On roots of polynomials with power series coefficients

by RAFAŁ PIERZCHALA (Kraków)

Abstract. We give a deepened version of a lemma of Gabrielov and then use it to prove the following fact: if \(h \in \mathbb{K}[X] \) (\(\mathbb{K} = \mathbb{R} \) or \(\mathbb{C} \)) is a root of a non-zero polynomial with convergent power series coefficients, then \(h \) is convergent.

This article is inspired by Lemma 1.2 of Gabrielov [2]. Roughly speaking, it states the following: if \(A \) is an integral domain, \(P(Z,T) = T^p + a_1(Z)T^{p-1} + \ldots + a_p(Z) \in A[[Z]][T] \), \(f = \sum_{\nu=0}^{\infty} f_\nu Z^\nu \in A[[Z]] \) is a formal power series for which \(P(Z, f(Z)) = 0 \) and \((\partial P/\partial T)(Z, f(Z)) \neq 0 \), then there exists a non-negative integer \(\nu_0 \) such that for \(\nu \geq \nu_0 \), \(f_\nu \) has a polynomial expression in the coefficients of \(a_i \), \(1 \leq i \leq p \), and \(f_k, k \leq \nu_0 \), and some constant \(g \in A \) depending on \(f \) and \(P \). Moreover some good estimates hold for the degrees of these polynomials. However, nothing is said about estimates of the coefficients, except that they are integers, and unfortunately no reasonable conclusions about these coefficients can be easily derived from the proof. That is the reason why we formulate and prove a deepened version of Gabrielov’s result (Theorem 1).

Throughout this paper \(\mathbb{K} \) denotes either the field \(\mathbb{R} \) of real numbers or the field \(\mathbb{C} \) of complex numbers. Fix \(m \in \mathbb{N} \). We will denote \((X_1, \ldots, X_m)\) by \(X \), and \(Y, Z, T \) will always signify single indeterminates. Take a multi-index \(\alpha = (\alpha_1, \ldots, \alpha_m) \in \mathbb{N}^m \). We will write \(X^\alpha \) instead of the formal monomial \(X_1^{\alpha_1} \cdots X_m^{\alpha_m} \). Moreover \(|\alpha| \) signifies the sum \(\alpha_1 + \ldots + \alpha_m \). In \(\mathbb{K}^m \) we will consider the Euclidean norm \(\| \cdot \| \). Recall that a formal power series \(\sum_{\alpha \in \mathbb{N}^m} a_\alpha X^\alpha \), \(a_\alpha \in \mathbb{K} \), is called convergent if it is convergent in some neighbourhood of the origin. This is the case if and only if there are some constants \(M, R > 0 \) such that \(|a_\alpha| \leq MR^{|\alpha|} \). The ring of convergent power series will be denoted by \(\mathbb{K}\{X\} \). Finally, for \(p \in \mathbb{N} \) we put \(I_p := \{ n \in \mathbb{N} : n \leq p \} \).

2000 Mathematics Subject Classification: Primary 13F25; Secondary 32B20, 16W60.
Key words and phrases: formal power series, convergent power series, Newton–Puiseux theorem.
Theorem 1. Let A be an integral domain and p a positive integer. Suppose $P(Z,T) = \sum_{j=0}^p c_p \cdot j(Z)T^j \in A[[Z]][T]$ is a polynomial of degree p, $c_j(Z) = \sum_{i=0}^s c_{i,j} Z^i$, $j \in I_p$. Let $f(Z) = \sum_{\nu=0}^\infty f_{\nu} Z^{\nu} \in A[[Z]]$ be a formal series such that $P(Z,f(Z)) = 0$ and $(\partial P/\partial T)(Z,f(Z)) \neq 0 \ (1)$. Put $(\partial P/\partial T)(Z,f(Z)) = \sum_{l=0}^\infty g_l Z^l$ and let $l_0 := \inf\{l : g_l \neq 0\}$, $g := -g_{l_0}$. Then for each $l > l_0$ we have $g^{2(l-l_0)-1} f_l = G_l[\{c_{i,j}\}(i \in I_{l+l_0}, \ j \in I_p), \ \{f_{\nu}\} \ (\nu \in I_{l_0}), \ g]$, where G_l is a polynomial with non-negative integral coefficients such that

(i) the degree of G_l with respect to g is not greater than $2(l-l_0) - 2$;
(ii) the degree of G_l with respect to the group of indeterminates f_{ν} is not greater than $2p(l-l_0) - p$;
(iii) if we introduce a new indeterminate Y and replace each $c_{i,j}$ by Y^i, then the degree of G_l with respect to Y is not greater than $(2l_0 + 1)(l-l_0)$;
(iv) there exists a constant $R > 0$ such that the sum of the coefficients of G_l is not greater than R^l.

