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Robin functions and extremal functions

by T. Bloom (Toronto), N. Levenberg (Auckland)
and S. Ma’u (Auckland)

Abstract. Given a compact set K ⊂ CN , for each positive integer n, let

V (n)(z) = V
(n)
K (z)

:= sup
{

1
deg p

Vp(K)(p(z)) : p holomorphic polynomial, 1 ≤ deg p ≤ n
}
.

These “extremal-like” functions V (n)
K are essentially one-variable in nature and always

increase to the “true” several-variable (Siciak) extremal function,

VK(z) := max
[
0, sup

{
1

deg p
log |p(z)| : p holomorphic polynomial, ‖p‖K ≤ 1

}]
.

Our main result is that if K is regular, then all of the functions V (n)
K are continuous; and

their associated Robin functions

%
V

(n)
K

(z) := lim sup
|λ|→∞

[V (n)
K (λz)− log(|λ|)]

increase to %K := %VK for all z outside a pluripolar set.

0. Introduction. Let

L := {u plurisubharmonic (psh) in CN : u(z) ≤ log+ |z|+ C}
denote the class of psh functions of logarithmic growth on CN (here |z| =
(
∑N
i=1 |zi|2)1/2; log+ |z| = max(0, log |z|); and the constant C can depend

on u). We also consider the class

L+ := {u ∈ L : log+ |z|+ C1 ≤ u(z) ≤ log+ |z|+ C2 for some C1, C2}.
These classes arise naturally in complex potential theory in C and in pluripo-
tential theory in CN . For a bounded Borel set E in CN , define

(0.1) VE(z) := sup{u(z) : u ∈ L, u ≤ 0 on E}.
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The upper semicontinuous (usc) regularization V ∗E(z) := lim supζ→z VE(ζ)
is called the (Siciak) extremal function of E. It is well known that V ∗E ∈ L+

if and only if E is nonpluripolar; i.e., if u psh is −∞ on E, then u ≡ −∞.
If K is a compact set in CN , then the extremal function in (0.1) can be
obtained via the formula

(0.2) VK(z)

:= max
[
0, sup

{
1

deg p
log |p(z)| : p holomorphic polynomial, ‖p‖K ≤ 1

}]

([K, Theorem 5.1.7]). Here, ‖p‖K := supz∈K |p(z)| denotes the uniform norm
on K.

To study the asymptotic behavior of such functions, we recall the notion
of the Robin function associated to a function u ∈ L. First of all, suppose
that K ⊂ CN is compact and regular, i.e., VK = V ∗K (equivalently, VK is
continuous). The Robin function of K is %K : CN → R ∪ {−∞} defined by

%K(z) := lim sup
|λ|→∞

[VK(λz)− log(|λ|)].

More generally, for u : CN → R in L we define the Robin function of u
to be

(0.3) %u(z) := lim sup
|λ|→∞

[u(λz)− log(|λ|)]

(hence %K = %VK ). Note that for λ ∈ C, %u(λz) = log |λ|+%u(z) (logarithmic
homogeneity; cf. Section 5). It is known [Bl] that for u ∈ L, the Robin
function %u(z) is plurisubharmonic in CN ; indeed, either %u ∈ L or %u ≡
−∞.

Our aim in this note is two-fold: first, we discuss the Robin function
%u(z)—more precisely, the Robin constant—associated to a function u ∈ L
in one complex variable. Using these results, we then analyze the Robin func-
tion associated to certain “extremal-like” functions associated to a compact
set K ⊂ CN , N > 1. For each positive integer n, let

V (n)(z) = V
(n)
K (z)

:= sup
{

1
deg p

Vp(K)(p(z)) : p holomorphic polynomial, 1 ≤ deg p ≤ n
}
.

These functions V (n)
K (discussed in [BCL]) are essentially one-variable in

nature and always increase to the “true” extremal function, VK . Our main
result is that if K is regular, then all of the functions V (n)

K are continuous.
Concerning their associated Robin functions %

V
(n)
K

, we show that %
V

(1)
K

is

also continuous and, in this case, the lim sup in (0.3) can be replaced by
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limit; i.e., the limit exists. Moreover,

(0.4) lim
n→∞

%V (n)(z) = %K(z)

for q.e. z ∈ CN (i.e., all z outside a pluripolar set). We mention that (0.4) is
not an immediate consequence of the monotone convergence of the functions
V

(n)
K to the function VK ; indeed, a necessary and sufficient condition for (0.4)

to hold involves the Monge–Ampère measures of these functions (cf. [BT]);
this condition is usually difficult to verify. We end with some open questions
related to the notions in this and the [BCL] paper.

We would like to thank the referee for an extremely careful reading of the
manuscript and many helpful comments. Also, we are grateful to Professor
J. Siciak for some useful remarks which we have incorporated in the text.

1. Subharmonic functions in C. In this section, we work exclusively
in C. The major question we want to address is the following: for which
functions u ∈ L does the limit

(1.0) lim
|t|→∞

[u(t)− log |t|]

exist? We first discuss some known results about subharmonic functions
in C. Let µ be a nonnegative Borel measure on C of finite total mass. Under
what conditions is µ the Laplacian of a function in L?

Proposition 1.1. Suppose that
�
|t|≤1 log |t| dµ(t) > −∞. Then µ(1) :=�

t∈C dµ(t) ≤ 1 if and only if

(1.1) u(z) := �
t∈C

[log |z − t| − log |t|] dµ(t)

belongs to L.

Remark. From Brelot’s theorem (cf. [R]), it follows that if µ(1) < ∞
and

�
|t|≤1

log |t| dµ(t) > −∞,

then
u(z) := �

t∈C
[log |z − t| − log |t|] dµ(t)

is a subharmonic (shm) function in C.

Proof of Proposition 1.1. Introduce the notation n(r) :=
�
|t|≤r dµ(t). We

first recall Jensen’s formula: let u be shm in the disk {z : |z| < R} and
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harmonic in a neighborhood of the origin. Then for any r < R,

Mu(r) :=
1

2π

2π

�
0

u(reiθ) dθ = u(0) +
r

�
0

n(t)
t

dt(1.2)

= u(0) +
r

�
0

[log r − log |t|] dn(t).

Suppose u as in (1.1) is in L but µ(1) = α > 1. Without loss of generality
we may assume u(0) = 0. Since u ∈ L,

(1.3) lim
r→∞

[Mu(r)− log r] <∞.

Fix 0 < β < 1− 1/α. Then, since limt→∞ n(t) = α, there exists r0 > 1 such
that for all r > r0,

(1− β)n(rβ) =: 1 + δ > 1.
But

Mu(r)− log r =
r

�
0

[log r − log |t|] dn(t)− log r

≥
rβ

�
0

[log r − log |t|] dn(t)− log r

≥ (1− β)(log r)n(rβ)− log r = δ log r,

which contradicts (1.3).
For the converse, we may assume µ(1) = 1. We want to find a constant C

such that

u(z) := �
t∈C

[log |z − t| − log |t|] dµ(t) ≤ C + log |z|

for all |z| ≥ 1. Fix such a z and write

u(z) = �
|t|≤1

log
∣∣∣∣1−

z

t

∣∣∣∣ dµ(t)

+ �
|t|>1, |z|<|t|

log
∣∣∣∣1−

z

t

∣∣∣∣ dµ(t) + �
|t|>1, |z|≥|t|

log
∣∣∣∣1−

z

t

∣∣∣∣ dµ(t)

≤ [n(1) log |z|+ c1] + [(1− n(1)) log 2] + �
|t|>1, |z|≥|t|

log
2|z|
|t| dµ(t)

≤ [n(1) log |z|+ c1] + [(1− n(1)) log 2] + �
|t|>1

log 2|z|dµ(t)

= [n(1) log |z|+ c1] + [(1− n(1)) log 2] + [1− n(1)] log 2|z|
= log |z|+ C.
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It follows from Proposition 1.1 that if u ∈ L and u(0) = 0 then u can be
written as in (1.1) with

dµ(t) =
−1
4πi

∆u(t)dt ∧ dt and µ(1) ≤ 1.

The fact that µ(1) ≤ 1 for u ∈ L follows easily from Jensen’s formula (1.2):
if µ(1) > 1, then there exist δ > 0 and r0 such that for all r > r0, we have
n(r) ≥ 1 + δ. Fixing such an r, we obtain

Mu(r)−Mu(r0) =
r

�
r0

n(t)
t

dt ≥ (1 + δ) log
r

r0
.

