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Siciak’s extremal function in complex and real analysis

by W. Pleśniak (Kraków)

Abstract. The Siciak extremal function establishes an important link between poly-
nomial approximation in several variables and pluripotential theory. This yields its nu-
merous applications in complex and real analysis. Some of them can be found on a rich list
drawn up by Klimek in his well-known monograph “Pluripotential Theory”. The purpose
of this paper is to supplement it by applications in constructive function theory.

The extremal function associated with a compact subset E of Cn is
defined by the formula

ΦE(z) = sup{|p(z)|1/ deg p; p : Cn → C is a nonconstant polynomial

with sup |p|(E) ≤ 1}, z ∈ Cn.
It was introduced more than forty years ago by Józef Siciak who used it to
prove a multivariate version of the Bernstein–Walsh theorem on polynomial
approximation of germs of holomorphic functions on compact subsets of Cn
(Siciak 1962). It is known (Zakharyuta 1976a, Siciak 1981) that logΦE(z) =
VE(z), where

VE(z) := sup{u(z) : u ∈ L(Cn), u ≤ 0 on E},
where L(Cn) = {u ∈ PSH(Cn) : u(z) − log |z| ≤ O(1) as |z| → ∞} is
the Lelong class of plurisubharmonic functions with logarithmic growth at
infinity. If E is nonpluripolar, then the plurisubharmonic function

V ∗E(z) = lim sup
w→z

VE(w)

is the unique function in the class L(Cn) which vanishes on E except possi-
bly on a pluripolar subset and satisfies the complex Monge–Ampère equation
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(ddcV ∗E)n = 0 in Cn \ E (Bedford and Taylor 1982). If n = 1, the Monge–
Ampère equation reduces to the classical Laplace equation. For this reason,
the function V ∗E is a natural counterpart of the classical Green function with
pole at infinity and it is called the plurisubharmonic or pluricomplex Green
function for E with pole at infinity. Thus the Siciak extremal function es-
tablishes an important link between polynomial approximation in several
complex variables and pluripotential theory founded by Bedford and Tay-
lor. This suggests its numerous applications in complex and real analysis.
I am not in a position to cite all of them here. However, following a com-
prehensive list drawn up by Maciej Klimek in his well-known monograph
“Pluripotential Theory”, published over ten years ago (Klimek 1991), let
me cite some articles (updated by papers which have appeared during the
last decade):

• separately analytic functions (Siciak 1969a, 1969b, 1981, 2001, Za-
kharyuta 1976b, Nguyen Thanh Van and Zeriahi 1991, 1995, Öktem 1998,
Alehyane and Zeriahi 2001, Jarnicki and Pflug 2001, 2003a, 2003b);
• isomorphisms of spaces of analytic functions (Zakharyuta 1974a,

1974b, Zeriahi 1990);
• transfinite diameter, Chebyshev constant, and Chebyshev and orthogo-

nal polynomials in Cn (Zakharyuta 1975, 1976a, Molzon and Shiffman 1982,
Nguyen Thah Van 1980, Nguyen Thanh Van and Zeriahi 1983, Zeriahi 1985,
Klimek 1986, Jędrzejowski 1992, Bloom 1997, 1998, Siciak 1997a, Bloom and
Calvi 1999, Bloom and Levenberg 2001);
• estimates of growth of entire functions (Winiarski 1970, 1973, Zeriahi

1987);
• quasianalytic functions of several variables (Pleśniak 1971, 1972, 1973,

1977, 1981);
• lacunary power series in Cn and sets of convergence of series of ho-

mogeneous polynomials (Siciak 1981);
• Leja’s Polynomial Condition, uniformly bounded families of polynomi-

als and determining measures (Nguyen Thanh Van 1975, 1985, Siciak 1971,
1981, 1988, Cegrell 1980, Pleśniak 1980b, 1980c, 1995, Klimek 1982, Nguyen
Than Van and Zeriahi 1983, Nguyen Thanh Van and Pleśniak 1984, Leven-
berg 1985);
• distribution of the zeros of polynomials of best approximation (Pleśniak

1980a, Gilewicz and Pleśniak 1993, Wójcik 1988, Bloom and Szczepański
1999, Hécart 1999, 2000).

The above list is a testimony of the power of Siciak’s extremal func-
tion in complex analysis. The purpose of my lecture is to supplement it by
some applications in Constructive Function Theory. My presentation does
not aim at being complete and/or objective. Instead, I would like to con-
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centrate on problems that have been investigated by myself and/or by my
co-workers.

