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Coefficients in some classes defined by
subordination to multivalent majorants

by Renata Jurasińska and Jan Stankiewicz (Rzeszów)

Dedicated to Professor Józef Siciak on the occasion of his 70th birthday

Abstract. We present some results connected with estimation of the coefficients for
some special class of functions holomorphic in the unit disc and defined by subordination
to some multivalent functions.

1. Introduction. Let U = {z ∈ C : |z| < 1} denote the unit disc and
H = H(U) the family of functions holomorphic in U . Let Ω denote the class
of Schwarz functions ω ∈ H such that |ω(z)| ≤ |z| for z ∈ U.

We say that f is subordinate to g in U and write f ≺ g or f(z) ≺ g(z)
if there exists ω ∈ Ω such that

(1.1) f(z) = g(ω(z)) for z ∈ U.
In the geometric theory of univalent and multivalent functions an important
role is played by the class P of Carathéodory functions with positive real
part,

(1.2) P = {p ∈ H : p(0) = 1, Re p(z) > 0 for z ∈ U}.
This class may also be defined by subordination:

(1.3) P =
{
p ∈ H : p(z) ≺ 1 + z

1− z

}
,

where the majorant function

(1.4) F1(z) =
1 + z

1− z
is univalent and maps U onto the right half-plane {w ∈ C : Rew > 0}. For
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univalent majorants subordination (1.1) is equivalent to

(1.5) f(0) = g(0) whenever f(U) ⊂ g(U).

Thus by (1.5) and the univalence of F1(z) it is obvious that (1.2) and (1.3)
define the same class.

R. Jurasińska and J. Stankiewicz [3] and R. Jurasińska and A. Szpila
[4] introduced and investigated the classes P (n), n ∈ N, defined by formula
(1.3) with the function F1 replaced by the n-valent function

(1.6) Fn(z) =
1 + zn

1− zn , n = 1, 2, . . . ,

that is,

(1.7) P (n) =
{
p ∈ H : p(z) ≺ 1 + zn

1− zn
}
.

For n ≥ 2 the class P (n) is a proper subclass of P.
The classes P (n) do not coincide with the subclasses

Pn = {p(z) = 1 + pnz
n + p2nz

2n + . . . ∈ P}
of n-symmetric functions with positive real part. We can easily check (see
e.g. [3], [4]) that

Pn 6⊂ P (n) and P (n) 6⊂ Pn.
In [3], [4] some estimates of |p(z)|, Re p(z), arg p(z) and of some coefficients
pn, pn+1 were established. Among other results the following theorem was
proved:

Theorem A ([4]). Let n ∈ N, n ≥ 2, be fixed. If p(z) = 1+p1z+p2z
2 +

. . . ∈ P (n) then

pk = 0 for k = 1, . . . , n− 1,(1.8)

|pk| ≤ 2 for k = n, n+ 2, . . . ,(1.9)

|pn+1| ≤
4n
n+ 1

(
n− 1
n+ 1

)(n−1)/2

< 2.(1.10)

The functions

p1(z) =
1 +

(
z
a+ z

1 + az

)n

1−
(
z
a+ z

1 + az

)n , |a| =
√
n− 1
n+ 1

,

are extremal for (1.10), and the functions

p2(z) =
1 + ηzνn

1− ηzνn , |η| = 1, ν = 1, 2, . . . ,



Coefficients in some classes defined by subordination 165

are extremal for (1.8) and (1.9), k = ln, l = 1, 2, . . . For other k sharp
estimates are not known.

In this paper we give sharp estimates for the next coefficient pn+2, n ≥ 3.

2. Main result

Theorem 1. Let n ∈ N, n ≥ 3, be fixed. If p(z) = 1 + p1z+ p2z
2 + . . . ∈

P (n), then

(2.1) |pn+2| ≤
4n
n+ 1

(
n− 1
n+ 2

)(n−1)/2

< 2.