The left-hand side of this inequality is dominated by log (1 + r) plus a
constant—for all r—yielding a contradiction.

To show that the problem described in (1.0) is nontrivial, we begin
with an explicit example of a continuous function u ∈ L+(C) for which
the limit (1.0) does not exist.

Proposition 1.2. There exists u ∈ L+(C)∩C(C) for which u(t)−log |t|
does not have a limit as |t| → ∞.

Proof. The idea is to construct a sequence of continuous subharmonic
functions

uj(t) := log+ |t− tj |
rj

+ log rj

in L+(C) having Laplacians supported on circles |t− tj | = rj of smaller and
smaller radii rj with centers tj marching to infinity in such a way that an
infinite sum

u(t) :=
∑

j

εjuj(t)

gives us the desired function. To make this precise, we first choose a sequence
{tj} of positive numbers with t1 > 2 and tj ↑ ∞ and with

(1.4) 2tj ≤ tj+1 ≤ 4tj

for all j. Next, choose a sequence {εj} of positive numbers with

(1.5) εj ↓ 0,
∑

j

εj = 1,
∑

j

εj log tj <∞.

Finally, define the sequence {rj} of positive numbers by

(1.6) rk := 1/
[ k−1∏

j=1

t
εj/εk
j

]
.
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Note that by the choice of rk in (1.6), we have

(1.7) εk log
tk
rk

=
k∑

j=1

εj log tj .

Now let
uj(t) := log+ |t− tj |

rj
+ log rj and u(t) :=

∑

j

εjuj(t)

as above. We show this u satisfies the conditions stated in the proposition.

(i) u is in L+(C). If tk ≤ |t| ≤ tk+1, then

|t− tj | ≤ |t|+ tj ≤
{

2|t| for j ≤ k,
2tj for j > k.

Hence

u(t) ≤
∑

j≤k
εj log 2|t|+

∑

j>k

εj log 2tj ≤
[

log 2 +
∑

j

εj log tj
]

+ log |t|

by (1.5). In the other direction, if we write

u(t) =
∑

j 6=k,k+1

εj log |t|+
∑

j 6=k,k+1

εj log
|t− tj |
|t| + εkuk(t) + εk+1uk+1(t)

and we use the estimates
|t− tj |
|t| >

|t| − tj
|t| >

1
2

for j < k since |t| ≥ tk > 2tj ,

|t− tj |
|t| >

tj − |t|
|t| >

1
2

for j > k + 1 since tj ≥ 2tk+1 > 2|t|;

we obtain

u(t) ≥
∑

j 6=k,k+1

εj log |t|+ log 1/2 + εkuk(t) + εk+1uk+1(t)

≥ log |t|+ log
1
2

+ εk log
rk
|t| + εk+1 log

rk+1

|t|

≥ log |t|+ log
1
2

+ εk log
rk
4tk

+ εk+1 log
rk+1

tk+1
(from (1.4))

≥ log |t|+ log
1
2
− εk log 4− 2εk+1 log

tk+1

rk+1

≥ log |t| − log 8− 2
k+1∑

j=1

εj log tj

≥ log |t| − log 8− 2
∞∑

j=1

εj log tj = log |t|+ c1,

where the last two lines follow from (1.5) and (1.7).
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(ii) There exists δ > 0 with lim infk→∞[u(−tk)− u(tk)] ≥ δ. For

u(−tk)− u(tk) > εk[uk(−tk)− uk(tk)] = εk log
2tk
rk

> εk log
tk
rk

=
k∑

j=1

εj log tj (from (1.7))

and the result follows from convergence of
∑∞
j=1 εj log tj (see (1.5)).

(iii) u is continuous on C. It suffices to show that the series
∑
j εjuj

converges uniformly on compact sets in C since each uj is continuous on C.
Fix t ∈ C. If there exists r > 0 so that the disk ∆(t, r) := {z : |z − t| < r}
avoids each of the disks ∆(tj , rj), then clearly the series

∑
j εjuj converges

uniformly to u on ∆(t, r/2). Otherwise we can choose r > 0 sufficiently small
so that the disk ∆(t, r) := {z : |z − t| < r} meets at most one of the disks
∆(tj , rj), say ∆(t, r) ∩∆(tk, rk) 6= ∅. Then for z ∈ ∆(t, r),

u(z) = εk log rk +
∞∑

j=1, j 6=k
εj log |z − tj | if z ∈ ∆(t, r) ∩∆(tk, rk),

while

u(z) =
∞∑

j=1

εj log |z − tj | if z ∈ ∆(t, r) \∆(tk, rk).

Note that |t−tj| > 1 for j > k; thus, for z ∈ ∆(t, r), we also have |z−tj| > 1;
hence if N > k we obtain the estimate
∣∣∣u(z)−

N∑

j=1

εjuj(z)
∣∣∣ =

∞∑

j=N+1

εj log |z − tj | ≤
∞∑

j=N+1

εj log(r + |t− tj |)

≤
∞∑

j=N+1

εj logM |t− tj | = logM
∞∑

j=N+1

εj +
∞∑

j=N+1

εj log |t− tj |

where M = M(r). Thus given ε > 0, we choose N > k sufficiently large so
that

∞∑

j=N+1

εj <
ε

2 logM
and

∞∑

j=N+1

εj log |t− tj | <
ε

2
.

This yields
∣∣∣u(z)−

N∑

j=1

εjuj(z)
∣∣∣ < ε

for all z ∈ ∆(t, r); i.e., the partial sums uN (z) :=
∑N
j=1 εjuj(z) converge

uniformly to u(z) on ∆(t, r).
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Remark. Siciak has pointed out how to construct lots of examples us-
ing facts from complex potential theory: start with a compact, nonpolar,
polynomially convex set K ⊂ C such that 0 ∈ K is the only irregular point
of K. Then the extremal function V ∗K belongs to L+(C) and is continuous
on C \ {0}. The function u(z) := V ∗K(1/z) + log |z| for z 6= 0 extends contin-
uously to z = 0 upon setting u(0) := limz→0, z 6=0 u(z) = − log capK, where
capK denotes the logarithmic capacity of K, and this u provides another
example of a function satisfying the criteria of Proposition 1.2. As a concrete
example of such a set K, take K := {0} ∪⋃∞k=1[e−2·3k , e−3k ].

We still recover a one-sided estimate for general functions u ∈ L+(C).
We claim that we may write u as the sum of the logarithmic potential of its
Laplacian plus a constant:

(1.8) u(t) := � log |t− s| dµ(s) +
[
u(0)− � log |s| dµ(s)

]

where

dµ(t) =
−1
4πi

∆u(t)dt ∧ dt

is the probability measure associated to the Laplacian ∆u(t). Recall that
we defined

n(r) := �
|t|≤r

dµ(t)

for r > 0. Since we are only concerned with asymptotic behavior of u, we
may assume there exists δ > 0 with n(r) = 0 for r ≤ δ. The following facts
follow from arguments similar to those used in Proposition 1.1:

(i)
�
log |s| dµ(s) =

�
log r dn(r) is finite;

(ii) limr→∞ n(r) = 1;
(iii) limr→∞

� r
1 (1− n(t))t−1 dt exists (and is finite).

The representation (1.8) follows. For simplicity we assume

(1.9) u(0)− � log |s| dµ(s) = 0.

Lemma 1.3. Under the hypothesis (1.9) on u,

lim sup
|t|→∞

� log
|t− s|
|t| dµ(s) ≤ 0.

Proof. Fix t ∈ C with |t| > 1 and a positive integer k. We split the
integral into two parts:

if |s| ≤ |t|/k, then
|t− s|
|t| ≤ |t|+ |s||t| ≤ k + 1

k
;

if |s| ≥ |t|/k, then
|t− s|
|t| ≤ |t|+ |s||t| ≤ (k + 1)|s|

|t| .
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Then for the first part we have

�
|s|≤|t|/k

log
|t− s|
|t| dµ(s) ≤ log

(
k + 1
k

)
· n(|t|/k) ≤ log

(
k + 1
k

)
;

while for the second part,

�
|s|≥|t|/k

log
|t− s|
|t| dµ(s)

≤ �
|s|≥|t|/k

log [(k + 1)|s|] dµ(s)− �
|s|≥|t|/k

log |t| dµ(s)

= log(k + 1) · [1− n(|t|/k)] + �
|s|≥|t|/k

log |s| dµ(s)− log |t| · [1− n(|t|/k)]

≤ log(k + 1) · [1− n(|t|/k)] + �
|s|≥|t|/k

log |s| dµ(s).

