g)$ in the coordinates (f, g) (see e.g. [Fri]). Clearly, one can find a local solution to this equation by integrating with respect to g. Pull back by $F=(f, g)$ to obtain a local solution.

Let Y be a topological space with a given open cover $\mathbf{V}=\left\{V_{i}\right\}_{i \in I}$. Let \mathcal{S} be a given sheaf. Then \mathbf{V} is called an acyclic covering for \mathcal{S} if

$$
H^{q}\left(V_{i_{1}} \cap \ldots \cap V_{i_{p}}, \mathcal{S}\right)=0, \quad q>0, \text { for any } i_{1}, \ldots, i_{p} \in I
$$

The Leray Theorem states that $[\mathrm{G}-\mathrm{H}, 0.3]$

$$
H^{*}(\mathbf{V}, \mathcal{S})=H^{*}(Y, \mathcal{S})
$$

Lemma 4. Let $f \in \mathbb{C}\left[\mathbb{C}^{2}\right]$ be a polynomial with no critical points. Then there exists a countable covering \mathbf{U} of \mathbb{C}^{2} which is acyclic for the sheafs $\mathcal{P}, \mathcal{O}_{\mathbb{C}^{2}}$.

Proof. For each $P=\left(x_{0}, y_{0}\right)$ choose an open set W_{P} as defined in (1.12). For each integer $p \geq 1$, choose a finite cover \mathbf{U}_{p} of $\bar{B}(0, p) \backslash B(0, p-1)$ out of the cover

$$
\left\{W_{P}\right\}_{P \in \bar{B}(0, p) \backslash B(0, p-1)}
$$

Let $\mathbf{U}:=\bigcup_{p \geq 1} \mathbf{U}_{p}$. Without loss of generality we may assume that each $W_{P} \in \mathbf{U}$ has a nonempty intersection with a finite number of elements of \mathbf{U}. That is, there exists a discrete countable set $T \subset \mathbb{C}^{2}$ so that $\mathbf{U}=\left\{W_{P}\right\}_{P \in T}$. As each W_{P} is a Stein manifold it follows that \mathbf{U} is an acyclic cover for $\mathcal{O}_{\mathbb{C}^{2}}$. Consider W_{P} with $P=\left(x_{0}, y_{0}\right)$. Use the local diffeomorphism F defined in the proof of Lemma 2 to deduce that $H^{*}\left(W_{P}, \mathcal{P}_{W_{P}}\right)=0$. Hence \mathbf{U} is an acyclic cover for \mathcal{P}.

Corollary 3. Let $f \in \mathbb{C}\left[\mathbb{C}^{2}\right]$ be a polynomial with no critical points. Assume that $X \subset \mathbb{C}^{2}$ is a Stein manifold. Then

$$
\begin{equation*}
\mathcal{M}_{X} \sim H^{1}\left(X, \mathcal{P}_{X}\right) \tag{2.3}
\end{equation*}
$$

Proof. Consider the exact sequence of cohomology groups corresponding to the exact sequence (2.2) [G-H, 0.3], using a countable acyclic cover $\mathbf{U}_{X}:=$ $\left\{W_{P}\right\}_{P \in T(X)}$ of X as constructed in the proof of Lemma 4:

$$
\begin{aligned}
0 \rightarrow H^{0}\left(X, \mathcal{P}_{X}\right) \rightarrow & H^{0}\left(X, \mathcal{O}_{X}\right) \rightarrow H^{0}\left(X, \mathcal{O}_{X}\right) \\
& \rightarrow H^{1}\left(X, \mathcal{P}_{X}\right) \rightarrow H^{1}\left(X, \mathcal{O}_{X}\right) \rightarrow H^{1}\left(X, \mathcal{O}_{X}\right) \rightarrow \ldots
\end{aligned}
$$

As the inclusion $H^{0}\left(X, \mathcal{P}_{X}\right) \rightarrow H^{0}\left(X, \mathcal{O}_{X}\right)$ is an injection and $H^{1}\left(X, \mathcal{O}_{X}\right)=0$ we obtain (2.3).