That the Siciak extremal function is especially useful in problems con-
nected with polynomial approximation in Cn can be attributed to the fact
that the continuity of ΦE in Cn is equivalent to the Bernstein–Walsh type
inequality:

For each b > 1 there exists a neighbourhood U of E and a constant
M > 0 such that

(BWI) sup |p|(U) ≤Mbdeg p sup |p|(E)

for each polynomial p ∈ C[z] (Zakharyuta 1976a, Siciak 1981).

Moreover if E is determining for germs of holomorphic functions on E,
then the continuity of ΦE is equivalent to the following analytic extension
property :

If f : E → C and

lim sup
n→∞

(inf{sup |f − p|(E) : p is a polynomial of degree ≤ n})1/n < 1,

then f extends to a holomorphic function defined on a neighbourhood of E
(Baouendi–Goulaouic 1974, the case where E ⊂ Rn; Nguyen Thanh Van
and Siciak 1974, the general case).

As mentioned above, the crucial point for applications is to establish the
continuity of the function ΦE . In such a case the set E is said to be L-regular.
The space R of all compact, polynomially convex L-regular subsets of Cn is
a complete metric space if the distance between two sets E,F ∈ R is defined
by

Γ (E,F ) := max{supVE(F ), supVF (E)} = sup |VE − VF |(Cn)

(Klimek 1995). Thanks to the product formula

ΦE×F (z, w) = max{ΦE(z), ΦF (w)} for (z, w) ∈ Cn × Cm,
where E ⊂ Cn and F ⊂ Cm (Siciak 1962), and due to the simple fact that
ΦE ≤ ΦF if F ⊂ E ⊂ Cn, one can infer some continuity criteria from the
classical one-dimensional case. Let me also recall here another useful result
usually called the analytic accessibility criterion:

Given a ∈ E, suppose there exists an analytic map h : [0, 1] → E such
that h(0) = a. If for each t ∈ (0, 1] the function ΦE is continuous at h(t)
then ΦE is also continuous at a (Sadullaev 1980, Pleśniak 1980e, 1984a,
Cegrell 1985).

L-regularity is invariant under nondegenerate holomorphic maps. More
precisely:
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If h : Cn ⊃ E → Cm (m ≤ n) is a germ of a nondegenerate holomorphic
map, where E is compact , polynomially convex and L-regular , then the func-
tion Φh(E) is continuous in Cm (Pleśniak 1978, Klimek 1981, 1982, 2001,
Sadullaev 1981, Nguyen Thanh Van and Pleśniak 1984).

This invariance property gives rise to the question of whether the inverse
image of an L-regular compact set E under a “good” holomorphic map h
is also L-regular. Klimek (1982) proved that this is the case if both E and
h(E) are of the same dimension. In particular, he obtained the L-regularity
of analytic polyhedrons of type P = {z ∈ Cn : |hj(z)| ≤ 1, j = 1, . . . , n}.
In the general case where j = 1, . . . ,m (with any m), such a result was
established by Pleśniak (1984b) with the aid of the analytic accessibility
criterion and techniques of subanalytic geometry à la Hironaka–Łojasiewicz.
More exactly:

If E is a set in Cn which is subanalytic as a subset of R2n, and if intE
is dense in E, then E is (locally) L-regular at every point a ∈ E (Pleśniak
1984b).

Let us add that the last result can also be obtained in a more general
setting of polynomially bounded o-minimal structures which are essential
generalizations of subanalytic geometry (Pleśniak 2001).

The result about the L-regularity of subanalytic sets can be significantly
strengthened with the aid of the Hironaka rectilinearization theorem and
Łojasiewicz’s inequality:

If U is a nonvoid bounded subanalytic set in Rn then the extremal func-
tion ΦE with E = U has the following Hölder Continuity Property :

(HCP) ΦE(z) ≤ 1 + Aδm if dist(z,E) ≤ δ ≤ 1,

where the positive constants A and m do not depend on z (Pawłucki and
Pleśniak 1986).

Actually, the last statement remains valid for the much larger family
of uniformly polynomially cuspidal subsets of Rn (Paw lucki and Pleśniak
1986).

As was observed a long time ago by Siciak (1967), the (HCP) property
of ΦE together with the Cauchy formula yield easily the Markov property
of E:

For any polynomial p ∈ C[z], one has

(MI) |grad p(z)| ≤M(deg p)r sup |p|(E) for z ∈ E
with some positive constants M and r that do not depend on p.