Using (i) and (ii) we obtain

lim sup
|t|→∞

� log
|t− s|
|t| dµ(s) ≤ log

(
k + 1
k

)

and the result follows.

We now show that by suitably averaging the function u, we will get exis-
tence of the limit above with u replaced by this averaged version. Precisely,
fix r > 0 and define

ur(t) :=
1

2π

2π

�
0

u(t+ reiθ) dθ.

Then ur ∈ L+(C) ∩ C(C) and ur satisfies (1.9) if r < δ with

dµr(t) =
−1
4πi

∆ur(t)dt ∧ dt;

thus

lim sup
|t|→∞

� log
|t− s|
|t| dµr(s) ≤ 0.

Lemma 1.4. lim|t|→∞[ur(t)− log |t|] = 0.

Proof. It suffices to show

lim inf
|t|→∞

[ur(t)− log |t|] ≥ 0.

Fix t ∈ C with |t| > 1. For simplicity, take r = 1. By (ii), (iii) and Fubini’s
theorem, we can write
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u1(t)− log |t| = � log+ |t− s| dµ(s)− � log |t| dµ(s)(1.10)

= �
|t−s|≥1

log
|t− s|
|t| dµ(s)− �

|t−s|≤1

log |t| dµ(s).

The second term is equal to n(t; 1) log |t| where n(t; 1) :=
�
|t−s|≤1 dµ(s) is

the mass of the measure µ in the disk of radius 1 centered at t; clearly

n(t; 1) ≤ n(|t|+ 1)− n(|t| − 1)

so that

n(t; 1) log |t| ≤ C
|t|+1

�
|t|−1

log r dn(r)

for some constant C which is independent of t. By (i), we see that

lim
|t|→∞

n(t; 1) log |t| = 0.

Let

G(t) := �
|t−s|≥1

log
|t− s|
|t| dµ(s).

From (1.10), we must show lim inf |t|→∞G(t) ≥ 0. Clearly we need only
consider the nonpositive part

G−(t) := �
1≤|t−s|≤|t|

log
|t− s|
|t| dµ(s)

and show that lim inf |t|→∞G−(t) ≥ 0.
To this end, fix ε > 0 and split up G−(t) into two parts:

G−(t) := �
1≤|t−s|≤|t|, |s|≤ε|t|

log
|t− s|
|t| dµ(s)(1.11)

+ �
1≤|t−s|≤|t|, |s|≥ε|t|

log
|t− s|
|t| dµ(s).

In the first integral, we have

|t− s|
|t| ≥ |t| − |s||t| ≥ 1− ε

so that log(|t− s|)/|t| ≥ log (1− ε) = O(ε). We split up the second integral
in (1.11) into two parts: one with |s| ≥ |t| and one with |s| ≤ |t|. Defining

U(ε, t) := {s : 1 ≤ |t− s| ≤ |t| and ε|t| ≤ |s| ≤ |t|},
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for s ∈ U(ε, t) we have
|t− s|
|t| ≥ 1

|t| ≥
ε

|s| .

Thus

�
U(ε,t)

log
|t− s|
|t| dµ(s) ≥ �

U(ε,t)

log ε dµ(s)− �
U(ε,t)

log |s| dµ(s)

≥ log ε · [n(|t|)− n(ε|t|)]−
|t|

�
ε|t|

log r dn(r).

We may assume ε|t| > 1 since we are interested (fixing ε > 0) in the behavior
of G−(t) for |t| large. For s satisfying |s| ≥ |t| and 1 ≤ |t− s| ≤ |t|,

|t− s|
|t| ≥ 1

|t| ≥
1
|s| .

Hence

�
1≤|t−s|≤|t|, |s|≥|t|

log
|t− s|
|t| dµ(s) ≥ − �

|s|≥|t|
log |s| dµ(s) = − �

r≥|t|
log r dn(r).

Altogether, we obtain the estimate

lim inf
|t|→∞

G−(t) ≥ lim inf
|t|→∞

{
O(ε)n(ε|t|) + log ε · [n(|t|)− n(ε|t|)]

−
|t|

�
ε|t|

log r dn(r)− �
r≥|t|

log r dn(r)
}
.

Again using (i) and (ii), we have

lim inf
|t|→∞

G−(t) ≥ lim inf
|t|→∞

O(ε)n(ε|t|) = O(ε)

and the result follows.

We will use these results in Section 4 when we discuss the existence of
directional limits for Robin functions %u associated to functions u ∈ L in
CN , N > 1.

2. Computing VK using one-variable methods. This section is es-
sentially contained in [BCL]. It contains the primary motivation for our
results; for omitted proofs we refer the reader to [BCL]. Let K ⊂ CN be
compact. We recall that K is nonpluripolar as a subset of CN if and only
if V ∗K ∈ L (equivalently, V ∗K 6≡ ∞) and that K is regular if and only if
V ∗K = VK (equivalently, VK is continuous on CN ). Moreover, if we let

K̂ := {z ∈ CN : |p(z1, . . . , zN )| ≤ ‖p‖K for all polynomials p}



66 T. Bloom et al.

denote the polynomial hull of K, then K̂ = {z ∈ CN : VK(z) = 0} and
V
K̂

= VK .
We recall from [BCL] how to relate the notions of regularity and (pluri-)

polarity in one and several variables for K and p(K) when p is a nonconstant
polynomial.

Lemma 2.1 [BCL]. Suppose that E ⊂ CN is a bounded Borel set and that
p : CN → C is a nonconstant polynomial. Then (a) if E is nonpluripolar ,
p(E) is nonpolar , and (b) if E is a regular compact set , then p(E) is regular.

If K is compact and regular and pd is a polynomial of degree d, then
1
d
Vpd(K)(pd(z)) ≤ VK(z);

conversely, if ‖pd‖K ≤ 1, then pd(K) ⊂ U, the unit disk in C, so that
Vpd(K)(w)≥VU (w)=log+(|w|) for all w∈C, so Vpd(K)(pd(z))≥ log+(|pd(z)|),
from which it follows that

VK(z) ≤ sup
pd

1
d
Vpd(K)(pd(z)).

Thus

(2.1) VK(z) = sup
pd

1
d
Vpd(K)(pd(z)).

If d = 1, this implies that for any complex affine function `(z), we have

V`(K)(`(z)) ≤ VK(z).

Define

(2.2) V (1)(z) := sup{V`(K)(`(z)) : ` ∈ (CN )∗, ` 6= 0}
where (CN )∗ is the class of all complex-linear functionals on CN . Note that
if we replace ` by a scalar multiple t`, then Vt`(K) ◦ t` = V`(K) ◦ `. Thus
considering upper envelopes over all complex-linear functionals or simply,
e.g., over all linear functionals normalized to have norm 1, yields the same
function V (1); similarly, if ` ∈ (CN )∗ and a ∈ C is constant, then we have
V(`+a)(K)((` + a)(z)) = V`(K)(`(z)). If E ⊂ CN is a bounded Borel set, we
define

V (1)(z) := sup{V ∗`(E)(`(z)) : ` ∈ (CN )∗, ` 6= 0}
and by [K, Corollary 5.2.5] it follows that V (1)∗ ≤ V ∗E .

Returning to the case where K is compact and regular, note that V (1)

is lower semicontinuous as the upper envelope of a family of continuous
functions. Since we will show (Proposition 3.5) that in this setting, V (1)

is actually continuous, it is natural to ask for the most general situation
under which we have the equality V (1) = VK . A necessary condition is given
in [BCL].
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Proposition 2.2 [BCL]. Let N > 1. Suppose K ⊂ CN is compact ,
regular , and polynomially convex (K = K̂). Define V (1)(z) using (2.2). If
V (1)(z) = VK(z) in CN , then K is lineally convex ; i.e., the complement
of K is the union of complex hyperplanes.

For each positive integer n, we can define

V (n)(z) = V
(n)
K (z) := sup

{
1

deg p
Vp(K)(p(z)) : 1 ≤ deg p ≤ n

}
.

