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Cyclic coverings of Fano threefolds

by Sławomir Cynk (Kraków)

Abstract. We describe a series of Calabi–Yau manifolds which are cyclic coverings of
a Fano 3-fold branched along a smooth divisor. For all the examples we compute the Euler
characteristic and the Hodge numbers. All examples have small Picard number % = h1,1.

1. Introduction. In [4, 2] we constructed a class of Calabi–Yau man-
ifolds that can be realized as a double covering of P3 branched along an
octic surface. If the octic was singular we constructed its embedded reso-
lution getting a smooth 3-fold which contains a smooth (reduced) divisor,
equivalent to the −2 multiple of the canonical divisor.

We can generalize this construction studying cycle coverings of Fano
3-folds. A smooth manifold Y is called Fano if the divisor −KY is ample;
the index of Y is the greatest integer k such that 1

kKY is a Cartier divisor.
The main goal of the paper is to prove the following

Theorem 1. Let Y be a Fano 3-fold of index k and let d be an integer
such that d − 1 divides k. Assume that D is a smooth (reduced) divisor in
the linear system ∣∣∣∣−

d

d− 1
KY

∣∣∣∣.

Then there exists a cyclic covering π : X → Y of order d branched along D
such that :

(1) X is a smooth Calabi–Yau manifold ,

(2) e(X) = de(Y ) +
d2

(d− 1)2 K
3
Y − 24d,

(3) h1,1(X) = h1,1(Y ).
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Using this theorem we can construct a series of examples of Calabi–
Yau manifolds. The construction is based on the classification of Fano 3-
folds given by Iskovskikh ([10, 11]) and Mori and Mukai ([12]). The main
difficulty in constructing an explicit example is to find a smooth divisor in
the appropriate linear system on the Fano 3-fold from the list. On the other
hand the existence of such a divisor follows from [13] so it is easy to make a
list of numerical data of 89 Calabi–Yau manifolds. Since the examples with
Picard number 1 are well known, we only include examples with Picard
number ≥ 2, i.e. resulting from the list of Mori and Mukai.

For the construction it is not important that the anticanonical divisor is
ample; it is enough to assume that the linear system

∣∣− d
d−1KY

∣∣ contains a
smooth divisor. Moreover we point out that the divisor D need not a priori
be irreducible.

In the case of a double octic we produce new examples by allowing certain
types of singularities; we can do the same also in the case of cyclic coverings
of Fano 3-folds. Again we can define the notion of an admissible blow-up,
i.e. a blow-up with smooth center which does not affect the canonical divisor
and the first Betti number of the double covering. There are exactly seven
types of admissible blow-ups, four in the case of double covering (blow-up
of a fourfold and fivefold point and of a double and triple curve). The only
new types are blow-ups of a triple, fourfold and fivefold point in a triple
covering. A blow-up of a fourfold or fivefold point in a triple covering leads
to a singularity that cannot be resolved by admissible blow-ups. For every
type of admissible blow-ups we compute the effect on the Euler characteristic
of the smooth model of the double covering.

2. Cyclic coverings. In this section we collect some information about
cyclic coverings of smooth projective manifolds; the details and proofs can
be found in [7].

Let Y be a non-singular complex algebraic variety and let D =
∑

iDi

be a reduced divisor on Y which is divisible by d as an element of the
Picard group, i.e. there exists a line bundle L ∈ PicY such that OY (D) ∼=
L⊗d. Fixing a section s ∈ Γ (L⊗d) whose zero-divisor is D we can define on
OY ⊕ L−1 ⊕ . . . ⊕ L−(d−1) a structure of OY -module. Let X π→ Y be the
spectrum of OY ⊕L−1 ⊕ . . .⊕L−(d−1). Then X π→ Y is a cyclic covering of
Y of degree d branched along D.

Proposition 2.1 ([7, Lemma 3.16]).

(1) π∗OX ∼= OY ⊕ L−1 ⊕ . . .⊕ L−(d−1),
(2) π∗Ω1

X
∼= Ω1

Y ⊕Ω1
Y (logD)⊗ L−1 ⊕ . . .⊕Ω1

Y (logD)⊗ L−(d−1),
(3) KX

∼= π∗(KY ⊗ Ld−1).
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3. Proof of Theorem 1. Since the map π is finite, for i > 0,

H iOX ∼= H i(π∗OX) ∼= H iOY ⊕H iL−1 ⊕ . . .⊕H iL−(d−1) = 0

by the Kodaira vanishing. In particular, we have H1OX = 0. Moreover,
by Proposition 2.1(3) and the choice of the branch divisor, KX

∼= OX .
Consequently, X is a Calabi–Yau manifold.

To prove the formula for the Euler characteristic of X, observe that

#π−1(y) =
{
d for x 6∈ D,
1 for x ∈ D.

Hence,

e(X) = de(Y )− (d− 1)e(D).