Proof. The proof of (i)–(iii) is exactly as in [2]. We recall it for the convenience of the reader.

The equality $P(Z,f(Z)) = 0$ implies that for each $l \in \mathbb{N}$,

$$cl,p + \sum_{j=0}^l \sum_{s=1}^p \sum_{\nu_1+\ldots+\nu_s=j} f_{\nu_1} \ldots f_{\nu_s} c_{l-j,p-s} = 0.$$

Take $l > l_0$. We have

$$cl+l_0,p + \sum_{j=0}^{l+l_0} \sum_{s=1}^p \sum_{\nu_1+\ldots+\nu_s=j} f_{\nu_1} \ldots f_{\nu_s} c_{l+l_0-p-s} = 0.$$

A simple calculation gives

$$cl+l_0,p + \sum_{j=0}^{l+l_0} \sum_{s=1}^p \sum_{\nu_1+\ldots+\nu_s=j, \nu_1,\ldots,\nu_s \leq l-1} f_{\nu_1} \ldots f_{\nu_s} c_{l+l_0-j,p-s} + \sum_{i=0}^{l_0} g_i f_{l+l_0-i} = 0.$$

Hence $g^{2(l-l_0)-1} f_l$ is equal to

$$g^{2(l-l_0)-2} c_{l+l_0,p} + \sum_{j=0}^{l+l_0} \sum_{s=1}^p \sum_{\nu_1+\ldots+\nu_s=j, \nu_1,\ldots,\nu_s \leq l-1} g^{2(l-l_0)-2} f_{\nu_1} \ldots f_{\nu_s} c_{l+l_0-j,p-s}. \ (1)$$

(1) By the classical Newton–Puiseux theorem (cf. [1]) all roots of the polynomial P are of the form $(1/Z^{m/n})u(Z^{1/n})$, where $m, n \in \mathbb{N}, n > 0$ and $u(Z) = \sum_{\nu=0}^\infty u_{\nu} Z^{\nu} \in B[[Z]]$ is a power series with coefficients in some integral domain $B \supset A$.
We put
\[G_{l_0+1} := c_{2l_0+1,p} + \sum_{j=0}^{2l_0+1} \sum_{p} \sum_{\nu_1,\ldots,\nu_s \leq l_0} f_{\nu_1} \cdots f_{\nu_s} c_{2l_0+1-j,p-s}. \]

Suppose that we have defined \(G_k \) for each \(k \) such that \(l_0 + 1 \leq k \leq l - 1 \). We obtain \(G_l \) by replacing in (1) each \(g^{2(\nu_i - l_0)} f_{\nu_i} \) with \(G_{\nu_i} \) whenever \(l_0 + 1 \leq \nu_i \leq l - 1 \). One only needs to note that for \(r \in I_p \setminus \{0\} \) we have
\[2(l - l_0) - 2 \geq \sum_{i=1}^{r} [2(\nu_i - l_0) - 1], \]
where \(\nu_1 + \ldots + \nu_r \leq l + l_0 \) and \(l_0 + 1 \leq \nu_i \leq l - 1, \ i \in I_r \setminus \{0\} \).

Now we will prove (i)–(iii) by induction on \(l \geq l_0 + 1 \). The case \(l = l_0 + 1 \) is clear. Suppose that \(l > l_0 + 1 \) and the given estimates of the degrees of \(G_k \) are true for \(l_0 + 1 \leq k \leq l - 1 \). Let \(Q \) denote one of the summands of the sum in (1).

Case 1: \(Q = g^{2(l-l_0)-2} c_{l+1,l_0,p} \). Clearly, the polynomial \(Q \) satisfies the degree estimates in (i)–(iii).

Case 2: \(Q = g^{2(l-l_0)-2} f_{\nu_1} \cdots f_{\nu_s} c_{l+1-l_0-j,p-s}, \) where \(\nu_1 + \ldots + \nu_s = j, \nu_1,\ldots,\nu_s \leq l_0, \ s \in I_p \setminus \{0\}, \ j \in I_{l+1-l_0} \). In this case the estimates are trivial as well.