Equation (2.1) shows that, for any regular compact set K, the functions
V (n) increase monotonically to VK ; i.e.,

V (n) ≤ V (n+1), n = 1, 2, . . . , and lim
n→∞

V (n)(z) = VK(z), z ∈ CN.

We study the functions V (n) in the rest of the paper.
Note that if K is nonpluripolar, then V ∗ := V (1)∗ (and hence V (n)∗ for

each n = 1, 2, . . .) is in the class L+ where

L+ := {u ∈ L : log+ |z|+ C1 ≤ u(z) ≤ log+ |z|+ C2 for some C1, C2}.
For it is well known that V ∗K ∈ L+ if K is nonpluripolar; letting `j(z) = zj ,
j = 1, . . . , N , we have

V ∗K(z) ≥ VK(z) ≥ V (1)(z) ≥ max
j=1,...,N

V`j(K)(`j(z)).

But maxj=1,...,N V`j(K)(`j(z)) = V`1(K)×...×`N (K)(z) and V ∗`1(K)×...×`N (K)

∈ L+ since each `j(K) is nonpolar by Lemma 2.1.
Finally, we note that if N = 1, then V (1) = VK for all compact sets K.

3. Continuity of V (n). In this section, we will always assume that
K ⊂ CN is compact and regular ; moreover, we may assume K ⊂ B, the
unit ball. Our main task in this section is to show that each of the functions
V (n) = V

(n)
K , n = 1, 2, . . . , is continuous. We first work with V (1) and see

which results generalize. Recall that we may assume our linear functionals `
are normalized to have norm 1; in the case of V (n) for n > 1, since Vtp(K) ◦
tp = Vp(K) ◦ p, we are again free to normalize in an appropriate fashion. For
example, writing p = Hn + Hn−1 + . . . + H0 where Hk is a homogeneous
polynomial of degree k, we may require that ‖Hn‖B = 1. We begin by
stating a lemma which will be useful in the next section in proving continuity
of %V (1) .

Lemma 3.0. Fix a positive integer n. If K ⊂ CN is compact and regular ,
then

inf
p

cap(p(K)) > 0

where the infimum is taken over all nonconstant polynomials p = Hn +
Hn−1 + . . .+H0 of degree at most n with ‖Hn‖B = 1.
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Proof. We know from the previous section that V (n) ∈ L+; in particular,
there exists a constant C so that for |z| > 1, we have V (n)(z) ≤ C + log |z|.
Thus for any p,

1
n
Vp(K)(p(z)) ≤ C + log |z|, |z| > 1.

For motivational purposes, we first give a proof for the case n = 1 (lin-
ear case) using this normalization: for a linear functional `(z) = a1z1 +
. . . + aNzN , we suppose |a1|2 + . . . + |aN |2 = 1. Given t ∈ C, setting
z1 = ta1, . . . , zN = taN yields a point z ∈ CN with `(z) = t and |z| = |t|.
Thus for such z and t with |z| = |t| > 1, we have

V`(K)(t) = V`(K)(`(z)) ≤ C + log |t|+ log
|z|
|t| = C + log |t|.

Letting |t| → ∞, we conclude that %`(K) ≤ C so that cap(`(K)) > e−C .
For the general case, write p(z) := t, t ∈ C. Then if |z| > 1 and t 6= 0,

Vp(K)(t) = Vp(K)(p(z)) ≤ nC + log |t|+ n log
|z|
|t|1/n .

Now since ‖Hn‖B = 1, for any R ≥ 1, ‖Hn‖B(R) = Rn and hence

‖p‖B(R) ≥ Rn, R ≥ 1.

Choose a sequence {Rk} of radii each larger than R0 and increasing to ∞,
and choose corresponding points {zk} with |zk| = Rk such that |p(zk)| =:
|tk| = ‖p‖B(Rk) ≥ Rnk . Then |tk| ↑ ∞ and, since

|zk|
|tk|1/n

≤ Rk
Rk

= 1,

for the points tk we have

Vp(K)(tk) ≤ nC + log |tk|.
Letting k →∞, we have %p(K) ≤ nC so that cap(p(K)) > e−nC . Note we are
using the fact that for planar (nonpolar) compact sets, such as E = p(K),
the limit

lim
t→∞

[VE(t)− log |t|] = %E

exists.

In the next few results, we use the fact that for regular compact sets
E,F in CN (even N = 1),

(3.1) ‖VE − VF ‖CN = ‖VE − VF ‖E∪F = max[‖VE‖F , ‖VF ‖E].

For K ⊂ CN and δ > 0, we define

Kδ := {z ∈ CN : dist(z,K) ≤ δ}.
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Lemma 3.1. Let K ⊂ CN be compact and regular. Given ε > 0, there
exists δ > 0 such that if K ′ is compact and regular and

(3.2) K ⊂ (K ′)δ, K ′ ⊂ Kδ,

then ‖VK − VK′‖CN ≤ ε.
Proof. Since Kδ, (K ′)δ decrease to K,K ′ as δ decreases to 0, we can

choose δ so that

Kδ ⊂ {z ∈ CN : VK(z) < ε} and (K ′)δ ⊂ {z ∈ CN : VK′(z) < ε}.
Then for all z ∈ CN ,

VK(z)− ε ≤ VKδ(z) and VK′(z)− ε ≤ V(K′)δ(z).

By (3.2), V(K′)δ ≤ VK and VKδ ≤ VK′ ; combining with the above equation,
we obtain

VK(z)− ε ≤ VKδ (z) ≤ VK′(z) and VK′(z)− ε ≤ V(K′)δ (z) ≤ VK(z);

i.e., ‖VK − VK′‖CN ≤ ε.
Corollary 3.2. Given ε > 0, there exists δ > 0 such that if T : CN →

CN is an invertible linear transformation with ‖T − I‖, ‖T−1− I‖ < δ, then

‖VK − VT (K)‖CN < ε.

Proof. We know that given ε > 0, there exists δ > 0 such that if K ′ is
compact and regular and

K ⊂ (K ′)δ, K ′ ⊂ Kδ,

then ‖VK − VK′‖CN ≤ ε. If ‖T − I‖, ‖T−1 − I‖ < δ, since K ⊂ B, for
z ∈ T (K) we have

dist(z,K) ≤ |T−1(z)− z| < δ.

This says that T (K) ⊂ Kδ. Similarly, for z ∈ K we have

dist(z, T (K)) ≤ |T (z)− z| < δ.

This says that K ⊂ (T (K))δ and the result follows.

Lemma 3.3. Let T : CN → CN be an invertible linear transformation.
For any C-linear ` : CN → C with ` 6≡ 0,

‖V`(K) − V`(T (K))‖C ≤ ‖VK − VT (K)‖CN .
Proof. From (3.1), we need only estimate |V`(K)(w) − V`(T (K))(w)| at

points w ∈ `(K) ∪ `(T (K)). Fix w ∈ `(T (K)). Then V`(T (K))(w) = 0, and,
writing w = `(T (z)) for some z ∈ K, we have

V`(K)(w) = V`(K)(`(T (z))) = [V`(K) ◦ `](T (z))

≤ V (1)
K (T (z)) ≤ VK(T (z)) ≤ ‖VK‖T (K).
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Similarly, if w ∈ `(K), we obtain the inequality V`(T (K))(w) ≤ ‖VT (K)‖K .
The result follows from (3.1).

We will need the following linear algebra lemma.

Lemma 3.4. Fix z ∈ CN \ {0} and 0 < δ < 1/2. For each z′ ∈
B(z, δ|z|) := {z′ : |z − z′| < δ|z|}, there exists an invertible linear trans-
formation T : CN → CN with T (z) = z′ and ‖T − I‖, ‖T−1 − I‖ < 2δ.

Proof. For simplicity, we take z = (z1, 0, . . . , 0). Define T on the standard
basis vectors ej := (0, . . . , 0, 1, 0, . . . , 0) (1 in the jth slot) by

T (e1) = T (z)/z1 := z′/z1, T (ej) = ej , j = 2, . . . , n.

For a vector w = (w1, . . . , wN ) ∈ CN , we have |w− T (w)| = |1− z′1/z1| |w1|
so that

‖T − I‖ ≤ |1− z′1/z1| =
∣∣∣∣
z1 − z′1
z1

∣∣∣∣ ≤ |z − z′|/|z| < δ|z|/|z| = δ.