The estimate (2.1) is sharp. The extremal functions have the following form:

(2.2) p3(z) =
1 +

(
z
a+ z2

1 + az2

)n

1−
(
z
a+ z2

1 + az2

)n , |a| =
√
n− 1
n+ 1

.

Proof. By definition p ∈ P (n) if and only if there exists ω(z) = α1z +
α2z

2 + . . . ∈ Ω such that p(z) = (1 + ωn(z))/(1− ωn(z)). Thus we have

(2.3) 1 + p1z + p2z
2 + . . . =

1 + (α1z + α2z
2 + . . .)n

1− (α1z + α2z2 + . . .)n
.

Multiplying and equating the coefficients in (2.3) we obtain

pk = 0 for k = 1, . . . , n− 1,

pn = 2αn1 ,

pn+1 = 2nαn−1
1 α2,

pn+2 = 2nαn−2
1

[
α1α3 +

n− 1
2

α2
2

]
.

For ω ∈ Ω the following estimates are known (see e.g. [1], [2], [5]–[7]):

|α1| ≤ 1,

|α2| ≤ 1− |α1|2,
|α3(1− |α1|2) + α1α

2
2| ≤ (1− |α1|2)− |α2|2.

Using the identity

|pn+2| = 2n|α1|n−2

∣∣∣∣α1α3 +
n− 1

2
α2

2

∣∣∣∣
= 2n|α1|n−2

×
∣∣∣∣

α1

1−|α1|2
[α3(1−|α1|2) + α1α

2
2]+

α2
2[(n−1)(1−|α1|2)− 2|α1|2]

2(1−|α1|2)

∣∣∣∣
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and the above estimates we obtain

|pn+2| ≤ 2n|α1|n−2
[
|α1|(1−|α1|2)+

|α2|2(|(n− 1)− (n+ 1)|α1|2| − 2|α1|)
2(1− |α1|2)

]
.

Hence we need to find the maximum of the bracketed expression with respect
to |α2| and next with respect to |α1| in the interval [0, 1].

To find the first maximum we have to investigate the following cases:

n− 1− (n+ 1)|α1|2 − 2|α1| ≥ 0,(2.4)

n− 1− (n+ 1)|α1|2 ≥ 0, n− 1− (n+ 1)|α1|2 − 2|α1| < 0,(2.5)

n− 1− (n+ 1)|α1|2 < 0.(2.6)

The cases (2.5) and (2.6) are equivalent to

n− 1
n+ 1

≤ |α1| ≤
√
n− 1
n+ 1

,

√
n− 1
n+ 1

< |α1| ≤ 1,

respectively. In both cases we have

|pn+2| ≤ 2n|α1|n−1(1− |α1|2) ≤ 4n
n+ 1

(
n− 1
n+ 1

)(n−1)/2

= g(n)

for all |α1| ∈ [0, 1].
In the case (2.4) we have 0 ≤ |α1| ≤ n−1

n+1 and so

|pn+2| ≤ 2n|α1|n−2

×
{
|α1|(1− |α1|2) +

(1− |α1|2)2[n− 1− (n+ 1)|α1|2 − 2|α1|]
2(1− |α1|2)

}

or equivalently

|pn+2| ≤ n|α1|n−2[(n+ 1)|α1|4 − 2n|α1|2 + n− 1].

In order to find the global maximum of the right hand side of the last
expression in the interval 0 ≤ |α1| ≤ n−1

n+1 we consider the function

ϕ(t) = ntn−2[(n+ 1)t4 − 2nt2 + n− 1](2.7)

= n[(n+ 1)tn+2 − 2ntn + (n− 1)tn−2]

for t ∈
[
0, n−1

n+1

]
. Its derivative is

ϕ′(t) = ntn−3[(n+ 1)(n+ 2)t4 − 2n2t2 + (n− 2)(n− 1)].

Thus ϕ′(t) = 0 if and only if

t = 0 or (n+ 1)(n+ 2)t4 − 2n2t2 + (n− 2)(n− 1) = 0.