Case 3: \(Q = g^{2(l-l_0)-2} f_{\nu_1} \cdots f_{\nu_s} c_{l+1-l_0-j,p-s}, \) where \(\nu_1 + \ldots + \nu_s = j, \nu_1,\ldots,\nu_s \leq l - 1, \ s \in I_p \setminus \{0\}, \ j \in I_{l+1-l_0} \) and \(\nu_i \leq l_0 \) for exactly \(s - r \) indices \(i \in I_s \setminus \{0\}, \) where \(r \in I_s \setminus \{0\} \). We may assume that \(\nu_i \leq l_0 \) for \(i \geq r + 1 \). Note that \(Q = g^{\alpha} G_{\nu_1} \cdots G_{\nu_r} Q' \), where \(Q' = f_{r+1} \cdots f_s c_{l+1-l_0-j,p-s}, \) \(\alpha = 2(l - l_0) - 2 - \sum_{i=1}^{r} [2(\nu_i - l_0) - 1] \). As noticed before, \(\alpha \geq 0 \). Now we apply the induction hypothesis to the polynomials \(G_{\nu_1},\ldots,G_{\nu_r} \) and easily obtain the required estimates for \(Q \).

Now we will prove (iv). Denote by \(b_l \) the sum of the coefficients of the polynomial \(G_l \), where \(l \geq l_0 + 1 \). Put additionally \(b_i := 1 \) for \(i \in I_{l_0} \). By (1) we get
\[b_l = 1 + \sum_{j=0}^{l+l_0} \sum_{p} \sum_{\nu_1,\ldots,\nu_s \leq l-1} b_{\nu_1} \cdots b_{\nu_s} \]
whenever \(l \geq l_0 + 1 \). Note that for \(l \geq l_0 + 2 \),
\[b_l = ab_{l-1} + \sum_{s=1}^{p} \sum_{\nu_1,\ldots,\nu_s \leq l+l_0} b_{\nu_1} \cdots b_{\nu_s}, \]
where a is some constant. One easily verifies that
\[b_l - ab_{l-1} + \sum_{i=0}^{l_0} a_i b_{l+i_0-i} = \sum_{s=1}^{p} \sum_{\nu_1+\ldots+\nu_s=l+i_0} b_{\nu_1} \ldots b_{\nu_s}, \]
where $a_0 = \sum_{s=0}^{p-1} (s + 1) b_0^s$, and for $i \geq 1$,
\[a_i = \sum_{s=1}^{p-1} \sum_{\nu_1+\ldots+\nu_s=i} (s + 1) b_{\nu_1} \ldots b_{\nu_s}. \]

Let f denote the formal power series $\sum_{n=0}^{\infty} b_j Z^j$ and let $F := \sum_{i=0}^{l_0} b_i Z^i$. Define also polynomials $H(Z)$ and $G(Z, T)$ as follows:
\[H(Z) := \sum_{j=0}^{2l_0+1} \sum_{s=1}^{p} \sum_{\nu_1+\ldots+\nu_s=j} b_{\nu_1} \ldots b_{\nu_s} Z^j - \sum_{i+j\leq l_0} a_i b_{j+i_0+1} Z^i Z^{j+i_0+1}, \]
\[G(Z, T) := (T - b_{l_0+1}) Z^{2l_0+1} - aT Z^{2l_0+2} + \sum_{i=0}^{l_0} a_i T Z^{i+i_0+1}. \]
Then
\[G(Z, f(Z)) - \sum_{j=1}^{p} [F(Z) + f Z^{l_0+1}]^j + H(Z) = 0. \]

Note first that f is the only formal series which satisfies the identity above. One checks next that
\[\sum_{j=1}^{p} [F(Z) + T Z^{l_0+1}]^j = \sum_{i=0}^{l_0} a_i T Z^{i+i_0+1} + H(Z) + Z^{2l_0+2} P(Z, T), \]
where $P(Z, T)$ is a polynomial. Hence $W(Z, f(Z)) = 0$, where
\[W(Z, T) := T - b_{l_0+1} - aT Z - P(Z, T) Z. \]
Since $W(0, b_{l_0+1}) = 0$ and $(\partial W/\partial T)(0, b_{l_0+1}) \neq 0$, it follows that there is a convergent power series h such that $W(Z, h(Z)) = 0$. On the other hand, as mentioned before, the coefficients of h are uniquely determined, so $f = h$ as formal power series. Therefore f is convergent and there is a positive constant R such that $b_l \leq R^l$ for $l \geq l_0 + 1$. The proof of the theorem is now complete.