Since ‖T−1 − I‖ ≤ δ/(1− δ) < 2δ, the result follows.

Proposition 3.5. For K regular , V (1)
K is continuous on CN .

Proof. Given ε > 0, choose δ > 0 as in Corollary 3.2. Then for T :
CN → CN an invertible linear transformation with ‖T − I‖, ‖T−1 − I‖ < δ,
we obtain

‖VK − VT (K)‖CN < ε.

For such a T , by Lemma 3.3, if ` : CN → C is linear with ` 6≡ 0,

(3.3) ‖V`(K) − V`(T (K))‖C ≤ ‖VK − VT (K)‖CN < ε.

We claim that (3.3) implies that

(3.4) ‖V (1)
K − V (1)

T (K)‖CN < ε.

For, given any z ∈ CN , (3.3) gives

|V`(K)(`(z))− V`(T (K))(`(z))| < ε.

Thus
V`(K)(`(z)) ≤ ε+ V`(T (K))(`(z)) ≤ ε+ V

(1)
T (K)(z).

As this holds for all ` : CN → C with ` 6≡ 0,

V
(1)
K (z) ≤ ε+ V

(1)
T (K)(z).

Reversing the roles of K and T (K) together with the above inequality
yields (3.4).
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However,

V
(1)
T (K)(z) = sup{V`(T (K))(`(z)) : ` 6≡ 0}

= sup{V`(T (K))(` ◦ T (T−1(z))) : ` 6≡ 0} = V
(1)
K (T−1(z)).

Combining with (3.4) gives

(3.5) |V (1)
K (z)− V (1)

K (T−1(z))| < ε

for all z ∈ CN . Fixing z ∈ CN \ {0}, and setting δ′ = δ′(z, ε) := δ|z|/2, by
Lemma 3.4, for each z′ with |z − z′| < δ′ = δ|z|/2, we can find T as above
with T−1(z) = z′. Thus, applying (3.5), we have shown that |z − z′| < δ′

implies that |V (1)
K (z)−V (1)

K (z′)| < ε; i.e., V (1)
K is continuous at z. For z = 0,

we observe that for any a ∈ CN , V (1)
K (z) = V

(1)
K+a(z + a); hence continuity

of V (1)
K at 0 follows from continuity of V (1)

K+a at a.

Note that this argument generalizes to show that V (n)
K is continuous for

n = 1, 2, . . . Lemmas 3.1, 3.4 and Corollary 3.2 are general facts about linear
transformations and (usual) extremal functions. Lemma 3.3 remains valid
upon replacing ` by a nonconstant polynomial pd; hence the argument of
Proposition 3.5 can be repeated virtually line-by-line to obtain continuity
of V (n)

K (note that T, T−1 invertible, pd a nonconstant polynomial implies
pd ◦ T , pd ◦ T−1 are nonconstant polynomials of the same degree as pd). Thus
we may state the following.

Proposition 3.5′. For K regular , V (n)
K is continuous on CN , n =

1, 2, . . .

4. Existence of directional limits and continuity of %V (1) . We
begin with a general fact about extremal functions in one variable. Let ∆
denote the unit disk in C.

Lemma 4.1. Let X ⊂ ∆ be nonpolar. For |η| ≤ 1, |ξ| � 1,

|V ∗X(ξ + η)− V ∗X(ξ)| = |η|/|ξ|+O(|η|/|ξ|2)

where O(|η|/|ξ|2) is independent of X.

Proof. Consider

|V ∗X(ξ + η)− V ∗X(ξ)| =
∣∣∣∣ �
X

log
|ξ + η − t|
|ξ − t| dµX(t)

∣∣∣∣

=
∣∣∣∣ log

|ξ + η|
|ξ| + �

X

log
|ξ + η − t| |ξ|
|ξ − t| |ξ + η| dµX(t)

∣∣∣∣

=:
∣∣∣∣ log

∣∣∣∣1 +
|η|
|ξ|

∣∣∣∣+R(ξ, η)
∣∣∣∣
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where

R(ξ, η) := �
X

log
|ξ + η − t| |ξ|
|ξ − t| |ξ + η| dµX(t).

Now

|ξ + η − t| |ξ|
|ξ − t| |ξ + η| =

|ξ2 + ξ(η − t)|
|ξ2 + ξ(η − t)− tη|

≤ |ξ2 + ξ(η − t)|
|ξ2 + ξ(η − t)| − |tη| =

1
1− |tη|/|ξ2 + ξ(η − t)|

= 1 +O(|η|/|ξ|2)

(note that |η|, |t| ≤ 1). Similarly,

|ξ + η − t| |ξ|
|ξ − t| |ξ + η| ≥

1
1 + |tη|/|ξ2 + ξ(η − t)| = 1−O(|η|/|ξ|2).

Thus, since µX(X) = 1,

|R(ξ, η)| = log(1 +O(|η|/|ξ|2)) = O(|η|/|ξ|2).

Finally,
∣∣∣∣ log

∣∣∣∣1 +
|η|
|ξ|

∣∣∣∣
∣∣∣∣ ≤
|η|
|ξ| +O(|η|2/|ξ|2) ≤ |η||ξ| +O(|η|/|ξ|2)

and the result follows. We only use µX(X) = 1 andX nonpolar soO(|η|/|ξ|2)
is independent of X.

We write V := V
(1)
K below for simplicity.

Corollary 4.2. Let K ⊂ B ⊂ CN be a regular compact set. There
exists M ≥ 1 such that given any ε > 0, there exists R = R(K, ε) > 1 with

|V (z + η)− V (z)| ≤M |η|/|z|+ ε for all |η| ≤ 1, |z| > R.

Proof. Note that for ` normalized so that ‖`‖ = 1, each set `(K) is a
compact, nonpolar subset of ∆. Thus, by the lemma,

|V`(K)(t+ s)− V`(K)(t)| ≤ |s|/|t|+O(|s|/|t|2), |s| ≤ 1, |t| � 1.

Since O(|s|/|t|2) is independent of `, we can choose R′ � 1 so that

|V`(K)(t+ s)− V`(K)(t)| ≤ 2|s|/|t|, |s| ≤ 1, |t| > R′,

for all `.
Since K is nonpluripolar, V ∈ L+ (cf. Section 2); thus, there exist C1, C2

with

(4.1) log+ |z|+ C1 ≤ V (z) ≤ log+ |z|+ C2
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in all of CN . By Lemma 3.0, cap(`(K)) ≥ a for some a > 0 if ‖`‖ = 1. Thus,
there exists c′ = c′(a) > 0 such that

(4.2) log+ |w| ≤ V`(K)(w) ≤ log+ |w|+ c′

for all ‖`‖ = 1 and all w ∈ C.
Next, choose R > R′ so that logR� max[|C1|, |C2|, ε, c′]. Given |z| > R,

choose ` = `z such that

(4.3) V (z) ≥ V`(K)(`(z)) ≥ V (z)− ε.
Combining (4.1), (4.2) and (4.3) for ` = `z at the point z we obtain

log+ |`(z)|+ (c′ − C1) ≥ log+ |z| − ε.
By the choice of R, we have

|`(z)| ≥ |z|
eε+c′−C1

≥ b1|z|

where b1 = b1(a) := 1/e1+c′−C1 (we may assume ε < 1). Note that as long
as ε < 1, the constant b1 depends only on K (from (4.1)) and hence a (from
(4.2)). Thus we are free to take R = R(K, ε) sufficiently large so that, e.g.,
R > 4/b1. This we do.

Now given |η| ≤ 1, |z| > R, choose ` = `z so that (4.3) holds and `η so
that

(4.4) V (z + η) ≥ V`η(K)(`η(z + η)) ≥ V (z + η)− ε
and |`η(z + η)| ≥ b1|z + η| so that

|`η(z)| ≥ b1|z| − b1|η| − 1 ≥ b1|z| − (b1 + 1) ≥ b|z|
where b = b(b1) (since we may assume R > 4/b1 (so |z| > 4/b1) and take
b = b1/2). Using (4.3), (4.4) and the fact that

V`η(K)(`η(z)) ≤ V (z), V`(K)(`(z + η)) ≤ V (z + η),

we obtain

|V (z+η)− V (z)| ≤ max
[ |`(η)|
|`(z)| +O

( |`(η)|
|`(z)|2

)
,
|`η(η)|
|`η(z)| +O

( |`η(η)|
|`η(z)|2

)]
+ε

≤ 1
b

[ |η|
|z| +O

( |η|
|z|2

)]
+ ε

where we have used the facts that |`(z)|, |`η(z)| ≥ b|z| and |`(η)|, |`η(η)| ≤
|η|. Since O(|η|/|z|2) ≤ O(|η|/|z|) and this quantity is independent of `, `η,
the result follows.