Hence the roots of ϕ′(t) are t0 = 0, t1, −t1, t2, −t2 where

t1 =

√
n2 −

√
5n2 − 4

(n+ 1)(n+ 2)
, t2 =

√
n2 +

√
5n2 − 4

(n+ 1)(n+ 2)
.
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We can check that t1 ∈ [0, n−1
n+1 ] and t2 6∈ [0, n−1

n+1 ]. The global maximum of
ϕ(t), t ∈

[
0, n−1

n+1

]
, is attained at t = t1:

ϕ(t) ≤ ϕ(t1) = h(n)

= n

(
n2 −

√
5n2 − 4

(n+ 1)(n+ 2)

)(n−2)/2(
1− n2 −

√
5n2 − 4

(n+ 1)(n+ 2)

)

×
(
n− 1− n2 −

√
5n2 − 4

n+ 2

)

for t ∈
[
0, n−1

n+1

]
. Finally we have

(2.8) |pn+2| ≤ max{g(n), h(n)}.

Some computer calculations and graphs suggest that g(n) ≥ h(n) for n ≥ 3
or equivalently that

(2.9) max{g(n), h(n)} = g(n).

To prove (2.9) we first find an estimate for h(n). Observe that the function
ϕ(t) given by (2.7) may be written as a product ϕ(t) = ϕ1(t) · ϕ2(t), where

ϕ1(t) = ntn−2,

ϕ2(t) = (n+ 1)t4 − 2nt2 + n− 1 = (n+ 1)(1− t2)
(
n− 1
n+ 1

− t2
)
.

The functions ϕ1, ϕ2 are nonnegative, and ϕ1 is increasing and ϕ2 decreasing
in the interval 0 ≤ t ≤ n−1

n+1 .

The product ϕ1(t) · ϕ2(t) = ϕ(t) attains its maximum at the point

t1 =

√
n2 −

√
5n2 − 4

(n+ 1)(n+ 2)
.

If we consider two values t+1 and t−1 close to t1 and such that

0 < t−1 < t1 < t+2 <
n− 1
n+ 1

,

then

ϕ(t1) = ϕ1(t1) · ϕ2(t1) ≤ ϕ1(t+1 ) · ϕ2(t−1 ).

Now we put

t−1 =

√
n2 −

√
5n

(n+ 1)(n+ 2)
, t+1 =

√
n2 − 2n

(n+ 1)(n+ 2)
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to obtain

ϕ(t1) ≤ ϕ1(t+1 ) · ϕ2(t−1 )

= n

[
n(n− 2)

(n+ 1)(n+ 2)

](n−2)/2

(n+ 1)

×
[

n2 −
√

5n
(n+ 1)(n+ 2)

− 1
][

n2 − 5n
(n+ 1)(n+ 2)

− n− 1
n+ 2

]

=
4n
n+ 1

[
n(n− 2)

(n+ 1)(n+ 2)

](n−2)/2 (2 +
√

5)n2 − n− 1
(n+ 2)2 = l(n).

Since h(n) = ϕ(t1) we have
h(n) ≤ l(n)

and the inequality l(n) ≤ g(n) is equivalent to

l(n)
g(n)

=
[

n(n− 2)
(n+ 2)(n− 1)

](n−2)/2(
n+ 1
n− 1

)1/2 (2 +
√

5)n2 − n− 1
(n+ 2)2 ≤ 1.

Thus to prove that h(n) ≤ g(n) it is enough to show that
[

n(n− 2)
(n+ 2)(n− 1)

](n−2)/2(
n+ 1
n− 1

)1/2 (2 +
√

5)n2

(n+ 2)2 = L(n) ≤ 1.

For n ≥ 3 we have

L′(n)
L(n)

=
d

dn

{
n− 2

2
[lnn+ ln(n− 2)− ln(n+ 2)− ln(n− 1)]

+
1
2

(ln(n+ 1)− ln(n− 1)) + 2 lnn− 2 ln(n+ 2) + ln(2 +
√

5)
}

=
1
2

[lnn+ ln(n− 2)− ln(n+ 2)− ln(n− 1)]

+
n− 2

2

[
1
n

+
1

n− 2
− 1
n+ 2

− 1
n− 1

]

+
1

2(n+ 1)
− 1

2(n− 1)
+

2
n
− 2
n+ 2

=
1
2

[
lnn+ ln(n− 2)− ln(n+ 2)− ln(n− 1) +

2
n

+
1

n+ 1

]
.