Remark 1. It follows from the proof that g is a polynomial in $c_{i,j}$ and f_{ν} ($i \in I_{l_0}$, $j \in I_p$, $\nu \in I_{l_0}$) with integral coefficients.

Lemma 1. Consider a formal series $A = \sum_{n=0}^{\infty} A_n Y^n \in \mathbb{K}[[X]][[Y]]$. Then A is convergent if and only if there are constants $r, R, M > 0$ such that the series A_n is convergent in the open ball $\{ ||x|| < 2r \}$ and $\sup \{ |A_n(x)| : ||x|| \leq r \} \leq M R^n$ for each $n \in \mathbb{N}$.

Proof. Write \(A_n = \sum_{\alpha \in \mathbb{N}^m} A^{(n)}_{\alpha} X^{\alpha} \), \(A^{(n)}_{\alpha} \in \mathbb{K} \), and suppose \(A \) is convergent. There are positive constants \(C, R \) such that \(|A^{(n)}_{\alpha}| \leq CR^{l|\alpha|+n} \). Take \(r := (4R)^{-1} \). Clearly, each \(A_n \) is convergent in \(\{||x|| < 2r\} \) and for \(||x|| \leq r \) we have \(|A_n(x)| \leq \sum_{\alpha \in \mathbb{N}^m} C R^{l|\alpha|+n} = MR^n \). The reverse implication follows from the Weierstrass criterion of convergence.

For \(m \geq 2 \) let \(\varphi_m \) denote the following map:
\[
\varphi_m : \mathbb{K}^m \ni (x_1, \ldots, x_m) \mapsto (x_1 x_m, \ldots, x_{m-1} x_m, x_m) \in \mathbb{K}^m.
\]

Lemma 2. A power series \(A \in \mathbb{K}[[X, Y]] \) is convergent if and only if \(A(\varphi_m(X), Y) \) is convergent.

Proof. Suppose the power series \(A(\varphi_m(X), Y) \) is convergent. Since
\[
A(\varphi_m(X), Y) = \sum_{\alpha \in \mathbb{N}^{m+1}} a_{\alpha} X^{\alpha_1} \cdots X^{\alpha_m} X^{\alpha_1+\cdots+\alpha_{m-1}} Y^{\alpha_m+1},
\]
where \(a_{\alpha} \in \mathbb{K} \) are the coefficients of \(A \), then there are positive constants \(M, R \) such that \(|a_{\alpha}| \leq MR^{l|\alpha|+\alpha_1+\cdots+\alpha_{m-1}} \). We may assume that \(R > 1 \) and then \(|a_{\alpha}| \leq MR^{|\alpha|} \). This implies the convergence of \(A \). The reverse implication is trivial.

Lemma 3. Suppose that a non-zero formal power series \(G \in \mathbb{K}[[X]] \) and a formal power series \(H(X, Y) = \sum_{n=0}^{\infty} F_n(X) G^n(X) Y^n \) are convergent, where \(F_n(X) \in \mathbb{K}[[X]] \). Then \(F(X, Y) = \sum_{n=0}^{\infty} F_n(X) Y^n \) is convergent as well.

Proof. We may assume that \(m \geq 2 \), because any power series in one variable can be treated as a power series in two variables. Write \(G = \sum_{\nu=\nu_0}^{\infty} G_{\nu} \) as the sum of homogeneous polynomials of degree \(\nu \), where \(G_{\nu_0} \neq 0 \). Take \(a \in \mathbb{K}^m \setminus \{0\} \) such that \(G_{\nu_0}(a) \neq 0 \). There is a linear automorphism \(L : \mathbb{K}^m \to \mathbb{K}^m \) such that \(L((0,0,\ldots,1)) = a \). Then
\[
(G \circ L \circ \varphi_m)(X) = \sum_{\nu=\nu_0}^{\infty} G_{\nu}(L(X_1, \ldots, X_{m-1}, 1)) X_{m}^{\nu} = X_{m}^{\nu_0} P(X),
\]
where \(P(X) \) is an invertible convergent power series. Since \(L \) is an automorphism, it is enough to show that \(F(L(\varphi_m(X)), Y) \) is convergent (cf. Lemma 2). Write \(F_n(L(\varphi_m(X))) = \sum_{\alpha \in \mathbb{N}^m} b^{(n)}_{\alpha} X^{\alpha} \), \(b^{(n)}_{\alpha} \in \mathbb{K} \). We need to show that there are some constants \(M, R > 0 \) such that \(|b^{(n)}_{\alpha}| \leq MR^{l|\alpha|+n} \), where \(\alpha \in \mathbb{N}^m, n \in \mathbb{N} \). Clearly, the formal power series
\[
H(L(\varphi_m(X)), P^{-1}(X) Y)^n = \sum_{n=0}^{\infty} \left[\sum_{\alpha \in \mathbb{N}^m} b^{(n)}_{\alpha} X^{\alpha} \right] X_{m}^{\nu_0 n} Y^n
\]
is convergent. Therefore there are positive constants \(M, C \) such that \(|b^{(n)}_{\alpha}| \leq MC^{l|\alpha|+\nu_0 n+n} \). We may assume that \(C \geq 1 \) and then \(|b^{(n)}_{\alpha}| \leq MR^{l|\alpha|+n} \), where \(R := C^{\nu_0 + 1} \).
We have the following consequence of Lemma 3:

Corollary. Suppose $A(X)B(X) = C(X)$, where $A, B, C \in \mathbb{K}[[X]]$ and B, C are convergent. Then A is convergent.

Proof. We apply Lemma 3 to $H(X,Y) = A(X)B(X)Y$, $G(X) = B(X)$ and $F(X,Y) = A(X)Y$.

Though we will not apply this corollary in our paper, we have stated it to show that the idea of using the map φ_m gives a very short and elementary proof of it.

Now we will give a new elementary proof of a certain theorem, proved in [3] as a consequence of Artin’s Approximation Theorem:

Theorem 2. Let m and p be positive integers. Suppose that $S(X,T) = \sum_{j=0}^{p} a_{p-j}(X)T^j \in \mathbb{K}\{X\}[T]$ is a non-zero polynomial. Assume as well that $h \in \mathbb{K}[[X]]$ satisfies the identity $S(X,h(X)) = 0$. Then h is convergent.

Proof. We may assume that S is of the lowest possible degree. Hence $(\partial S/\partial T)(X,h(X)) \neq 0$. Moreover we may assume that $m \geq 2$. Write $h = \sum_{\nu=0}^{\infty} h_{\nu}$ as the sum of homogeneous polynomials h_{ν} of degree ν. It follows from Lemma 2 that it suffices to prove that the power series $f = h \circ \varphi_m$ is convergent. Put $f_{\nu}(X_1,\ldots,X_{m-1}) := h_{\nu}(\varphi_m(X_1,\ldots,X_{m-1},1))$. Obviously, $f(X) = \sum_{\nu=0}^{\infty} f_{\nu}(X_1,\ldots,X_{m-1})X_m^{\nu}$. Let $P(X,T) := S(\varphi_m(X),T)$ and $c_j := a_j \circ \varphi_m$ for $j \in I_p$. Clearly, $P(X,f(X)) = 0$ and $(\partial P/\partial T)(X,f(X)) \neq 0$. Write $c_j(X) = \sum_{i=0}^{\infty} c_{i,j}(X_1,\ldots,X_{m-1})X_m^i$. There is a neighbourhood of the origin in \mathbb{K}^{m-1} in which each $c_{i,j}$ is convergent; we may assume that $|c_{0,j}(x)| \leq 1$ for each x in that neighbourhood. Now we apply Theorem 1 to f and the polynomial P putting $A := \mathbb{K}[[X_1,\ldots,X_{m-1}]]$. We obtain a convergent power series g (cf. Remark 1), an integer l_0 and polynomials G_l, $l \geq l_0 + 1$. It follows from Theorem 1 and Lemma 1 that $\sum_{l=l_0+1}^{\infty} g^{2(l-l_0)-1} f_l X_m^l$ is convergent, and so is the formal power series $\sum_{l=l_0+1}^{\infty} f_l g^{2l} X_m^l$. Therefore by Lemma 3, f is convergent.

Acknowledgements. I would like to thank Professor Wieslaw Pawlucki for suggesting the problem and for his help during the preparation of this paper. I am also indebted to my friend Marcin Skrzyński who helped me to correct the text.

References

Institute of Mathematics
Jagiellonian University
Reymonta 4
30-059 Kraków, Poland
E-mail: pierzcha@im.uj.edu.pl

Reçu par la Rédaction le 15.2.2002