The question of whether the converse implication is also true remains
open. However, Białas-Cież (1995) and Totik (1995) showed that it holds
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if n = 1 and E is a Cantor-type compact set. Let us add that, in general,
L-regularity of E does not ensure that E is Markov (Pleśniak 1990a, Totik
1995, Klimek 2001).

Markov’s inequality (MI), together with the Bernstein–Walsh inequality,
is one of the most fundamental tools of Constructive Function Theory. Com-
bined with Jackson’s theorem, it permits one to characterize C∞ functions
on compact subsets of Rn (see the Bernstein-type theorem of Pawłucki and
Pleśniak (1986)). It turns out that one can also find important applications
of (MI) in differential analysis. For example, it yields a relatively simple
construction of a continuous linear operator extending Whitney jets of C∞

functions or jets of ultradifferentiable functions from a compact subset of
Rn that preserves (MI), to the whole space Rn (Pawłucki and Pleśniak 1988,
Pleśniak 1990b, 1994, Pleśniak and Skiba 1990, Zeriahi 1993, Bos and Mil-
man 1995, Beaugendre 2001). For other applications of Markov’s inequality
in differential analysis we refer the reader to Bos and Milman (1995), and
Pleśniak (1998).

We have just seen that subanalytic geometry furnishes nice examples of
L-regular and HCP-sets. Another natural domain yielding such examples
is complex dynamics. Starting from Klimek’s results establishing L-regula-
rity of filled-in Julia sets in Cn arising from iterations of polynomial maps
with Łojasiewicz’s exponent strictly greater than 1 (Klimek 1995, 1999),
Marta Kosek (1997, 1998) proved that such sets actually have the (HCP)
property. She also obtained corresponding results for polynomial iterations
on algebraic sets in Cn (Kosek 2000). Let us also mention that Siciak (1997b)
gave useful sufficient conditions of Wiener type on a compact set E ⊂ Cn
guaranteeing that the function ΦE is continuous or Hölder continuous.

The notion of Siciak’s extremal function extends naturally to compact
subsets of analytic sets in Cn (see e.g. Sadullaev 1983, Zeriahi 1987, 1991,
1996, 2000). Let us recall here an important result of Sadullaev (1983) fur-
nishing a beautiful characterization of algebraicity of analytic subsets of Cn:

An analytic subset A of Cn is algebraic if and only if the extremal func-
tion ΦE is locally bounded on A for some (and hence for each) nonpluripolar
compact subset E of A.

This result is crucial for developing the theory of polynomial inequalities
(of Bernstein–Walsh, Markov or van der Corput–Schaake type) on algebraic
sets (Baran and Pleśniak 2000a). It also plays a fundamental role in char-
acterizing compact pieces of an algebraic variety in Cn in terms of tangen-
tial Markov, Bernstein or van der Corput–Schaake inequalities (Bos, Leven-
berg and Taylor 1995, Bos, Levenberg, Milman and Taylor 1995, Baran and
Pleśniak 1997, 2000b). Let us add that the techniques developed in Baran
and Pleśniak (2000b) are based on fine bounds for Siciak’s extremal func-
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tion associated with a ball in Rn which are due to Baran (1988, 1992, 1998)
and which have been inspired by Lundin (1985), who solved an old question
asked by Siciak about a formula for the extremal function associated with
the Euclidean unit ball in Rn.

Acknowledgements. The author wishes to thank Professors Maciej
Klimek and Nguyen Thanh Van for valuable remarks that permitted him to
complete the list of references by some important items.

References

O. Alehyane and A. Zeriahi (2001), Une nouvelle version du théorème d’extension de
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J.-M. Hécart (1999), Invariance de certaines conditions polynomiales pluriharmoniques

par rapport aux applications holomorphes, ibid. 37, 165–171.
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un compact de Cn, Bull. Soc. Math. France 109, 325–335.

A. Zeriahi (1987), Meilleure approximation polynomiale et croissance des fonctions entières
sur certaines variétés affines, Ann. Inst. Fourier (Grenoble) 37, 79–104.

A. Zeriahi (1990), Bases de Schauder et isomorphismes d’espaces de fonctions holomor-
phes, C. R. Acad. Sci. Paris Sér. I Math. 310, 691–694.

A. Zeriahi (1991), Fonction de Green pluricomplexe à pôle à l’infini sur un espace de Stein
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