Since −KY is ample, H i(OY )=0 for i > 0, and consequently, χ(OY )=1.
By the Riemann–Roch theorem,

χ(OY ) =
1
24
c1(Y )c2(Y ),

and so

c1(Y )c2(Y ) = 24.

On the other hand, by adjunction,

c1(D) = − 1
d− 1

c1(Y ),

c2(D) =
d

d− 1
c1(Y )c2(Y )− d2

(d− 1)3 K
3
Y

and finally

e(X) = de(Y )− (d− 1)
(

d

d− 1
c1(Y )c2(Y )− d2

(d− 1)3 K
3
Y

)

= de(Y )− d2

(d− 1)2 K
3
Y − 24d.

Assertion (3) follows from Proposition 2.1(2) and the Kawamata–Vieh-
weg vanishing theorem ([7, Thm. 6.2]).

4. Cyclic coverings of Fano manifolds with h1,1 ≥ 2. In [12] the
numerical data of all Fano 3-folds with h1,1 ≥ 2 were collected; with three
exceptions, all these examples have index 1. The three exceptions have in-
dex 2, each leading to two examples of Calabi–Yau manifolds, a double and
triple covering. Using those data we have been able to compute the Euler and
Hodge numbers of the resulting Calabi–Yau manifolds and compile Table 1
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(in the table we denote a triple covering by n1, where n denotes the double
covering of the same Fano 3-fold).

Table 1. Coverings of Fano 3-folds with h1,1,(Y ) ≥ 2

No. K3
Y e(Y ) d h1,1(X) e(X) h1,2(X)

1 −4 −38 2 2 −140 72
2 −6 −34 2 2 −140 72
3 −8 −16 2 2 −112 58
4 −10 −14 2 2 −116 60
5 −12 −6 2 2 −108 56
6 −12 −12 2 2 −120 62
7 −14 −4 2 2 −112 58
8 −14 −12 2 2 −128 66
9 −16 −4 2 2 −120 62

10 −16 0 2 2 −112 58
11 −18 −4 2 2 −128 66
12 −20 0 2 2 −128 66
13 −20 2 2 2 −124 64
14 −20 4 2 2 −120 62
15 −22 −2 2 2 −140 72
16 −22 2 2 2 −132 68
17 −24 4 2 2 −136 70
18 −24 2 2 2 −140 72
19 −26 2 2 2 −148 76
20 −26 6 2 2 −140 72
21 −28 4 2 2 −152 78
22 −28 6 2 2 −148 76
23 −30 4 2 2 −160 82
24 −30 6 2 2 −156 80
25 −32 4 2 2 −168 86
26 −34 6 2 2 −172 88
27 −38 6 2 2 −188 96
28 −40 4 2 2 −200 102
29 −40 6 2 2 −196 100
30 −46 6 2 2 −220 112
31 −46 6 2 2 −220 112
32 −48 6 2 2 −228 116
321 −48 6 3 2 −162 83
33 −54 6 2 2 −252 128
34 −54 6 2 2 −252 128
35 −56 6 2 2 −260 132
351 −56 6 3 2 −180 92
36 −62 6 2 2 −284 144
37 −12 −8 2 3 −112 59
38 −14 2 2 3 −100 53
39 −18 2 2 3 −116 61
40 −18 4 2 3 −112 59
41 −20 8 2 3 −112 59
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Table 1 (cont.)

No. K3
Y e(Y ) d h1,1(X) e(X) h1,2(X)

42 −22 6 2 3 −124 65
43 −24 6 2 3 −132 69
44 −24 8 2 3 −128 67
45 −26 2 2 3 −148 77
46 −26 8 2 3 −136 71
47 −28 6 2 3 −148 77
48 −28 8 2 3 −144 75
49 −30 8 2 3 −152 79
50 −32 6 2 3 −164 85
51 −32 8 2 3 −160 83
52 −34 8 2 3 −168 87
53 −36 8 2 3 −176 91
54 −36 8 2 3 −176 91
55 −38 8 2 3 −184 95
56 −38 8 2 3 −184 95
57 −38 8 2 3 −184 95
58 −40 8 2 3 −192 99
59 −42 8 2 3 −200 103
60 −42 8 2 3 −200 103
61 −44 8 2 3 −208 107
62 −46 8 2 3 −216 111
63 −48 8 2 3 −224 115
631 −48 8 3 3 −156 81
64 −50 8 2 3 −232 119
65 −50 8 2 3 −232 119
66 −52 8 2 3 −240 123
67 −24 8 2 4 −128 68
68 −28 8 2 4 −144 76
69 −30 10 2 4 −148 78
70 −32 10 2 4 −156 82
71 −32 10 2 4 −156 82
72 −34 10 2 4 −164 86
73 −36 10 2 4 −172 90
74 −38 10 2 4 −180 94
75 −40 10 2 4 −188 98
76 −42 10 2 4 −196 102
77 −44 10 2 4 −204 106
78 −46 10 2 4 −212 110
79 −28 12 2 5 −136 73
80 −36 12 2 5 −168 89
81 −36 12 2 5 −168 89
82 −36 14 2 6 −164 88
83 −24 16 2 7 −112 63
84 −18 18 2 8 −84 50
85 −12 20 2 9 −56 37
86 −6 22 2 10 −28 24
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5. Singularities. In [4, 2] we constructed a family of Calabi–Yau man-
ifolds by considering double coverings of P3 branched along a singular octic.
The class of singularities allowed was described by means of admissible blow-
ups, i.e. blow-ups that do not affect the first Betti number and the canonical
class of the double covering. For a d-sheeted cyclic covering of Y branched
along D we can resolve the singularities by taking a blow-up σ : Ỹ → Y
with a smooth center C (or a sequence of such blow-ups) and considering the
d-sheeted covering of Ỹ branched along the divisor D∗ := σ∗D− d[m/d] ·E,
where E is the exceptional divisor of σ and m is the multiplicity of D
along C.