We now explain the isomorphism map in (2.3). Let $u \in H^{0}\left(X, \mathcal{O}_{X}\right)$. For each $P \in T(X)$ we find a local solution

$$
\begin{equation*}
L\left(v_{P}\right)=u, \quad v_{P} \in \mathcal{O}_{X}\left(W_{P}\right), P \in T(X) \tag{2.4}
\end{equation*}
$$

Assume that $W_{P} \cap W_{Q} \neq \emptyset$. Our arguments show that

$$
\begin{equation*}
h_{P, Q}:=v_{P}-v_{Q} \in \mathcal{P}\left(W_{P} \cap W_{Q}\right), \quad P, Q \in T(X) \tag{2.5}
\end{equation*}
$$

Hence $u \in L\left(H^{0}\left(X, \mathcal{O}_{X}\right)\right)$ iff the above cocycle in $H^{1}\left(\mathbf{U}_{X}, \mathcal{P}_{X}\right)$ is trivial. Note that the coset $u+L\left(H^{0}\left(X, \mathcal{O}_{X}\right)\right)$ corresponds to the same cocycle (2.5) in $H^{1}\left(\mathbf{U}_{X}, \mathcal{P}_{X}\right)$. This gives the injection

$$
\iota: \mathcal{M}_{X} \rightarrow H^{1}\left(\mathbf{U}_{X}, \mathcal{P}_{X}\right)
$$

Corollary 3 implies that ι is surjective. That is, for a cocycle

$$
h_{P, Q} \in \mathcal{P}_{X}\left(W_{P} \cap W_{Q}\right), \quad P, Q \in T(X),
$$

there exists $u \in H^{0}\left(X, \mathcal{O}_{X}\right)$ with local solutions (2.4) so that the above cocycle is the cocycle (2.5). Note that $H^{1}\left(X, \mathcal{P}_{X}\right)$ is an $H^{0}\left(X, \mathcal{O}_{X}\right)$-module.

Fix $R \geq 0$. Let

$$
\begin{equation*}
T(R):=\left\{P \in T: W_{P} \cap \bar{B}(0, R) \neq \emptyset\right\} . \tag{2.6}
\end{equation*}
$$

As we pointed out in the proof of Lemma 4 we may assume that $T(R)$ is a finite set. Let

$$
\begin{equation*}
X_{R}:=\bigcup_{P \in T(R)} W_{P} . \tag{2.7}
\end{equation*}
$$

Then X_{R} is a Stein manifold with a finite acyclic cover $\left\{W_{P}\right\}_{P \in T(R)}$. Combine Corollary 2 with the arguments of the proof of Theorem 2 to obtain

Theorem 3. Let $f \in \mathbb{C}\left[\mathbb{C}^{2}\right]$ have no critical points. Let X_{R} be defined by (2.6)-(2.7). If $H^{1}\left(X_{R}, \mathcal{P}_{X_{R}}\right)$ is a finitely generated module for each $R>0$ then the monodromy of f is trivial.

Assume that $F=(f, g)$ is a Jacobian pair with $L(g)=1$. Then the 1 -form ω defined in (1.2) is given by $d g$. Furthermore, M defined in (1.3) is given by

$$
M:=g_{y} \frac{\partial}{\partial x}-g_{x} \frac{\partial}{\partial y} .
$$

As $M L=L M$ we deduce that for any domain X,

$$
\begin{equation*}
M: \mathcal{M}_{X} \rightarrow \mathcal{M}_{X} \tag{2.8}
\end{equation*}
$$

Without loss of generality we can assume that for each W_{P}, which is defined in (1.12), $\left.F\right|_{W_{P}}$ is a diffeomorphism. The following observation may be useful in the study of the plane Jacobian conjecture:

Proposition 1. Let $F=(f, g)$ be a Jacobian pair with $L(g)=1$. Assume that $X \subset \mathbb{C}^{2}$ is a Stein manifold. Then the isomorphism (2.3) induces the isomorphism between the action of M given by (2.8) and the action

$$
\begin{equation*}
M: H^{1}\left(X, \mathcal{P}_{X}\right) \rightarrow H^{1}\left(X, \mathcal{P}_{X}\right) \tag{2.8'}
\end{equation*}
$$

given by

$$
h_{P, Q} \mapsto M\left(h_{P, Q}\right), \quad h_{P, Q} \in \mathcal{P}\left(W_{P} \cap W_{Q}\right) .
$$