Remark. Note that the constant M in the corollary is independent of ε.
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Proposition 4.3. Let K ⊂ B be regular. For each α ∈ ∂B, the direc-
tional limit

lim
|λ|→∞

[V (λα)− log |λ|] = %V (α)

exists.

Before proving the proposition, we recall what information we already
know from the results in Section 1. Given a function u ∈ L+(C) (one vari-
able), we assume that

u(t) := � log |t− s| dµ(s);

i.e., using (1.8) and (1.9), we assume u(0) =
�
log |s| dµ(s), where

dµ(t) =
−1
4πi

∆u(t)dt ∧ dt.
Then we showed in Section 1 that

(1) lim sup|z|→∞[u(z)− log |z|] ≤ 0, and
(2) for r > 0, lim|z|→∞[ur(z)− log |z|] = 0 where

ur(z) :=
1

2π

2π

�
0

u(z + reit) dt.

Thus, to verify for a given u ∈ L+(C) that the limit lim|z|→∞[u(z)− log |z|]
exists (recall that by Proposition 1.2, this is NOT always the case, even if
u is continuous), it suffices to verify that

lim
|z|→∞

[u1(z)− u(z)] = 0.

Moreover, since u is subharmonic, u1(z) ≥ u(z) for all z so that

lim inf
|z|→∞

[u1(z)− u(z)] ≥ 0.

Thus we must show:

(∗) lim sup
|z|→∞

[u1(z)− u(z)] ≤ 0.

Proof of Proposition 4.3. Fix α ∈ ∂B and consider u(λ) := V (λα). Given
ε > 0, from the corollary we have

u1(λ)− u(λ) =
1

2π

2π

�
0

[u(λ+ eit)− u(λ)] dt ≤ M

|λ| + ε

for |λ| > R = R(K, ε). Letting |λ| → ∞, we obtain (∗); i.e.,

lim sup
|λ|→∞

[u1(λ)− u(λ)] ≤ ε

valid for all ε > 0.
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Corollary 4.4. Let K ⊂ B be regular. Then %V is continuous. More-
over , we have uniformity in the limits defining the Robin function: given
ε > 0, there exists R depending only on ε such that for all α ∈ ∂B,

%V (α)− [V (λα)− log |λ|] < ε

for |λ| > R.

Proof. We first prove the continuity. Fix α ∈ ∂B. Given ε > 0, choose
δ > 0 as in Corollary 3.2; then for T : CN → CN an invertible linear
transformation with ‖T − I‖, ‖T−1 − I‖ < δ, we obtain

(3.5) |V (z)− V (T−1(z))| < ε.

In particular, for α′ ∈ ∂B with |α−α′| < δ, choose T unitary with T (α′) = α
and ‖T − I‖, ‖T−1 − I‖ = |α − α′| < δ. Then if we choose R = R(ε, α, α′)
so that for all |λ| > R,

|V (λα)− log |λ| − %V (α)| < ε and |V (λα′)− log |λ| − %V (α′)| < ε,

then
|%V (α)− %V (α′)| ≤ |V (λα)− V (λα′)|+ 2ε.

Since T (λα′) = λα and ‖T − I‖, ‖T−1 − I‖ < δ, from (3.5) we obtain

|V (λα)− V (λα′)| < ε.

Thus, given ε > 0, choosing δ > 0 as in Corollary 3.2 gives

|%V (α)− %V (α′)| < 3ε

provided |α− α′| < δ.
For the uniformity in the limits defining the Robin function, we first note

that %V is uniformly continuous on ∂B; hence, given ε > 0, there exists δ > 0
such that α′, α′′ ∈ ∂B with |α′ − α′′| < δ implies |%V (α′)− %V (α′′)| < ε. By
compactness of ∂B, we can choose finitely many points α1, . . . , αm ∈ ∂B
with

∂B ⊂
m⋃

i=1

{α ∈ ∂B : |α− αi| < δ}.

Then

%V (αi) = lim inf
|λ|→∞

[V (λαi)− log |λ|]

= lim
R→∞

[ inf
|λ|>R

{V (λαi)− log |λ|}], i = 1, . . . ,m,

so that there exist Ri, i = 1, . . . ,m, such that

V (λαi)− log |λ| > %V (αi)− ε, |λ| > Ri.

Set R := max[R1, . . . , Rm].
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Now fix α ∈ ∂B and choose i ∈ {1, . . . ,m} with |α − αi| < δ. Choose a
unitary map T with T (α) = αi and ‖T − I‖, ‖T−1 − I‖ < δ. Again, as in
the proof of Proposition 3.5, we obtain

(3.5) |V (z)− V (T−1(z))| < ε

for all z ∈ CN . In particular, since T (λα) = λαi, we have

|V (λα)− V (λαi)| < ε

for all λ ∈ C. Then

{%V (α)− [V (λα)− log |λ|]} − {%V (αi)− [V (λαi)− log |λ|]}
= %V (α)− %V (αi) + V (λαi)− V (λα) < 2ε,

which gives %V (α)− [V (λα)− log |λ|] < 3ε for |λ| > R.

For completeness, we give a proof of the analogous (known) result for
the Robin function %K := %VK associated to the extremal function VK of a
regular compact set. We begin with a lemma in the spirit of Corollary 4.2.
We assume K ⊂ B.

Lemma 4.5. Let z0 ∈ CN with |z0| > 1. For any η ∈ CN with |η| ≤ 1,

|VK(z0 + η)− VK(z0)| ≤ ω(|η|/|z0|)
where ω = ω(δ) is the modulus of continuity of VK on {z : |z| ≤ 2}.

Proof. First of all, following the idea in the proof of Lemma 3.4, we
can find an invertible linear transformation T with T (z0) = z0 + η and
‖T − I‖ ≤ |η|/|z0|. We may assume that VK(z0 + η) ≥ VK(z0). Define

v(z) := (VK ◦ T )(z)− ω(|η|/|z0|).
Then v ∈ L and if |z| ≤ 1, we have |T (z)| ≤ 2 so that

|(VK ◦ T )(z)− VK(z)| ≤ ω(|η|/|z0|) for |z| ≤ 1.

Since K ⊂ B, this implies v(z) ≤ VK(z) for all z ∈ CN and setting z = z0

gives the result.

Corollary 4.6. Let K ⊂ CN be regular. For each α ∈ ∂B, the direc-
tional limit

lim
|λ|→∞

[VK(λα)− log |λ|] = %K(α)

exists. In addition, %K is continuous on CN .

Proof. The existence of the directional limit follows as in the proof of
Proposition 4.3 with Lemma 4.5 in place of Corollary 4.2. The continuity
of %K is then shown as in the proof of Corollary 4.4 with (3.5) replaced by
‖VK − VT (K)‖CN < ε.
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Remark. Corollary 4.6 also follows from [S1] by using the formula
VK(z) = ṼK(1, z) (see [S1]).

The previous result generalizes to the case of a weighted extremal func-
tion and a locally L-regular set K. Let K ⊂ CN be a compact set and let w
be an admissible weight function on K; i.e., w is usc and {z ∈ K : w(z) > 0}
is not pluripolar. Let Q := − logw and define the weighted extremal function

VK,Q(z) := sup{u(z) : u ∈ L, u ≤ Q on K}.
Next, a set E ⊂ CN is said to be locally L-regular at a point a ∈ E if for
each r > 0, VE∩B(a,r) is continuous at a where

B(a, r) = {z ∈ CN : |z − a| ≤ r}.
The set E is locally L-regular if it is locally L-regular at each point a ∈ E
(cf. [S2]). Clearly if E is a locally L-regular compact set then E is regular.

Corollary 4.6′. Let K be a locally L-regular compact set and let w ≥ 0
be a continuous weight function on K. Then VK,Q and %K,Q = %VK,Q are
continuous. Moreover , for each α ∈ ∂B, the directional limit

lim
|λ|→∞

[VK,Q(λα)− log |λ|] = %K,Q(α)
exists.