Hence

d

dn

[
L′(n)
L(n)

]
=

1
2

[
1
n

+
1

n− 2
− 1
n+ 2

− 1
n− 1

− 2
n2 −

1
(n+ 1)2

]

=
n4 + 13n3 + 10n2 − 4n− 8

2n2(n+ 1)2(n− 1)(n− 2)(n+ 2)
> 0 for n ≥ 3.
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Therefore the logarithmic derivative L′(n)/L(n) is an increasing function in
[3,∞). Since

lim
n→∞

L′(n)
L(n)

= 0,

we conclude that L′(n) < 0 for n > 3 and hence L(n) is a decreasing function
in the interval (3,∞).

We can calculate that L(8) = 0.983 . . . < 1, hence L(n) ≤ 1 for all n ≥ 8.
For n = 3, 4, 5, 6, 7 we see immediately that

max{g(n), h(n)} = g(n),

namely:

max{g(3), h(3)} = max{1.500, 1.392 . . .} = 1.500,

max{g(4), h(4)} = max{1.487 . . . , 1.313 . . .} = 1.48723 . . . ,

max{g(5), h(5)} = max{1.481 . . . , 1.283 . . .} = 1.48148 . . . ,

max{g(6), h(6)} = max{1.478 . . . , 1.267 . . .} = 1.4784 . . . ,

max{g(7), h(7)} = max{1.476 . . . , 1.258 . . .} = 1.476 . . .

In this way we have proved that
h(n)
g(n)

≤ l(n)
g(n)

≤ L(n) ≤ 1

for all n ∈ N, n ≥ 3. This proves inequality (2.1).
The function p3(z) given by (2.2) has the power series expansion

p3(z) = 1 + 2anzn + 2anan−1(1− a2)zn+2 + . . .

and for |a| =
√

n−1
n+1 its (n+ 2)th coefficient p∗n+2 satisfies

|p∗n+2| =
4n
n+ 1

(
n− 1
n+ 1

)(n−1)/2

.

Thus the result is sharp and the proof is complete.

3. Remarks. If we put

p∗k(z) =
1 +

(
z
a+ zk

1 + azk

)n

1−
(
z
a+ zk

1 + azk

)n = 1 + p∗1z + . . . , z ∈ U, k = 1, . . . , n− 1,

then for |a| =
√

n−1
n+1 we have

|p∗n+k| =
4n
n+ 1

(
n− 1
n+ 1

)(n−1)/2

, k = 1, . . . , n− 1.

This suggests that the following conjecture may be true:
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Conjecture. Let n ≥ 4. If p(z) = 1 + p1z + . . . ∈ P (n) then for all
k = 1, . . . , n− 1,

|pn+k| ≤
4n
n+ 1

(
n− 1
n+ 1

)(n−1)/2

.

This conjecture is proved for k = 1 and 2. For k ≥ 3 it is open.
The estimate of |pn+k| for k = 1, 2 has the following interesting property:

lim
n→∞

4n
n+ 1

(
n− 1
n+ 1

)(n−1)/2

=
4
e
≈ 1.47 . . .

and
4
e
<

4n
n+ 1

(
n− 1
n+ 1

)(n−1)/2

≤ 1.5, n ≥ 3.

In the theory of univalent and multivalent functions many classes are defined
via the class P = P (1) of Carathéodory functions (e.g. starlike, convex,
spirallike functions). If in these definitions we replace P by P (n) we obtain
new classes which have many interesting properties (see e.g. [3], [4]).
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their applications, Folia Sci. Univ. Techn. Resov. Mat. 10 (1991), 37–45.
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