Proof. Let $u \in \mathcal{P}\left(W_{P}\right)$. Push forward by F, take the derivative with respect to g and pull back by F to deduce that $M(u) \in \mathcal{P}\left(W_{P}\right)$. Similarly,

$$
h_{P, Q} \in \mathcal{P}\left(W_{P} \cap W_{Q}\right) \Rightarrow M\left(h_{P, Q}\right) \in \mathcal{P}\left(W_{P} \cap W_{Q}\right) .
$$

Assume that the cocycle corresponding to an acyclic covering of X by a countable cover $\left\{W_{P}\right\}_{P \in T(X)}$ is a trivial cocycle. As $M L=L M$ it follows that

$$
M\left(h_{P, Q}\right) \in \mathcal{P}\left(W_{P} \cap W_{Q}\right), \quad P, Q \in T(X)
$$

is a trivial cocycle. Hence $\left(2.8^{\prime \prime}\right)$ defines the action $\left(2.8^{\prime}\right)$.
Corollary 3 yields that any cocycle in $H^{1}\left(X, \mathcal{P}_{X}\right)$ is of the form (2.5), where each $v_{P}, P \in T(X)$, satisfies (2.4). Clearly,

$$
M(u)=M\left(L\left(v_{P}\right)\right)=L\left(M\left(v_{P}\right)\right), \quad P \in T(X)
$$

Corollary 3 yields that the cocycle

$$
M\left(v_{P}-v_{Q}\right) \in \mathcal{P}\left(W_{P} \cap W_{Q}\right), \quad P, Q \in T(X), P \neq Q
$$

determines the unique coset $M(u)+L\left(H^{0}\left(X, \mathcal{O}_{X}\right)\right)$. Hence the action (2.8) is isomorphic to the action $\left(2.8^{\prime}\right)$.

Note that for any $s \in \mathcal{P}_{\left(x_{0}, y_{0}\right)}$ of the form (2.1) we have

$$
M(s)=\psi^{\prime}\left(f(x, y)-f\left(x_{0}, y_{0}\right)\right)
$$

References

[A-M] S. S. Abhyankar and T.-T. Moh, Embeddings of the line in the plane, J. Reine Angew. Math. 276 (1975), 149-166.
[A-C-D] E. Artal-Bartolo, P. Cassou-Noguès et A. Dimca, Sur la topologie des polynômes complexes, in: Progr. Math. 162, Birkhäuser, 1998, 317-342.
[B-C-W] H. Bass, E. H. Connell and D. Wright, The Jacobian conjecture: Reduction of degree and formal expansion of the inverse, Bull. Amer. Math. Soc. 7 (1982), 287-330.
[Dim] A. Dimca, Invariant cycles for complex polynomials, Rev. Roumaine Math. Pures Appl. 43 (1998), 113-120.
[Dru] L. M. Drużkowski, The Jacobian conjecture: some steps towards solution, in: Automorphisms of Affine Spaces, A. van den Essen (ed.), Kluwer, 1995, 41-54.
[Ess] A. van den Essen, Polynomial Automorphisms, Birkhäuser, 2000.
[Fri] S. Friedland, Monodromy, differential equations and the Jacobian conjecture, Ann. Polon. Math. 72 (1999), 219-249.
[G-R] H. Grauert and R. Remmert, Coherent Analytic Sheaves, Springer, 1984.
[G-H] P. Griffiths and J. Harris, Principles of Algebraic Geometry, Wiley, 1978.
[Kal] S. Kaliman, On the Jacobian Conjecture, Proc. Amer. Math. Soc. 117 (1993), 45-51.
[K-S] T. Krasiński and S. Spodzieja, On linear differential operators related to the n dimensional Jacobian conjecture, in: Real Algebraic Geometry (Rennes, 1991), M. Coste, L. Mahé and M.-F. Roy (eds.), Lecture Notes in Math. 1524, Springer, 1992, 308-315.
[Ste] Y. Stein, On the density of image of differential operators generated by polynomials, J. Anal. Math. 52 (1989), 291-300.

Department of Mathematics, Statistics and Computer Science
University of Illinois at Chicago
851 S. Morgan St.
Chicago, IL 60607-7045, U.S.A.
E-mail: friedlan@uic.edu

Reçu par la Rédaction le 25.2.2000
Révisé le 14.7.2000

[^0]: 2000 Mathematics Subject Classification: Primary 14D05, 14E07, 14E09.
 Key words and phrases: Gauss-Manin connection, Jacobian conjecture, monodromy.