Proof. The continuity of VK,Q follows from [S2, Proposition 2.16]. Next,
let

Z = Z(K) := {z ∈ CN : VK,Q(z) ≤M = M(K) := ‖VK,Q‖K}.
Then VK,Q(z) = VZ(z) + M for z ∈ CN \ Z since both functions are
maximal outside Z and agree on ∂Z (cf. [K]). Thus the function u(z) :=
max[0, VK,Q(z)−M ] belongs to L and is equal to 0 at all points of Z; hence
u = VZ on all of CN . In particular, VZ is continuous; this implies the conti-
nuity of %K,Q = %Z +M ([S1, Proposition 2.3(ii)]) and the existence of the
directional limits.

We would like to adapt the arguments used to prove Proposition 4.3 and
Corollary 4.4 to study %V (n) = %

V
(n)
K

for n = 2, 3, . . . To this end, we need a
modified version of Corollary 4.2, which in turn requires a generalization of
Lemma 4.1.

Lemma 4.7. Fix a positive integer n ≥ 2 and m > 1. There exist con-
stants C1, C2 and R depending on n and C3 depending on n and m such that
for each nonpolar set X ⊂ ∆m := {t ∈ C : |t| < m} and all nonconstant
polynomials p : CN → C of degree at most n,

|V ∗X(p(z + η))− V ∗X(p(z))| ≤ C1|η| ‖p‖B/log |z|+ C2|η|2‖p‖2B/(log |z|)2

+ C3|η| ‖p‖B/(|z|n−1(log |z|)2)

for all |η| ≤ 1 and all |z| ≥ R with |p(z)| ≥ log |z| · |z|n−1.
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Proof. Let p : CN → C be a polynomial of degree n. We have the
following Cauchy estimate for p:

|Dαp(z)| ≤ α!‖p‖P (z,1/n)

(1/n)|α|

where P (z, 1/n) is the polydisc ∆(z1, 1/n)× . . .×∆(zN , 1/n).
If z ∈ B := B(0, 1) and w ∈ P (z, 1/n) then w ∈ B(0, 1 +

√
N/n), hence,

by the Bernstein–Walsh inequality (cf. [S2]),

‖p‖P (z,1/n) ≤ ‖p‖B(1 +
√
N/n)n.

Putting these estimates together for an arbitrary z ∈ B, and using the fact
that α! ≤ n|α|, we get

‖Dαp‖B ≤ n2|α|(1 +
√
N/n)n‖p‖B

for all multi-indices α; hence, again by the Bernstein–Walsh inequality,

|Dαp(z)| ≤ n2|α|(1 +
√
N/n)n|z|n−|α|‖p‖B , where z ∈ CN with |z| ≥ 1.

Now fix a polynomial p with ‖p‖B = 1 and write

p(z + η) = p(z) + η∇p(z) +O(|η|2)p2(z)

where p2(z) involves at least second-order partial derivatives of p. From the
above inequality, we have

|p(z+η)−p(z)| ≤ [n2N |η||z|n−1+c2|η|2|z|n−2+. . .+cn|η|n](1+
√
N/n)n‖p‖B

for each such p where c2 = c2(n,N), . . . , cn = cn(n,N) are independent of p.
Thus, for |z| > R = R(n) and |η| ≤ 1,

(4.5) |p(z + η)− p(z)| ≤ An2|η| |z|n−1‖p‖B
where A = A(n,N). Hence, if we write p(z+η) = p(z)+qη(z) := p(z)+q(z),
then (4.5) can be written as

(4.6) |q(z)| ≤ An2|η| |z|n−1‖p‖B .
To estimate

|V ∗X(p(z + η))− V ∗X(p(z))| =
∣∣∣∣ �
X

log
|p(z + η)− t|
|p(z)− t| dµX(t)

∣∣∣∣,

we estimate

log
|p(z + η)− t|
|p(z)− t| = log

|p(z) + q(z)− t|
|p(z)− t|

= log
|p(z) + q(z)|
|p(z)| + log

|p(z) + q(z)− t| |p(z)|
|p(z)− t| |p(z) + q(z)| .



Robin functions and extremal functions 79

First, for |z| ≥ R with |p(z)| ≥ log |z| · |z|n−1 and |η| ≤ 1, using (4.6) we
have

|q(z)|
|p(z)| ≤

An2|η| ‖p‖B
log |z| .

Thus

log
∣∣∣∣1 +

q(z)
p(z)

∣∣∣∣ ≤
An2|η| ‖p‖B

log |z| +O

( |η|2‖p‖2
B

(log |z|)2

)

for such z, η. Then
|p(z) + q(z)− t| |p(z)|
|p(z)− t| |p(z) + q(z)| ≤

|p(z)2 + p(z)q(z)− tp(z)|
|p(z)2 + p(z)q(z)− tp(z)| − |tq(z)|

= 1 +O

( |tq(z)|
|p(z)2 + p(z)q(z)− tp(z)|

)

= 1 +O

( |tq(z)|
|p(z)|2

)
.

Hence

log
( |p(z) + q(z)− t| |p(z)|
|p(z)− t| |p(z) + q(z)|

)
= O

( |tq(z)|
|p(z)|2

)
= O

(
m|η| ‖p‖B

|z|n−1(log |z|)2

)
.

The “big-O” terms in these estimates depend on ‖p‖B ; note, however, that
the points z for which these estimates hold depend on p(z) (since we require
|p(z)| ≥ log |z| · |z|n−1).

Now we modify Corollary 4.2. For m > 1, we define

um(z) = u
(n)
m,K(z)

:= sup
{

1
n
Vp(K)(p(z)) : p = Hn +Hn−1 + . . . , ‖Hn‖B = 1, ‖p‖B ≤ m

}
.

Note that {um}m=2,3,... increases pointwise to V := V (n) on all of CN ; more-
over, if each um is continuous, then by Dini’s theorem, um → V uniformly
on compact subsets of CN .

Corollary 4.8. Fix a positive integer n ≥ 2 and m > 1. Let K ⊂ B be
a regular compact set. There exists C ≥ 1 depending on n,m and K such
that for any ε > 0, there exists R = R(m,n,K, ε) > 1 with

|um(z + η)− um(z)| ≤ C|η|/log |z|+ ε for all |η| ≤ 1, |z| > R.

Proof. We first make a remark on the use of Lemma 4.7 for p of degree
n with ‖p‖B ≤ m. By Lemma 4.7, since C1, C2 and C3 are independent
of p, and ‖p‖B ≤ m, we can choose R′ = R′(n,m) sufficiently large and
C = C(n,m) so that

(+) |Vp(K)(p(z + η))− Vp(K)(p(z))| ≤ C|η|/log |z|
for all such p if |η| ≤ 1, |z| ≥ R′, and |p(z)| ≥ log |z| · |z|n−1.
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Since K is nonpluripolar, V ∈ L+ (cf. Section 2) and hence um ∈ L+;
thus, there exist C ′1, C

′
2 with

(4.7) log+ |z|+ C ′1 ≤ um(z) ≤ log+ |z|+ C ′2

in all of CN ; indeed, we can take C ′1 = 0 since K ⊂ B. Now, to begin
the actual proof of Corollary 4.8, given ε > 0, we choose R > R′ so that
logR� max[|C ′1|, |C ′2|, ε]. Given |z| > R, choose p = pz = Hn +Hn−1 + . . .
with ‖Hn‖B = 1 and ‖p‖B ≤ m such that

(4.8) um(z) ≥ 1
n
Vp(K)(p(z)) ≥ um(z)− ε.

Using Lemma 3.0, for some a > 0 we have cap(p(K)) ≥ a if ‖Hn‖B = 1.
Thus there exists c′ = c′(a) > 0 such that

(4.9) log+ |w| ≤ Vp(K)(w) ≤ log+ |w|+ c′

for all p with ‖Hn‖B = 1 and all w ∈ C; combining (4.7), (4.8) and (4.9) for
p = pz at the point z we obtain

log+ |p(z)|+ (c′ − nC ′1) ≥ n log+ |z| − nε.
By the choice of R, we have

|p(z)| ≥ |z|n
en(ε−C′1)+c′

≥ b1|z|n

where b1 = b1(a) := 1/en(1−C′1)+c′ (we may assume ε < 1). Note c′ > 0 and
recall we can take C ′1 = 0 since K ⊂ B; hence 0 < b1 = e−(n+c′) < 1.