Since σ∗D = D̃ + mE (where D̃ is the strict transform of D), we have
D∗ = D̃+qE with q ∈ {0, . . . , d−1}. For q > 1 we consider a cyclic covering
branched along a non-reduced divisor, and the construction in this case is
more complicated (but we shall not describe it any further as we shall in
fact never use it in the present paper—for details see [7]).

Since KỸ = σ∗KY + (r− 1)E, where r is the codimension of C in Y , we
can formulate the following

Definition 5.1. A blow-up σ is called admissible if

(d− 1)
[
m

d

]
= r − 1.

From the above definition we easily get the following

Lemma 5.2. We have the following admissible blow-ups:

(1) double coverings:
(a) blow-up of a fourfold point,
(b) blow-up of a fivefold point,
(c) blow-up of a double curve,
(d) blow-up of a triple curve;

(2) triple coverings:
(a) blow-up of a triple point,
(b) blow-up of a fourfold point,
(c) blow-up of a fivefold point.

Remark 5.3. The blow-ups of type (1a), . . . , (1d) were described in [4, 2].
On the other hand, blow-ups of type (2b) and (2c) lead to a multiple curve
in a triple covering which cannot be resolved by admissible blow-ups.

Proposition 5.4. If σ : Y0 → Y is a sequence of admissible blow-ups
(σ = σ1 ◦ . . . ◦ σt) and D0 is a smooth (reduced) divisor divisible by d such
that σ(D0) = D, then the d-sheeted cyclic covering X0 of Y0 branched along



Cyclic coverings of Fano threefolds 123

D0 is a Calabi–Yau manifold. Moreover

e(X0) = de(Y ) +
d2

(d− 1)2 K
3
Y − 24d+

t∑

i=1

eff(σi),

where eff(σi) is the effect of σi, defined by

eff(σi) =





36 if σi is of type (1a) or (1b),
14 deg(L|C)− 6 deg(

∧2N ) if σi is of type (1c) or (1d),
24 if σi is of type (2).

Remark 5.5. If σ is a sequence of blow-ups that are not admissible it
does not follow in general that X has no smooth model which is a Calabi–
Yau manifold. If σi is a blow-up of a point and (d − 1)[m/d] < 2 < r − 1,
then there can exist a small resolution (e.g., A1 point in the cases d = 2
or 4, A3 point in the case d = 2).

On the other hand, if σi is a blow-up with (d− 1)[m/d] > r− 1 then the
exceptional divisor cannot be blown down because it is nef along the fibers.
Consequently, also in this situation no smooth model of X is a Calabi–Yau
manifold.

Example 1. If D ⊂ P3 is a sextic with ordinary triple points, then the
triple covering of P3 branched along D has a smooth model X̃ which is a
Calabi–Yau manifold with Euler number

e(X̃) = −204 + 24µ,

where µ is the number of triple points. By [6] a sextic surface can have up
to 10 triple points; all the possible sextics with ordinary triple points where
classified in that paper.

Example 2. Let D = D1 + D2 be a sum of two smooth anticanonical
divisors in a Fano 3-fold Y intersecting transversally along a smooth curve
C. Denote by Ỹ the blow-up of Y along C. Let D̃i be a strict transform of Di.
Then D̃i is isomorphic to Di. The double covering X̃ of Ỹ branched along
D̃ = D̃1+D̃2 is a Calabi–Yau manifold. The Euler characteristic e(Ỹ ) equals
2e(Ỹ )− e(D̃). Now, e(Ỹ ) = e(Y ) + e(C) and e(D̃) = 2e(D1). Computations
analogous to the proof of Theorem 1 give e(C) = K3

Y , e(D1) = 24 and finally

e(X̃) = 2e(Y ) + 2K3
Y − 48.

Moreover, by [3],
h1,1(X̃) = h1,1(Y ) + 1.
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