Now given |η| ≤ 1, |z| > R, choose p = pz so that (4.8) holds and
pη = H̃n + H̃n−1 + . . . with ‖H̃n‖B = 1 and ‖pη‖B ≤ m so that

(4.10) um(z + η) ≥ 1
n
Vpη(K)(pη(z + η)) ≥ um(z + η)− ε

and |pη(z + η)| ≥ b1|z + η|n ≥ b|z|n where b = b(b1) (as in the proof of
Corollary 4.2). Since b1 (and hence b) depends only on K (from (4.7)) and
a (from (4.9)), we can assume from the beginning that b1R ≥ logR so that
(+) is valid. Using (4.8), (4.10) and the fact that

1
n
Vpη(K)(pη(z)) ≤ um(z),

1
n
Vp(K)(p(z + η)) ≤ um(z + η),

we obtain

|um(z + η)− um(z)| ≤ 1
n

max[|Vpη(K)(pη(z + η))− Vpη(K)(pη(z))|,

|Vp(K)(p(z + η))− Vp(K)(p(z))|] + ε

≤ 1
n
C|η|/log |z|+ ε.
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Finally, the analogue of Proposition 4.3 follows by applying Corollary 4.8.

Corollary 4.9. For K ⊂ B a regular compact set , for n = 2, 3, . . . ,
and m > 1, define

um(z) := sup
{

1
n
Vp(K)(p(z)) : p = Hn+Hn−1+. . . , ‖Hn‖B = 1, ‖p‖B≤m

}
.

Then for each α ∈ ∂B, the directional limit

lim
|λ|→∞

[um(λα)− log |λ|] = %um(α)

exists.

Remark. It seems likely that Corollary 4.9 is valid for V (n), n =
2, 3, . . . , but we have been unable to verify this.

5. Final remarks. We give an explicit example of a compact set K in
CN , N > 1, such that %K is not continuous. Note from Corollary 4.6 that
K cannot be regular. Indeed, we construct such an example with K circled,
i.e., z ∈ K if and only if eitz ∈ K. Let

H := {u ∈ L : u(λz) = u(z) + log |λ| for λ ∈ C, z ∈ CN}
be the log-homogeneous psh functions. For K circled,

VK(z) = max[0, sup{u(z) : u ∈ H, u ≤ 0 on K}]

= max
[
0, sup

{
1

deg p
log |p(z)| : p homogeneous polynomial, ‖p‖K ≤ 1

}]
;

moreover, we have the following.

Lemma 5.1. Let K ⊂ CN be compact , circled , and nonpluripolar. Then
V ∗K(z) = max[0, %K(z)].

Proof. This follows from the above formula for VK and the definition
of %K . If V ∗K(z) > 0, then

%K(z) := lim sup
|λ|→∞

[V ∗K(λz)− log |λ|]

= lim sup
|λ|→∞

[V ∗K(z) + log |λ| − log |λ|] = V ∗K(z).

Thus %K ∈ H and %K(z) = V ∗K(z) if V ∗K(z) > 0; hence {z ∈ CN : %K(z) ≤ 0}
differs from K by at most a pluripolar set and the result follows.

The following example is due to Cegrell [C]; we elaborate on the de-
tails. Let {aj} be a countable dense sequence of points in the unit circle
and let {αj} be a sequence of positive numbers with

∑
j αj < ∞. We

can reorder the {aj} and choose the {αj} accordingly so that, in addi-
tion,

∑
j αj log |1− aj | > −∞. For example, for n = 1, 2, . . . and j =
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2n+1, . . . , 2n+1, we can take αj = 2−2n; and we take aj , j = 2n+1, . . . , 2n+1,
to be the 2n-roots of unity (omitting 1 and repeating any other). Define

g(z1, z2) := exp
{∑

j

αj log |z1 − ajz2|
}
.

Then g is discontinuous at all points (z1, z2) with |z1| = |z2| and
∑

j

αj log |z1 − ajz2| > −∞.

Moreover, log g ∈ H(C2). Next, let

h(z1, z2) := g(z1, z2) + max(|z1|, |z2|).
Then
N(h) := {(z1, z2) ∈ C2 : h is discontinuous at (z1, z2)}

=
{

(z1, z2) ∈ C2 : |z1| = |z2| and
∑

j

αj log |z1 − ajz2| > −∞
}
.

Note that N(h) 6= ∅ by the assumption that
∑
j αj log |1− aj | > −∞; in-

deed,
{(reit, reit) : 0 < r < 1, 0 ≤ t ≤ 2π} ⊂ N(h).

Now, in C3, we define

W (z1, z2, z3) := exp
{∑

j

αj max[log |z1 − ajz2|, log |z3|]
}

+ max(|z1|, |z2|, |z3|).
Then logW ∈ H(C3) and from the discussion on N(h), we see that

N(W ) := {(z1, z2, z3) ∈ C3 : W is discontinuous at (z1, z2, z3)} ⊂ {z3 = 0}
and

{(z1, z2, z3) ∈ C3 : (z1, z2) ∈ N(h), z3 = 0} ⊂ N(W )

so that N(W ) is nonempty and pluripolar. Let

D := {(z1, z2, z3) ∈ C3 : W (z1, z2, z3) < 1}.
Then by a result of Siciak [S3], K := D is a compact, circled, and non-
pluripolar subset of C3 with

V ∗K = max[0, logW ] = max[0, %K ].

More generally, the above argument is valid for any W ∈ H(CN ) with
W (z) ≥ c|z|, c > 0 and N(W ) 6= ∅ to yield a compact set K = D such that
%K is not continuous; here, D = {z ∈ CN : W (z) < 1}.

We end the paper with the following relationship on the asymptotic
behavior of %V (n) for K ⊂ B a regular compact set.
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Theorem 5.2. For K ⊂ B a regular compact set ,

lim
n→∞

%V (n)(z) = %K(z)

for q.e. z ∈ CN .

Proof. Note for n = 1, 2, . . . that

V (n)(z) = sup
{

1
deg p

Vp(K)(p(z)) : 1 ≤ deg p ≤ n
}

≥ sup
{

1
deg p

log+ |p(z)|
‖p‖K

: 1 ≤ deg p ≤ n
}

(since p(K) ⊂ {t ∈ C : |t| ≤ ‖p‖K})

≥ sup
{

1
|α| log

|pα(z)|
‖pα‖K

: 1 ≤ |α| = deg pα ≤ n
}

where {pα} is any sequence of polynomials with 1 ≤ deg pα ≤ n. Thus we
have

(5.1) %V (n)(z) ≥ sup
{

1
|α| log

|p̂α(z)|
‖pα‖K

: 1 ≤ |α| = deg pα ≤ n
}

where p̂α denotes the top degree homogeneous part of pα. On the other
hand, if we take a family of Chebyshev-type polynomials {Qα} as in, e.g.,
[Bl, Theorem 2.3], then

[
lim sup
|α|→∞

1
|α| log

|Q̂α(z)|
‖Qα‖K

]∗
= %K(z).

Thus

lim
n→∞

[
sup

1
|α| log

|p̂α(z)|
‖pα‖K

: 1 ≤ |α| = deg pα ≤ n
]

= %K(z) q.e.,

which, together with (5.1), shows that limn→∞ %V (n)(z) = %K(z) q.e.

Remark. It is not always true that if un, u ∈ L and un increases
pointwise to u, then %un increases q.e. to %u (as a simple example, take
un(z) = (1− 1/n) log |z|). A necessary and sufficient condition that this oc-
curs, even with un, u ∈ L+, is given in [BT, Theorem 6.6]; a condition that
is admittedly very difficult to verify in practice.

6. Open questions. 1. Compute µ
(n)
K := (ddcV (n)

K )N for K regular.
Does µ(n)

K have compact support?
2. Let

K = {(x, y) ∈ R2 : x, y ≥ 0, x+ y ≤ 1}.
In [BCL], it was shown that V (1)

K 6= VK . Compute V (1)
K explicitly.
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3. Compute µ(n)
K := (ddcV (n)

K )2 for the set

K = {(x, y) ∈ R2 : x, y ≥ 0, x+ y ≤ 1}.
Does µ(n)

K have compact support?
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